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Engineered variants of recombinant adeno-associated viruses (rAAVs) are being
developed rapidly to meet the need for gene-therapy delivery vehicles with particular
cell-type and tissue tropisms. While high-throughput AAV engineering and selection
methods have generated numerous variants, subsequent tropism and response
characterization have remained low throughput and lack resolution across the many
relevant cell and tissue types. To fully leverage the output of these large screening
paradigms across multiple targets, we have developed an experimental and
computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo
characterization of barcoded rAAV pools at high resolution. Using this platform, we
have both corroborated previously reported viral tropisms and discovered unidentified
AAV capsid targeting biases. As expected, we observed that the tropism profile of
AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when
compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is
due mainly to increased targeting efficiency for glutamatergic neurons, which we
confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype
tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes
and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory
responses to systemic AAV-PHP.eB administration, such as upregulation of genes
involved in p53 signaling in endothelial cells three days post-injection, which return to
control levels by day twenty-five. The presented experimental and computational
approaches for parallel characterization of AAV tropism will facilitate the advancement
of safe and precise gene delivery vehicles, and showcase the power of understanding
responses to gene therapies at the single-cell level.
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1 INTRODUCTION

Recombinant AAVs (rAAVs) have become the preferred gene
delivery vehicles for many clinical and research applications (1, 2)
owing to their broad viral tropism, ability to transduce dividing
and non-dividing cells, low immunogenicity, and stable
persistence as episomal DNA ensuring long-term transgene
expression (3–8). However, current systemic gene therapies
using AAVs have a relatively low therapeutic index (9). High
doses are necessary to achieve sufficient transgene expression in
target cell populations, which can lead to severe adverse effects
from off-target expression (10–12). Increased target specificity of
rAAVs would reduce both the necessary viral dose and off-target
effects; thus, there is an urgent need for AAV gene delivery vectors
that are optimized for cell-type-specific delivery (13). Lower viral
doses would also alleviate demands on vector manufacturing and
minimize the chances of undesirable immunological responses
(14–16). Capsid-specific T-cell activation was reported to be dose-
dependent in vitro (17, 18) and in humans (19, 20). Shaping the
tropism of existing AAVs to the needs of a specific disease has the
potential to reduce activation of the immune system by
detargeting cell types, such as dendritic cells, that have an
increased ability to activate T-cells (21–26).

Several studies have demonstrated that the transduction
efficiency and specificity of natural AAVs can be improved by
engineering their capsids using rational design (27–31) or
directed evolution (32–47). These engineering methods yield
diverse candidates that require thorough, preferably high-
throughput, in vivo vector characterization to identify optimal
candidates for a particular clinical or research application.
Toward this end, conventional immunohistochemistry (IHC)
and various in situ hybridization (ISH) techniques are commonly
employed to profile viral tropism by labeling proteins expressed
by the viral transgene or viral nucleic acids, respectively (10, 32,
34, 45, 48–59).

Although these histological approaches preserve spatial
information, current technical challenges limit their application
to profiling the viral tropism of just one or two AAV variants
across a few gene markers, thus falling short of efficiently
characterizing multiple AAVs across many complex cell types
characteristic of tissues in the central nervous system (CNS). The
reliance on known marker genes also prevents the unbiased
discovery of tropisms since such marker genes need to be chosen
a priori. Choosing marker genes is particularly challenging for
supporting cell types, such as pericytes in the CNS
microvasculature and oligodendrocytes, which often have less
established cell type identification strategies (60, 61). The advent
of single-cell RNA sequencing (scRNA-seq) has enabled
comprehensive transcriptomic analysis of entire cell-type
hierarchies, and brought new appreciation to the role of cell
subtypes in disease (62–66). However, experimental and
computational challenges, such as the sparsity of RNA capture
and detection, strong batch effects between samples, and the
presence of ambient RNA in droplets, reduce the statistical
confidence of claims about individual gene expression (67–69).
Computational methods have been developed to address some of
Frontiers in Immunology | www.frontiersin.org 2
these challenges, such as identifying contaminating RNA (68),
accounting for or removing batch effects (70–72), and
distinguishing intact cells from empty droplets (69, 73, 74).
However, strategies for simultaneously processing transcripts
from multiple delivery vehicles and overcoming the
computational challenges of confidently detecting individual
transcripts have not yet been developed for probing the
tropism of AAVs in complex, heterogeneous cell populations.

Collecting the entire transcriptome of injected and non-
injected animals also offers an opportunity to study the effects
of AAV transduction on the host cell transcriptome. A similar
investigation has been conducted with G-deleted rabies virus
(75). This study demonstrated that virus infection led to the
downregulation of genes involved in metabolic processes and
neurotransmission in host cells, whereas genes related to
cytokine signaling and the adaptive immune system were
upregulated. At present, no such detailed examination of
transcriptome changes upon systemic AAV injection has been
conducted. High-throughput single-cell transcriptomic analysis
could provide further insight into the ramifications of AAV
capsid and transgene modifications with regard to innate (76–
80) and adaptive immune recognition (20, 81–84). Innate and
adaptive immune responses to AAV gene delivery vectors and
transgene products constitute substantial hurdles to their clinical
development (85, 86). The study of brain immune response to
viral gene therapy has been limited to antibody staining and
observation of brain tissue slices post direct injection. In
particular, prior studies have shown that intracerebral injection
of rAAV vectors in rat brains does not induce leukocytic
infiltration or gliosis (87, 88); however, innate inflammatory
responses were observed (89). Results reported by these methods
are rooted in single-marker staining and thus prevent the
discovery of unexpected cell-type-specific responses. A
comprehensive understanding of the processes underlying viral
vector or transgene-mediated responses is critical for further
optimizing AAV gene delivery vectors and treatment modalities
that mitigate such immune responses.

Here, we introduce an experimental and bioinformatics
workflow capable of profiling the viral tropism and response of
multiple barcoded AAV variants in a single animal across
numerous complex cell types by taking advantage of the
transcriptomic resolution of scRNA-seq techniques
(Figure 1A). For this proof-of-concept study, we profile the
tropism of previously-characterized AAV variants that emerged
from directed evolution with the CREATE (AAV-PHP.B, AAV-
PHP.eB) (32, 34) or M-CREATE (AAV-PHP.C1, AAV-PHP.C2,
AAV-PHP.V1, AAV.CAP-B10) (45, 90) platforms. We selected
the AAV variants based on their unique CNS tropism following
intravenous injection. AAV-PHP.B and AAV-PHP.eB are known
to exhibit overall increased targeting of the CNS compared with
AAV9 and preferential targeting of neurons and astrocytes.
Despite its sequence similarity to AAV-PHP.B, the tropism of
AAV-PHP.V1 is known to be biased toward transducing brain
vascular cells. AAV-PHP.C1 and AAV-PHP.C2 have both
demonstrated enhanced blood–brain barrier (BBB) crossing
relative to AAV9 across two mouse strains (C57BL/6J and
October 2021 | Volume 12 | Article 730825
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BALB/cJ). Finally, AAV.CAP-B10 is a recently-developed variant
with a bias toward neurons compared to AAV-PHP.eB (90).

In the initial validation experiment, we quantify the
transduction biases of AAV-PHP.eB and AAV.CAP-B10 across
major cell types using scRNA-seq, and demonstrate results
which correlate well with both published results and
conventional IHC-based quantification. We then demonstrate
the power of the transcriptomic approach by going beyond the
major cell types to reveal significant differences in cell-subtype
transduction specificity. Compared with AAV.CAP-B10, AAV-
PHP.eB displays biased targeting of inhibitory neurons, and both
variants transduce Sst+ or Pvalb+ inhibitory neurons more
efficiently than Vip+ inhibitory neurons. We validate these
results with fluorescent in situ hybridization – hybridization
chain reaction (FISH-HCR). We then develop and validate a
barcoding strategy to investigate the tropism of AAV-PHP.V1
relative to AAV-PHP.eB in non-neuronal cells and reveal that
pericytes, a subclass of vascular cells, evade transduction by this
Frontiers in Immunology | www.frontiersin.org 3
and other variants. We further use scRNA-seq to profile cell-
type-specific responses to AAV-PHP.eB at 3 and 25 days post-
injection (DPI), finding numerous genes implicated in the p53
pathway in endothelial cells to be upregulated at 3 DPI and
returning back to control levels at 25 DPI. Finally, we showcase
the capabilities of parallel characterization by verifying the
preceding findings in a single animal with seven co-injected
AAV variants and revealing their respective cell-type biases.
2 RESULTS

2.1 Multiplexed Single-Cell RNA
Sequencing-Based AAV Profiling Pipeline
To address the current bottleneck in AAV tropism profiling, we
devised an experimental and computational workflow
(Figure 1A) that exploits the transcriptomic resolution of
scRNA-seq to profile the tropism of multiple AAV variants
FIGURE 1 | Workflow of AAV tropism characterization by scRNA-seq. (A) (I) Injection of a single AAV variant or multiple barcoded AAV variants into the retro-orbital
sinus. (II) After 3–4 weeks post-injection, the brain region of interest is extracted and the tissue is dissociated into a single-cell suspension. (III) The droplet-based 10x
Genomics Chromium system is used to isolate cells and build transcriptomic libraries [see (B)]. (IV) Cells are assigned a cell-type annotation and a viral transcript
count. (V) AAV tropism profiling across numerous cell types. (B) The full length cDNA library is fragmented for sequencing as part of the single-cell sequencing
protocol (top). To enable viral tropism characterization of multiple rAAVs in parallel, an aliquot of the intact cDNA library undergoes further PCR amplification of viral
transcripts (bottom). During cDNA amplification, Illumina sequencing primer targets are added to the viral transcripts such that the sequence in between the Illumina
primer targets contains the AAV capsid barcode sequence. Viral cargo in the cell transcriptome is converted to variant barcodes by matching the corresponding cell
barcode + UMI in the amplified viral transcript library (right).
October 2021 | Volume 12 | Article 730825
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across complex cell-type hierarchies. In this workflow, single or
multiple barcoded rAAVs are injected into the retro-orbital sinus
of mice followed by tissue dissociation, single-cell library
construction using the 10X Genomics Chromium system, and
sequencing with multiplexed Illumina next-generation
sequencing (NGS) (69). The standard mRNA library
construction procedure includes an enzymatic fragmentation
step that truncates the cDNA amplicon such that its final size
falls within the bounds of NGS platforms (Figure 1B). These
cDNA fragments are only approximately 450 bp in length and,
due to the stochastic nature of the fragmentation, sequencing
from their 5’ end does not consistently capture any particular
region. The fragment length limit and heterogeneity pose a
problem for parallelizing AAV tropism profiling, which
requires reliable recovery of regions of the transgene that
identify the originating AAV capsid. For example,
posttranscriptional regulatory elements, such as the 600 bp
Woodchuck hepatitis virus posttranscriptional regulatory
element (WPRE), are commonly placed at the 3’ end of viral
transgenes to modulate transgene expression. The insertion of
such elements pushes any uniquely identifying cargo outside the
Frontiers in Immunology | www.frontiersin.org 4
450 bp capture range, making them indistinguishable based on
the cDNA library alone (Supplemental Figure 1A). An
al ternat ive st ra tegy of adding barcodes in the 3 ’
polyadenylation site also places the barcode too distant for a 5’
sequencing read, and reading from the 3’ end would require
sequencing through the homopolymeric polyA tail, which is
believed to be unreliable in NGS platforms (91, 92).

We circumvented these limitations in viral cargo
identification by taking an aliquot of the intact cDNA library
and adding standard Illumina sequencing primer recognition
sites to the viral transcripts using PCR amplification such that
the identifying region is within the two Illumina primer target
sequences (e.g. Figure 2B). The cell transcriptome aliquots
undergoing the standard library construction protocol and the
amplified viral transcripts are then sequenced as separate NGS
libraries. We sequence shorter viral transcripts in the same flow
cell as the cell transcriptomes and longer viral transcripts on the
Illumina MiSeq, which we found to be successful at sequencing
cDNAs up to 890 bp long. The sequencing data undergoes a
comprehensive data processing pipeline (see Methods). Using a
custom genome reference, reads from the cell transcriptome that
A B

C

D

FIGURE 2 | Comparison of viral tropism profiling with traditional IHC and scRNA-seq. (A) Overview of the experiment. Four animals were injected with 1.5 × 1011 viral
genomes (vg) packaged in AAV-PHP.eB and/or AAV.CAP-B10. The bottom panels show a representative dataset collected from an animal that was co-injected with
AAV-PHP.eB and AAV.CAP-B10. The left side displays the scRNA-seq dataset in the lower dimensional t-SNE space, with cells colored according to presence of viral
transcripts. The shaded areas indicate clusters with high expression of the corresponding gene marker. The right side shows representative confocal images of cortical
tissue labeled with IHC. Scale bar, 50 µm. (B) Viral transcript recovery strategy. The shaded areas highlight sequences added during library construction. (C) The fraction
of the total number of transduced cells labeled as expressing the corresponding marker gene. For each AAV variant, the results of a two-way ANOVA with correction for
multiple comparisons using Sidak’s test are reported with adjusted P-values (****P ≤ 0.0001, ***P ≤ 0.001, and **P ≤ 0.01, and *P ≤ 0.05 are shown; P > 0.05 is not
shown). (D) Comparison of transduction rates based on quantification via scRNA-seq or IHC. Transduction rate in IHC was calculated as (number of transduced cells in
the group)/(total number of cells in the group). Transduction rate in scRNA-seq is based on an estimate of the fraaction of cells containing transcripts above background
(see Methods). Each dot represents the transduction rate of neurons/Rbfox3+, astrocytes/S100b+, or oligodendrocytes/Olig2+ by AAV-PHP.eB or AAV.CAP-B10 in one
animal. Histology data are averages across three brain slices per gene marker and animal. r indicates the Pearson correlation coefficient.
October 2021 | Volume 12 | Article 730825
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align to the viral cargo plasmid sequences are counted as part of
the standard 10X Cell Ranger count pipeline (see Methods and
Supplemental Figure 1C). In parallel, reads from the amplified
viral transcripts are used to count the abundance of each viral
barcode associated with each cell barcode and unique molecular
identifier (UMI). The most abundant viral barcode for each cell
barcode and UMI is assumed to be the correct viral barcode, and
is used to construct a variant lookup table. This lookup table
approach identifies an originating capsid in 65.7 ± 2.3% of viral
transcripts detected in the cell transcriptome aliquots
(Supplemental Table 4).

For determining viral cell-type tropism, we developed a
method to estimate the fraction of cells within a cell type that
express viral transcripts. Viral RNA expression levels depend on
both the multiplicity of infection and the transcription rate of the
delivered cargo. Thus, directly using viral RNA counts to
determine tropism is confounded by differences in
transcription rate between cell types, limiting comparison with
imaging-based tropism quantification methods. As evidence of
this, we detected that viral RNA expression levels can vary by cell
type but are not perfectly rank correlated with the percent of cells
detected as expressing that transcript (Supplemental Figure 2B).
An additional confound arises from the ambient RNA from
cellular debris co-encapsulated with cell-containing droplets,
which can lead to false positives, i.e., detecting viral RNA in
droplets containing a cell that was not expressing viral RNA. For
example, we detected low levels of viral transcripts in large
percentages of cells, even in cell types suspected to evade
transduction, such as immune cells (Supplemental Figure 2A).
To reduce the effect of both variability in expression and ambient
RNA, we developed an empirical method to estimate the
percentage of cells expressing transcripts above the noise,
wherein the distribution of viral transcript counts in a set of
cells of interest is compared to a background distribution of cell-
free (empty) droplets (see Methods, Supplemental Figure 2C).
In simulation, this method accurately recovers the estimated
number of cells expressing transcripts above background across a
wide range of parameterizations of negative binomial
distributions (see Methods, Supplemental Figure 2D).
Importantly, this method can yield a different ranking of viral
tropism as compared to mean transcript expression rate
(Supplemental Figure 2E).

To address several additional technical problems in default
single-cell pipelines, we developed a simultaneous quality control
(QC) and droplet identification pipeline. Our viral transduction
rate estimation method described above relies on having an
empirical background distribution of viral transcript counts in
empty droplets to compare against the cell type of interest.
However, the default cell vs. empty droplet identification
method provided by the 10X Cell Ranger software, which is
based on the EmptyDrops method (73), yielded unexpectedly
high numbers of cells and clusters with no recognizable marker
genes, suggesting they may consist of empty droplets of ambient
RNA or cellular debris (Supplemental Figures 3A, B).
Additionally, we sought to remove droplets containing
multiple cells (multiplets) from our data due to the risk of
Frontiers in Immunology | www.frontiersin.org 5
falsely attributing viral tropism of one cell type to another.
However, using Scrublet (93), an established method for
identifying droplets containing multiplets, failed to identify
multiplets in some of our samples and only identified small
proportions of clusters positive for known non-overlapping
marker genes, such as Cldn5 and Cx3cr1 (Supplemental
Figure 3C). To address both the empty droplet and multiplet
detection issues, we built a droplet classification pipeline based
on scANVI, a framework for classifying single-cell data via
neural-network-based generative models (94). Using clusters
with a high percentage of predicted multiplets from Scrublet as
training examples of multiplets, and clusters positive for known
neuronal and non-neuronal marker genes as training examples
of neurons and non-neuronal cells, we trained a predictive model
to classify each droplet as a neuron, non-neuron, multiplet, or
empty droplet (see Methods, Supplemental Figure 4A). This
model performed with 97.4% accuracy on 10% of cells held out
for testing, and yielded a database of 334,151 cortical cells
(Supplemental Figure 4B). Inspection of the cells classified as
empty droplets reveals that these droplets have lower transcript
counts and higher mitochondrial gene ratios, consistent with
other single-cell quality control pipelines (Supplemental
Figure 4D). Critically, we discovered that non-neuronal
clusters contained significantly more cells that had been
previously removed by the Cell Ranger filtering method as
compared to neuronal clusters (P = 0.025, 2-sided student t-
test). In some clusters within cell subtypes, such as mature
oligodendrocytes and endothelial cells, we identified up to 67%
more cells than what were recovered via Cell Ranger.

Using our combined experimental and computational
pipeline for viral transcript recovery and droplet identification,
we can recover a lower bound on the expected number of cells
expressing each unique viral cargo within groups of cells in
heterogeneous samples.

2.2 Single-Cell RNA Sequencing
Recapitulates AAV Capsid Cell-Type-
Specific Tropisms
As a first step, we validated our method by comparing the
quantification of AAV transduction of major cell types via
scRNA-seq to conventional IHC. For this purpose, we
characterized the tropism of two previously reported AAV
variants, AAV-PHP.eB (32) and AAV.CAP-B10 (90)
(Figure 2A). In total, four animals received single or dual
retro-orbital injections of AAV-PHP.eB and/or AAV.CAP-B10
with 1.5 × 1011 viral genomes (vg) per variant. Co-injection of
both variants served to test the ability of our approach to
parallelize tropism profiling. By having each variant package a
distinct fluorophore, tropism could be simultaneously assessed
via multi-channel fluorescence and mRNA expression of the
distinct transgene. After 3–4 weeks of expression, we harvested
the brains and used one hemisphere for IHC and one hemisphere
for scRNA-seq. To recover viral transcripts, we chose primers
such that enough of the XFP sequence was contained within the
Illumina primer target sequences to differentiate the two variants
(Figure 2B, Supplemental Table 1). For this comparison, we
October 2021 | Volume 12 | Article 730825
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focused on the transduction rate for neurons (Rbfox3), astrocytes
(S100b), and oligodendrocytes (Olig2). For IHC, a cell was
classified as positive for the marker gene on the basis of
antibody staining, and was classified as transduced on the basis
of expression of the delivered fluorophore. For scRNA-seq, all
cells that passed our QC pipeline were projected into a joint scVI
latent space and clustered. To most closely match our imaging
quantification, we considered all clusters that were determined to
be positive for the respective marker gene as belonging to the
corresponding cell type (see Methods). All clusters of the same
marker gene were grouped together, and the transduction rate of
the combined group of cells was determined using our viral
transduction rate estimation method.

Our analysis of the scRNA-seq data demonstrates that the
viral tropism biases across the three canonical marker genes are
consistent with previous reports (Figure 2C) (32, 90). In contrast
to AAV-PHP.eB, AAV.CAP-B10 preferentially targets neurons
over astrocytes and oligodendrocytes. No marked discrepancies
in viral tropism characterization were observed with single versus
dual injections.

To quantify the similar i ty of the AAV tropism
characterizations obtained with IHC and scRNA-seq, we
directly compared the transduction rate of each AAV variant
for every cell type and its corresponding marker gene (i.e.,
Rbfox3, S100b, or Olig2) as determined by each technique and
noticed a good correlation (Figure 2D). Despite the different
underlying biological readouts–protein expression in IHC and
RNA molecules in labeled cell types for scRNA-seq–the two
techniques reveal similar viral tropisms.

2.3 Tropism Profiling at Transcriptomic
Resolution Reveals AAV Variant Biases for
Neuronal Subtypes
After validating our approach against the current standard of
AAV tropism characterization (IHC imaging), we scrutinized the
tropism of AAV-PHP.eB and AAV.CAP-B10 beyond the major
cell types (Figure 3). Since AAV.CAP-B10 has increased
neuronal bias relative to AAV-PHP.eB, we first sought to
understand if there were neuronal subtypes that were
differentially responsible for this bias. However, in-depth cell
typing of transcriptomes collected from tissues with numerous
and complex cell types, such as neurons in the brain, requires
expert knowledge of the tissue composition, time to manually
curate the data, and the availability of large datasets (66). To
minimize the burden of manual annotation, computational tools
have been developed that use previously-annotated single-cell
databases to predict the cell type of cells in new, unannotated
single-cell experiments, even across single-cell platforms (94, 96,
97). We decided to leverage these tools and expanded our marker
gene-based cell typing approach by having more complicated or
well-established cell types be assigned based on annotations in a
reference dataset (Supplemental Figure 4A). To this end, we
again employed scANVI to construct a joint model of cells from
our samples and cells from an annotated reference database. For
this model, we used the Mouse Whole Cortex and Hippocampus
10x v2 dataset available from the Allen Brain Institute (95).
Frontiers in Immunology | www.frontiersin.org 6
Since this is a neuron-enriched dataset, we constructed the model
using only the 125,341 cells in our dataset classified as neurons
from our marker-based QC pipeline combined with the 561,543
neuronal cells from cortical regions from the reference database.
We trained this model to predict to which of 14 neuron subtype
groupings each cell belonged. We held out 10% of the data for
testing: the model performed with 97.9% classification accuracy
on the held-out data. We then applied the model to predict the
neuron subtypes of our cells.

During our in-depth characterization, we discovered several
previously unnoticed cell-subtype biases for AAV-PHP.eB and
AAV.CAP-B10 (Figure 3A). Starting at the top of our neuronal
hierarchy, the fraction of transduced cells that were
glutamatergic neurons was markedly reduced for AAV-PHP.eB
compared with AAV.CAP-B10 (P = 0.03, 2-sided student t-test,
corrected for 2 neuron subtype comparisons). Furthermore,
Pvalb+ and Sst+ inhibitory neurons both represented a larger
fraction of transduced cells than Vip+ inhibitory neurons
(adjusted P = 0.0009, P = 0.045, respectively, two-way ANOVA
with multiple comparison correction for inhibitory neuron
subtypes using Tukey’s method).

To confirm these tropism biases in neuronal subtypes with a
traditional technique, we performed FISH-HCR for glutamatergic
and GABAergic gene markers (Figure 3B) (98, 99). As indicated by
our scRNA-seq data, AAV.CAP-B10, when compared with AAV-
PHP.eB, has increased transduction efficiency of glutamatergic
neurons (SLC17A7). Furthermore, FISH-HCR verified the
downward trend in transduction efficiency from Pvalb+, to Sst+,
to Vip+ neurons in both AAV variants (Figure 3C).

2.4 Pooled AAVs Packaging Barcoded
Cargo Recapitulate the Non-Neuronal
Tropism Bias of PHP.V1
To enable profiling viral variants in parallel without needing distinct
transgenes per variant, we established a barcoding strategy whereby
we package AAV variants with the same transgene and regulatory
elements but with short, distinguishing nucleotide sequences within
the 3’ UTR (Figure 4A). To verify that this barcoding strategy can
recover tropisms consistent with our previous transgene-based
capsid-identification strategy, we performed a set of experiments
to re-characterize the tropism of AAV-PHP.eB in parallel with that
of the recently developed AAV-PHP.V1, which has increased
specificity for vascular cells over AAV-PHP.eB (45).

We produced AAV-PHP.eB carrying CAG-mNeonGreen and
AAV-PHP.V1 carrying either CAG-mRuby2 or CAG-tdTomato.
Additionally, we produced AAV-PHP.eB and AAV-PHP.V1
both carrying CAG-mNeonGreen with 7-nucleotide barcodes
89 bp upstream of the polyadenylation start site such that they
did not interfere with the WPRE. We ensured each barcode had
equal G/C content, and that all barcodes were Hamming distance
3 from each other (Supplemental Table 5). Each of the barcoded
variants was packaged with multiple barcodes that were pooled
together during virus production. Four animals received a retro-
orbital co-injection of 1.5 x 1011 vg/each of AAV-PHP.V1 and
AAV-PHP.eB. Two animals received viruses carrying separate
fluorophores (cargo-based), and two animals received viruses
October 2021 | Volume 12 | Article 730825
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carrying the barcoded cargo (barcode-based). For amplification
of the viral cDNA in the animals receiving the barcoded cargo,
we used primers closer to the polyA region such that the
sequencing read covered the barcoded region (Supplemental
Frontiers in Immunology | www.frontiersin.org 7
Table 1). During the single-cell sequencing dissociation and
recovery, one of our dissociations resulted in low recovery of
neurons (Supplemental Figure 4C); thus, we investigated only
non-neuronal cells for this experiment.
A

B C

FIGURE 3 | In-depth AAV tropism characterization of neuronal subtypes at transcriptomic resolution. (A) Viral tropism profiling across neuronal subtypes. Neuronal
subtype annotations are predicted by a model learned from the Allen Institute reference dataset using scANVI (94, 95). Each dot represents data from one animal
injected with AAV-PHP.eB and/or AAV.CAP-B10. Bar width indicates the total number of cells of a particular cell type present in our dataset. (B) Representative
confocal images of cortical tissue from an animal injected with 1.5 × 1011 vg of AAV-PHP.eB. Tissue was labeled with FISH-HCR for gene markers of glutamatergic
neurons (Slc17a7) and GABAergic neurons (Gad1, Pvalb, Sst, Vip). AAV-PHP.eB shows the endogenous fluorescence of mNeonGreen. Scale bar, 50 µm.
(C) Confirmation of viral tropism biases across neuronal subtypes using FISH-HCR (3 mice per AAV variant, 1.5 × 1011 vg dose). Dots represent the average values
across three brain slices from one animal. Results from a two-way ANOVA with correction for multiple comparisons using Tukey’s test is reported with adjusted P-
values (****P ≤ 0.0001; and P > 0.05 is not shown on the plot).
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Despite variability in the total transgene RNA content between
barcodes of the same variant (Supplemental Figure 5A), the
estimated percent of cells expressing the transgene within each cell
type was consistent between barcodes within a single animal, with
standard deviations ranging from 0.002 to 0.056 (Supplemental
Figure 6A). Our analysis of both the barcode-based animals and
cargo-based animals shows the same bias in non-neuronal tropism,
with AAV-PHP.eB significantly preferring astrocytes over
oligodendrocytes, vascular cells, and immune cells (Figure 4D).
Interestingly, our analysis also revealed that the variance between
barcodes within an animal was less than the variance between
animals, even when controlling for cargo and dosage (P = 0.030,
Bartlett’s test, P-values combined across all variants and cell types
using Stouffer’s method, weighted by transduced cell type
Frontiers in Immunology | www.frontiersin.org 8
distribution). This is not surprising, since we found differences in
cell type distribution alone can account for up to 58% of the
perceived variability in tropism bias (Supplemental Figure 6B).

Next, we investigated the distribution of cells transduced by
AAV-PHP.eB vs AAV-PHP.V1 in the major non-neuronal cell
types across both barcode-based and cargo-based paradigms
(Figure 4E). The single-cell tropism data confirms the
previously-established finding that AAV-PHP.V1 has a bias
toward vascular cells relative to AAV-PHP.eB. Additionally, we
uncovered that this is coupled with a bias away from astrocytes
relative to AAV-PHP.eB, but that transduction bias of
oligodendrocytes and immune cells did not differ between the
variants. To investigate for a specific effect of the barcoding
strategy, we performed a three-way ANOVA across the variant,
A B C

D E F

FIGURE 4 | Barcoded co-injected rAAVs reveal the non-neuronal tropism bias of AAV-PHP.V1. (A) Experimental design for comparing barcode vs cargo-based
tropism profiling. Animals received dual injections of AAV-PHP.eB and AAV-PHP.V1, carrying either distinct fluorophores (cargo) or the same fluorophore with distinct
barcodes. (B) t-SNE projection of the single-cell Variational Inference (scVI) latent space of cells and their cell type classification of the 176,724 labeled non-neuronal
cells across all our samples. Each number corresponds to the cell type labeled in (C). (C) Marker genes used to identify non-neuronal cell types. Darker colors
indicate higher mean expression, and dot size correlates with the abundance of the gene in that cell type. (D) The distribution of non-neuronal cells expressing
transcripts from AAV-PHP.eB across 4 barcodes within one animal (blue) and across 5 animals (red). All animals received dual injections, with one of the vectors
being 1.5 x 1011 vg of PHP.eB carrying CAG-mNeonGreen. The y-axis represents the fraction of transduced non-neuronal cells that are of the specified cell type.
(***P≤ 0.001 and P > 0.05 (n.s.) is shown; all other cell-type comparisons within a paradigm were significant at P ≤ 0.0001). (E) The distribution of non-neuronal
cells expressing transcripts from AAV-PHP.eB (black) and AAV-PHP.V1 (gray). Results from the different experimental paradigms are combined. Results shown
are from a two-way ANOVA with correction for multiple comparisons using Sidak’s test comparing transduction by AAV-PHP.eB to AAV-PHP.V1 for each cell
type, with adjusted P-values (****P ≤ 0.0001, ***P ≤ 0.001 is shown; P > 0.05 is not shown). (F) Within-animal difference in the fraction of cells transduced with
AAV-PHP.V1 relative to AAV-PHP.eB across four animals, two from each experimental paradigm. For each cell type in each sample, the combined 2-proportion
z score for the proportion of that cell type transduced by AAV-PHP.V1 vs AAV-PHP.eB is reported. Cell types with fewer than 2 cells transduced by both variants
were discarded. Z scores were combined across multiple animals using Stouffer’s method and corrected for multiple comparisons. Cell-type differences with an
adjusted P-value below 0.05 are indicated with *.
October 2021 | Volume 12 | Article 730825

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Brown et al. Single-Cell AAV Characterization
cell type, and experimental paradigm factors. We found that
the cell type factor accounted for 87.80% of the total variation,
the combined cell type + variant factor accounted for 8.39% of
the total variation, and the combined cell type + experimental
paradigm factor accounted for only 2.36% of the total variation,
confirming our hypothesis that barcoded pools can recover
tropism with minimal effect.

2.5 Relative Tropism Biases Reveal Non-
Neuronal Subtypes With Reduced
AAV Transduction
To further characterize the tropism biases of AAV-PHP.V1 and
expand our method to less well-established cell hierarchies, we
explored the non-neuronal cell types in our dataset. Since the
Allen Brain Institute reference database that we used to
investigate neuronal tropism was enriched for neurons, it does
not contain enough non-neuronal cells to form a robust non-
neuronal cell atlas. Our combined dataset consists of 203,661
non-neuronal cells, making it large enough to establish our own
non-neuronal cell clustering. Thus, we performed an additional
round of automatic clustering on the cells classified as non-
neuronal in our combined dataset, and identified 13 non-
neuronal cell subtypes based on previously established marker
genes (Figures 4B, C and Supplemental Table 2).

Most cell subtypes had multiple clusters assigned to them,
which suggested there may be additional subtypes of cells for
which we did not find established marker genes. To determine
whether any of these clusters delineated cell types with distinct
transcriptional profiles, we investigated the probability of gene
expression in each cluster compared to the other clusters of the
same cell subtype (see Methods). Our approach determined two
subclusters of pericytes and astrocytes. Both clusters of pericytes
had strong expression of canonical pericytes marker genes Rgs5,
Abcc9, and Higd1b. However, one of the clusters had no marker
genes that made it distinct from the other pericyte cluster, nor
from endothelial cells. Consistent with previous reports, this
suggests that this cluster could be pericytes contaminated with
endothelial cell fragments, and thus was not considered for
further analysis (100–102). Two distinct groups of astrocytes
were detected, one of which had unique expression of Myoc and
Fxyd6. Using these new marker genes, we expanded our non-
neuronal cell taxonomy to 13 cell types, now including Myoc+
and Myoc- astrocytes.

Given our finding that inter-sample variability exceeds intra-
sample variability, we established a normalization method for
comparing transduction biases between variants co-injected into
the same animal. This normalization–calculating the difference
in the fraction of transduced cells between variants–captures the
relative bias between variants, instead of the absolute tropism of a
single variant (see Methods). By considering the relative bias
between variants, we are able to interrogate tropism in a way that
is more robust to inter-sample variability that arises from
different distributions of recovered cells, expression rate of
delivered cargo, and success of the injection. Using this
normalization method, we evaluated the non-neuronal cell
type bias of AAV-PHP.V1 relative to AAV-PHP.eB in both the
cargo-based animals and the barcode-based animals across our
Frontiers in Immunology | www.frontiersin.org 9
non-neuronal cell-type taxonomy (Figure 4F). We discovered
that the bias of AAV-PHP.V1 for vascular cells is driven by an
increase in transduction of endothelial cells, but not pericytes.
Similarly, AAV-PHP.V1’s bias away from astrocytes is driven by
a decrease in transduction of Myoc- astrocytes, but not Myoc+
astrocytes. Further inspection of the transduction of pericytes
and Myoc+ astrocytes revealed that pericytes are not highly
transduced by any of the AAVs tested in this work, and that
Myoc+ astrocytes have both lower viral transcript expression and
lower abundance than Myoc- astrocytes, and thus do not
contribute significantly to tropism (Supplemental Figures 4,
7A, B).

2.6 Single-Cell RNA Sequencing Reveals
Early Cell-Type-Specific Responses to IV
Administration of AAV-PHP.eB That Return
to Baseline by 3.5 Weeks
To investigate the temporal cell-type-specific transcriptional
effects of systemic AAV delivery and cargo expression, we
performed a single-cell profiling experiment comparing
animals injected with AAV to saline controls. We injected six
male mice with AAV-PHP.eB (1.5 x 1011 vg) carrying
mNeonGreen, and performed single-cell sequencing on three
mice three days post-injection (3 DPI) and three mice twenty-
five days post-injection (25 DPI). These time points were chosen
based on previous work showing MHC presentation response
peaking around day seven and transgene response peaking
around day 30 (89). Three saline control mice were processed
3 DPI. We then analyzed differential gene expression for each cell
type between injected animals and controls using DESeq2
(Supplemental Table 8). Of note, we excluded cell types with
less than 50 cells in each sample, and excluded leukocytes and red
blood cells given the risk of their presence due to dissociation
rather than chemokine mediated infiltration. Additionally, we
collapsed subtypes of excitatory neurons, inhibitory neurons, and
OPCs to have greater than 50 cells for differential expression
analysis. We estimated viral transduction rate of AAV-PHP.eB
using its delivered cargo, mNeonGreen, across cell types and
time points. We identified that Myoc- astrocytes have
significantly higher estimated transduction rate at 25 DPI
compared to 3 DPI (adjusted P-value = 0.0438, two-way
ANOVA with multiple comparison correction using Sidak’s
method). It is also worth noting that endothelial cells have a
similar transduction rate between the time points in all animals,
while one of the animals at 25 DPI exhibited higher transduction
in neurons (Figure 5A). The number of statistically relevant
genes between the injected and control group (adjusted P-value <
0.05, DESeq2) were highest in endothelial cells (41 genes) at 3
DPI, followed by inhibitory neurons (9 genes) at 25 DPI
(Figure 5B) (adjusted P-value < 0.05, DESeq2).

We found that endothelial cells had the most acute response
at 3 DPI with p53 signaling pathway notably impacted. A
significant upregulation of Phlda3 and its effectors Bax, Aen,
Mdm2, and Cdkn1a, all involved in the p53/Akt signaling
pathway, was present (Figures 5C, E) (103, 104). Of relevance,
we also detected Trp53cor1/LincRNA-p21, responsible for
negative regulation of gene expression (105), upregulated in
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A B

C D

E

FIGURE 5 | Single-cell gene expression profiling finds cell-type-specific responses to AAV transduction in endothelial cells. (A) Estimated transduction rate (%) of
mNeonGreen cargo at three and twenty-five days post-injection (DPI). Results from a two-way ANOVA with correction for multiple comparisons using Sidak’s
method is reported with adjusted P-values (*P ≤ 0.05 is shown; and P > 0.05 is not shown on the plot). (B) Number of differentially expressed genes (adjusted P-
value < 0.05, DESeq2) at 3 DPI and 25 DPI across 3 animals. (C) Differentially expressed genes across the two time points in endothelial cells, pericytes, microglia,
perivascular macrophages, inhibitory neurons, and excitatory neurons. Color indicates DESeq2 test statistic with red representing downregulation and blue
representing upregulation. Genes outlined by a black rectangle are determined to have statistically significant differential expression compared to controls (adjusted
P-value < 0.05, DESeq2, after Benjamini/Hochberg multiple comparison correction across all cell types and conditions). Colored circles adjacent to each gene
indicate the corresponding pathway presented in (D). (D) A summary of corresponding pathways in which the differentially regulated genes in (C) are involved across
the time points. (E) Distribution of p53 signaling transcripts in endothelial cells (3 animals are combined) and an example of an MHC-I gene upregulated in microglia
at 3 DPI.
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endothelial cells at 3 DPI. Another example of an upregulated
gene relevant to inflammation and stress response in endothelial
cells is Mmrn2, responsible for regulating angiogenesis in
endothelial cells (106).

In brain immune cells, we observe a few substantial changes
in genes pertaining to immune regulation at 3 DPI for microglia
and at 25 DPI for perivascular macrophages. For example, we
observe an upregulation of MHC-I gene H2-K1 at 3 DPI in
microglia, which then stabilizes back to control levels at 25 DPI
(Figure 5C). Ifitm3 and Slfn2, genes implicated in type I
interferon response (107, 108), also show upregulation at 3
DPI in microglia. Cd74, a chaperon responsible for regulating
antigen presentation during immune response, was upregulated
in perivascular macrophages at 3 DPI (109). We did not observe
significant differences in pro-inflammatory chemokines, Ccl2
and Ccl5, which are related to breakdown of the blood-brain
barrier via regulation of tight-junction proteins and recruitment
of peripheral leukocytes (110). Ccl3, responsible for infiltration
of leukocytes and CNS inflammation (111), was upregulated in
perivascular macrophages in 25 DPI (Figure 5C).

We found that neurons had only a few differentially expressed
genes at 25 DPI. Immediate early genes, such as Fos and Junb
were upregulated in inhibitory neurons, while genes involved in
modulating cell proliferation, such as Tafa1 and S1pr1, were
downregulated at 25 DPI (79, 112).

By investigating the gene expression differences in
subpopulations of cells post-injection, we found that
endothelial cells upregulate genes linked to p53 signaling at 3
DPI (Figure 5D) which all return to control levels at 25 DPI.
Immune cells such as microglia and perivascular macrophages
upregulate genes involved in type I interferon response, MHC-I
antigen processing, and chemokine signaling (Figure 5D).
Inhibitory neurons display a subtle effect, consisting of
differential expression of genes involved in stress response and
cell proliferation at 25 DPI.

2.7 Larger Pools of Barcoded AAVs
Recapitulate Complex Tropism Within a
Single Animal
To showcase the capabilities of parallel characterization, we next
designed a 7-variant barcoded pool that included the three
previously characterized variants (AAV-PHP.eB, AAV-CAP-
B10, and AAV-PHP.V1), AAV9 and AAV-PHP.B controls,
and two additional variants, AAV-PHP.C1 and AAV-PHP.C2.
For simplification of cloning and virus production, we designed a
plasmid, UBC-mCherry-AAV-cap-in-cis, that contained both
the barcoded cargo, UBC-mCherry, and the AAV9 capsid
DNA (Supplemental Figure 1B). We assigned three distinct
24 bp barcodes to each variant (Supplemental Table 5). Each
virus was produced separately to control the dosage, and 1.5 x
1011 vg of each variant was pooled and injected into a
single animal.

After 3 weeks of expression, we performed single-cell
sequencing on extracted cortical tissue. To increase the number
of cells available for profiling, we processed two aliquots of cells,
for a total of 36,413 recovered cells. To amplify the viral
Frontiers in Immunology | www.frontiersin.org 11
transcripts, we used primers that bind near the 3’ end of
mCherry such that the barcode was captured in sequencing
(Supplemental Table 1).

Using our cell typing and viral transcript counting methods, we
investigated the transcript counts and transduction bias of the
variants in the pool. Compared with our previous profiling
experiments, the log-transformed transcript abundance of UBC-
mCherry detected per cell was lower than CAG-mNeonGreen-
WPRE and CAG-tdTomato (adjusted P < 0.0001, P=0.0767,
respectively, two-way ANOVA with multiple comparison
correction using Tukey’s method) and shifted towards vascular
cells (adjusted P < 0.0001, P=0.0004, respectively, two-way
ANOVA with multiple comparison correction using Tukey’s
method) (Supplemental Figures 5B, C). Next, we looked at the
transduction rate difference for each variant compared with the
rest of the variants in the pool for each cell type in our taxonomy
(Figures 6A, B). Despite the lower expression rate and bias shift,
the transduction rate difference metric captured the same tropism
biases for AAV.CAP-B10 and AAV-PHP.V1 as determined from
our previous experiments. AAV.CAP-B10 showed enhanced
neuronal targeting relative to other variants in the pool, with this
bias coming specifically from an increase in the transduction of
glutamatergic neurons. All five variants with transcripts detected in
neurons showed a decreased transduction rate in Vip+ neurons
relative to other GABAergic neuronal subtypes (Supplemental
Figure 7C). AAV-PHP.eB showed enhanced targeting of
astrocytes (+5.9%, P = 3.0 x 10-10, 2-proportion z-test, multiple
comparison corrected with Benjamini/Hochberg correction), and
AAV-PHP.V1 showed strong bias for vascular cells (+49.7%, p =
1.7 x 10-45). In addition to confirming all our existing hypotheses,
we were able to identify biases for the previously reported AAV-
PHP.C2, which has not been characterized in depth. This variant,
which was reported as having a non-neuronal bias similar to
AAV-PHP.V1, showed significant transduction bias not only
toward vascular cells (+15.7%, P = 1.5 x 10-7), but also toward
astrocytes (+21.5%, P = 3.0-28), and a bias away from neurons
(−38%, p = 4.5 x 10-32).
3 DISCUSSION

The advent of NGS has enabled screening of large libraries of
AAV capsids in vivo by extracting viral DNA from relevant tissue
followed by sequencing of capsid gene inserts or DNA barcodes
corresponding to defined capsids. To date, NGS-based screening
has been successfully applied to libraries created by peptide
insertions (28, 113), DNA shuffling of capsids (114–116), and
site-directed mutagenesis (117). Although these NGS-based
strategies allow the evolution of new AAV variants with
diverse tissue tropisms, it has been difficult to obtain a
comprehensive profiling for multiple variants across cell types,
which is of utmost importance in organs with complex cell-type
compositions, such as the brain (34, 45, 64–66). Towards this
end, techniques such as IHC, fluorescent in situ RNA
hybridization (98, 118–122) or in situ RNA sequencing
(123–125) can be employed. Several limitations make it
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challenging to apply these techniques as high-throughput, post-
selection AAV tropism profiling methods. First, the limits of
optical resolution and the density of transcripts in single cells
pose challenges for full in situ transcriptome analysis and, until
recently, have restricted the total number of simultaneously
measured genes in single cells within tissue to several hundred
(121, 123–126). By contrast, scRNA-seq with the 10x Genomics
Chromium system enables detection of over 4000 genes per cell
(95), fast transcriptomic analysis, and multiplexing across
different tissue types (127, 128). Furthermore, the method is
already widely used by the research community which can help
with adoption of our proposed pipelines. Although droplet-based
scRNA-seq methods lose spatial information during the
dissociation procedure, analysis packages have been developed
that can infer single-cell localization by combining scRNA-seq
data with pre-existing information from ISH-based labeling for
specific marker genes (129–134). Therefore, scRNA-seq
techniques have great potential to rapidly profile the tropism
of multiple AAV variants in parallel across several thousand cells
defined by their entire transcriptome.

Here, we established an experimental and data-analysis
pipeline that leverages the capabilities of scRNA-seq to achieve
simultaneous characterization of several AAV variants across
Frontiers in Immunology | www.frontiersin.org 12
multiplexed tissue cell types within a single animal. To
differentiate multiple AAV capsid variants in the sequencing
data, we packaged variants with unique transgenes or the same
transgene with unique barcodes incorporated at the 3’ end. We
added standard Illumina sequencing primer recognition sites
(Read 2) to the viral transcripts using PCR amplification such
that the barcoded region could be consistently read out from the
Illumina sequencing data. Our computational pipeline
demultiplexes viral reads found in the transcriptome according
to which matching sequence is most abundant in a separate
amplified viral transgene library. Comparing the distribution of
viral transcripts by cell type to a null model of empty droplets, we
could then determine the cell-type biases.

Our platform has corroborated the tropism of several
previously characterized AAV variants and has provided more
detailed tropism information beyond the major cell types. The
fraction of transduced cells that are glutamatergic neurons was
found to be markedly reduced for AAV-PHP.eB when compared
with AAV.CAP-B10. Furthermore, within all the variants we
tested, both Pvalb+ and Sst+ inhibitory neurons have greater
transduction rates than Vip+ neurons. This bodes well for
delivery to Pvalb+ neurons, which have been implicated in a
wide range of neuro-psychiatric disorders (135), and suggests
A B

FIGURE 6 | Single animal injections of multiple barcoded rAAVs enables deep, parallel characterization. (A, B) Relative cell type tropism of 7 co-injected rAAVs for
neuronal (A) and non-neuronal (B) cell types. The color scale indicates the difference in transduction bias of a variant relative to all other variants in the pool. The area
of each circle scales linearly with the fraction of cells of that type with viral transcripts above background. For each variant and cell type, a 2-proportion z score was
calculated to compare the number of cells of that type transduced by that variant relative to all other variants combined. Z scores were combined across two single-
cell sequencing aliquots using Stouffer’s method and corrected for multiple comparisons. Cell types with fewer than 10 transduced cells in either the variant or
variants compared against were discarded. Only cell-type biases at an adjusted P-value < 0.05 are colored; otherwise they are grayed out.
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Vip+ interneurons, which have recently been identified as being
a sufficient delivery target for induction of Rett syndrome-like
symptoms, as a target for optimization (136). Awareness of
neuronal subtype biases in delivery vectors is critical both for
neuroscience researchers and for clinical applications. Dissection
of neural circuit function requires understanding the roles of
neuronal subtypes in behavior and disease and relies on
successful and sometimes specific delivery of transgenes to the
neuronal types under study (1).

We further discovered that the vascular bias of AAV-PHP.V1
originates from its transduction bias towards endothelial cells.
Interestingly, this is the only cell type we detected expressing
Ly6a (Supplemental Figure 8), a known surface receptor for
AAV variants in the PHP.B family (137–139). Given AAV-
PHP.V1’s sequence similarity to AAV-PHP.B and its tropism
across mouse strains, this pattern suggests that AAV-PHP.V1
transduction may also be Ly6a-mediated. Finding such
associations between viral tropism and cell-surface membrane
proteins also suggests that full transcriptome sequencing data
may hold a treasure trove of information on possible
mechanisms of transduction of viral vectors.

We also revealed that AAV-PHP.C2 has a strong, broad non-
neuronal bias toward both vascular cells and astrocytes. AAV-
PHP.C2 also transduces BALB/cJ mice, which do not contain the
Ly6a variant that mediates transduction by PHP.B family
variants (137–139). This suggests that PHP.C2 may be the
most promising candidate from this pool for researchers
interested in delivery to non-neuronal cells with minimal
neuronal transduction both in C57BL/6J mice and in strains
and organisms that do not have the Ly6a variant.

All our tested variants with non-neuronal transduction have
lower expression in Myoc+ astrocytes and pericytes. Astrocytes
expressing Myoc and Gfap, which intersect in our data
(Supplemental Figure 8), have been previously identified as
having reactive behavior in disease contexts, making them a
target of interest for research on neurological diseases (140, 141).
Similarly, pericytes, whose dysfunction has been shown to
contribute to multiple neurological diseases, may be an
important therapeutic target (60, 142, 143). Both of these cell
types may be good candidates for further AAV optimization but
may have been missed with marker gene-based approaches. In
both AAV characterization and neuroscience research efforts,
different marker genes are often used for astrocyte classification –
sometimes more restrictive genes such as Gfap, and other times
more broadly expressing genes such as S100b or Aldh1l1 (144,
145). Similarly, defining marker genes for pericytes is still an
active field (100, 102). Given the constraints of having to choose
specific marker genes, it is difficult for staining-based
characterizations to provide tropism profiles that are relevant
for diverse and changing research needs. This highlights the
importance of using unbiased, full transcriptome profiling for
vector characterization.

We have shown that our combined experimental and
computational platform is able to recover transduction biases
and profile multiple variants in a single animal, even amidst the
noise of ambient RNA. We have further shown that our method
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is robust to the variability inherent in delivery and extraction
from different animals, with different transgenes, and with
different regulatory elements. For example, we discovered
lower overall expression from vectors carrying UBC-mCherry
compared with CAG-mNeonGreen-WPRE. Such differences
are not surprising since the WPRE is known to increase
RNA stability and therefore transcript abundance (146).
Furthermore, the shift in cell-type bias may come from the
UBC promoter, as even ubiquitous promoters such as CAG
and UBC have been shown to have variable levels of expression
in different cell types (147). Despite these biases, looking at the
differences in transduction between variants delivering the same
construct within an individual animal reveals the strongest
candidate vectors for on-target and off-target cell types of
interest. While we show that our method can profile AAVs
carrying standard fluorescent cargo, caution is needed when
linking differences in absolute viral tropism to changes in capsid
composition alone without considering the contribution of the
transgene, regulatory elements, and distribution of cell types in
recovered tissue. Therefore, for more robust and relative tropism
between variants, we found it beneficial to use small barcodes
and co-injections of pools of vectors. Our scRNA-seq-based
approach is not restricted to profiling capsid variants but can
be expanded in the future to screen promoters (148–150),
enhancers (151, 152), or transgenes (86, 153), all of which are
essential elements requiring optimization to improve
gene therapy.

Finally, we have used scRNA-seq to understand how intra-
orbital administration of AAV-PHP.eB affects the host cell
transcriptome across distinct time points. Results from our
study show genes pertaining to the p53 pathway in endothelial
cells are differentially expressed 3 days after injection, an effect
which vanishes at a later time point of 25 DPI. Though other cell
types such as immune cells and neurons had a few differentially
expressed genes pertaining to antigen presentation and cell
differentiation, respectively, endothelial cells at 3 DPI are the
only cells with a profound response signature. The highest
number of differentially expressed genes being in endothelial
cells suggests that vascular cells could be the initial responders to
viral transduction and expression of the transgene. This is
supported by Kodali et al., who have shown that endothelial
cells are the first to elicit a response to peripheral inflammatory
stimulation by transcribing genes for proinflammatory
mediators and cytokines (154). With regards to p53
differentially expressed genes, Ghouzzi, et al. have also shown
that the genes Phdla3, Aen, and Cdkn1a were upregulated in cells
infected with ZIKA virus, signifying genotoxic stress and
apoptosis induction (104). Upregulation of genes such as Bax
and Cdkn1a could be a response to cellular stress induced by
viral transduction (103, 155). However, the initial inflammatory
responses did not escalate as shown by the low number of
differential expressed genes across all cells (Figure 5B) at day
twenty-five. Additionally, antigen presenting genes, such as Cd74
and H2-K1, returning back to control expression levels in
microglia and a lack of proinflammatory cytokines being
upregulated support that the event of infiltration of peripheral
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leukocytes is unlikely, in agreement with prior studies (87, 88).
Based on prior studies, the few genes that are differentially
expressed at day 25 in excitatory and inhibitory neurons could
also be due to transgene expression rather than the virion (89).
Upregulation of immediate early genes such as Fos, Junb, and
Ier2 in inhibitory neurons could indicate that the cells which are
transduced and expressing viral transcripts could be under
increased stress and metabolic demands, either directly in
response to transgene expression, or in combination with the
stresses of dissociation. For example, c-jun and c-fos were found
to be upregulated by lung epithelial cells as part of the response
to measles virus (156). Given that scRNA-seq is a sensitive
technique, it can be prone to high false discovery rates if not
properly controlled. To account for this, we used a highly
conservative pseudo-bulk differential expression procedure,
which has been shown to minimize false discovery rates
compared to other batch correction methods (157). This
conservative procedure, however, has lower relative power, and
thus there may be additional effects in cell subtypes to AAV
transduction. The confidence and statistical power of future
scRNA-seq studies looking at AAV-related immune responses
could be improved with increased sample size, such as via sample
multiplexing strategies to pool multiple animals (127), or by
increasing the sensitivity and specificity of viral transcript
detection and performing differential expression within
animals. It is also important to note that the findings discussed
here are specific to the rAAV, transgene, and dosage.
Nonetheless, our results highlight the power of single-cell
profiling in being able to ascertain cell-type-specific responses
at an early time point post-injection.

As shown throughout this work, there are several challenges
we had to overcome to gain valuable insights from our droplet-
based single-cell RNA sequencing approach. While we were able
to overcome these in the context of our study, they hint at some
important limitations of this method. First, droplet-based single-
cell sequencing of tissues that are difficult to dissociate, such as
brain, can lead to substantial background noise from debris.
Alternative methods, such as single-nucleus RNA sequencing
(158, 159), could potentially overcome this debris problem.
Exploratory work would need to be performed to determine
whether single-nucleus RNA sequencing captures a sufficient
amount of immature viral transcripts, but, if effective, may
obviate the need for computational detection of transduction
above a background level. Another potential challenge of our
method is scaling up to much larger numbers of variants. In
order to establish high statistical confidence in tropism, many
cells need to be transduced. However, given restrictions on the
total dosage an animal can receive, adding more variants would
require a lower dosage per variant. In simulation, we found that
subsampling our 2-variant pool by 10-fold did not change the
major tropism findings (Supplemental Figure 9). Given our
current injections are 8-fold lower than the maximum allowed
dosage, this suggests this method could scale up to 80 variants;
however, further work would need to be done to validate whether
this holds for a diversity of variants that may be competing for
binding. Scaling higher would be challenging with current
Frontiers in Immunology | www.frontiersin.org 14
droplet-based single-cell RNA sequencing pipelines that
process on the order of 104 cells per reaction. Alternative
approaches, such as split-pool strategies, which can profile
many more cells (160), may thus be appealing for larger
variant pools.

In summary, our platform enables thorough tropism
characterization of existing and emerging recombinant AAVs
and helps uncover cellular responses to rAAV-mediated gene
therapy, thus further guiding the engineering and use of gene
delivery vehicles.
4 MATERIALS AND METHODS

4.1 Animals
Male C57BL/6J mice (Stock No: 000664) used in this study were
purchased from the Jackson Laboratory (JAX). AAV variants
were injected i.v. into the retro-orbital sinus of 6–7 week
old mice.

4.2 Plasmids
In vivo vector characterization of AAV variant capsids was
conducted using single-stranded (ss) rAAV genomes. pAAV :
CAG-NLS-mNeonGreen, pAAV : CAG-NLS-mRuby2, pAAV :
CAG-tdTomato, and pAAV : CAG-NLS-tdTomato constructs
were adapted from previous publications (32, 45). To introduce
barcodes into the polyA region of CAG-NLS-mNeonGreen, we
digested the plasmid with BglII and EcoRI, and performed
Gibson assembly (E2611, NEB) to insert synthesized fragments
with 7bp degenerate nucleotide sequences 89 bp upstream of the
polyadenylation site. We then seeded bacterial colonies and
selected and performed Sanger sequencing on the resulting
plasmids to determine the corresponding barcode.

The UBC-mCherry-AAV-cap-in-cis plasmid was adapted
from the rAAV-Cap-in-cis-lox plasmid from a previous
publication (34). We performed a restriction digest on the
plasmid with BsmbI and SpeI to remove UBC-mCherry and
retain the AAV9 cap gene and remaining backbone. We then
circularized the digested plasmid using a gblock joint fragment to
get a plasmid containing AAV2-Rep, AAV9-Cap, and the
remaining backbone via T4 ligation. In order to insert UBC-
mCherry with the desired orientation and location, we amplified
its linear segment from the original rAAV-Cap-in-cis-lox
plasmid. The linear UBC-mCherry-polyA segment and
circularized AAV2-Rep,AAV9-cap plasmid were then both
digested with HindIII and ligated using T4 ligation. In order to
get the SV40 PolyA element in the proper orientation with
respect to the inserted UBC-mCherry, we removed the original
segment from the plasmid using AvrII and AccI enzymes and
inserted AvrII, AccI treated SV40 gblock using T4 ligation to get
the final plasmid.

To insert barcodes into UBC-mCherry-AAV-cap-in-cis, we
obtained 300 bp DNA fragments containing the two desired
capsid mutation regions for each variant and the variant barcode,
flanked by BsrGI and XbaI cut sites. The three segments of
the fragment were separated by BsaI Type I restriction sites.
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We digested the UBC-mCherry-AAV-cap-in-cis plasmid with
BsrGI and XbaI, and ligated each variant insert to this backbone.
Then, to reinsert the missing regions, we performed Golden Gate
assembly with two inserts and BsaI-HF.

4.3 Viral Production
To produce viruses carrying in trans constructs, we followed
established protocols for the production of rAAVs (161). In
short, HEK293T cells were triple transfected using
polyethylenimine (PEI) with three plasmids: pAAV (see
Plasmids), pUCmini-iCAP-PHP.eB (32), pUCmini-iCAP-CAP-
B10 (90), or pUCmini-iCAP-PHP.V1 (45), and pHelper. After
120 h, virus was harvested and purified using an iodixanol
gradient (Optiprep, Sigma). For our 7-variant pool, we
modified the protocol to be a double transfection using PEI
with two plasmids: UBC-mCherry-AAV-cap-in-cis and pHelper.

4.4 Tissue Processing for Single-Cell
Suspension
Three to four weeks after the injection, mice (9-10 weeks old)
were briefly anesthetized with isoflurane (5%) in an isolated
plexiglass chamber followed by i.p. injection of euthasol (100 mg/
kg). The following dissociation procedure of cortical tissue into a
single-cell suspension was adapted with modifications from a
previous report (162). Animals were transcardially perfused with
ice-cold carbogenated (95% O2 and 5% CO2) NMDG-HEPES-
ACSF (93 mM NMDG, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM
NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM Na L-
ascorbate, 2 mM thiourea, 3 mM Na-pyruvate, 10 mM MgSO4,
1 mM CaCl2, 1 mM kynurenic acid Na salt, pH adjusted to 7.35
with 10N HCl, osmolarity range 300–310 mOsm). Brains were
rapidly extracted and cut in half along the anterior-posterior axis
with a razor blade. Half of the brain was used for IHC histology
while the second half of the brain was used for scRNA-seq.
Tissue used for scRNA-seq was immersed in ice-cold NMDG-
HEPES-ACSF saturated with carbogen. The brain was sectioned
into 300-mm slices using a vibratome (VT-1200, Leica
Biosystems, IL, USA). Coronal sections from Bregma −0.94
mm to −2.80 mm were collected in a dissection dish on ice
containing NMDG-HEPES-ACSF. Cortical tissue from the
dorsal surface of the brain to ~3.5 mm ventral was cut out and
further sliced into small tissue pieces. NMDG-HEPES-ACSF was
replaced by trehalose-HEPES-ACSF (92 mM NaCl, 2.5 mM KCl,
1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM
glucose, 2 mM MgSO4, 2 mM CaCl2, 1 mM kynurenic acid Na
salt, 0.025 mM D-(+)-trehalose dihydrate*2H2O, pH adjusted to
7.35, osmolarity ranging 320–330 mOsm) containing papain (60
U/ml; P3125, Sigma Aldrich, pre-activated with 2.5 mM cysteine
and a 0.5–1 h incubation at 34°C, supplemented with 0.5 mM
EDTA) for the enzymatic digestion. Under gentle carbogenation,
cortical tissue was incubated at 34°C for 50 min with soft
agitation by pipetting every 10 min. 5 ml 2500 U/ml DNase I
(04716728001 Roche, Sigma Aldrich) was added to the single-cell
suspension 10 min before the end of the digestion. The solution
was replaced with 200 ml trehalose-HEPES-ACSF containing 3
mg/ml ovomucoid inhibitor (OI-BSA, Worthington) and 1 ml
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DNase I. At room temperature, the digested cortical tissue was
gently triturated with fire-polished glass Pasteur pipettes for
three consecutive rounds with decreasing pipette diameters of
600, 300, and 150 mm. 800 ml of trehalose-HEPES-ACSF with 3
mg/ml ovomucoid inhibitor was added. The uniform single-cell
suspension was pipetted through a 40 mm cell strainer (352340,
Falcon) into a new microcentrifuge tube followed by
centrifugation at 300 g for 5 min at 4°C. The supernatant was
discarded and cell pellet was resuspended in 1 ml of trehalose-
HEPES-ACSF. After mixing using a Pasteur pipette with a
150 mm tip diameter, the single-cell suspension was centrifuged
again. Supernatant was replaced with fresh trehalose-HEPES-
ACSF and the resuspended cell pellet was strained with a 20 mm
nylon net filter (NY2004700, Millipore). After resuspension in
trehalose-HEPES-ACSF, cells were pelleted again and resuspended
in 100 ml of ice-cold resuspension-ACSF (117 mM NaCl, 2.5 mM
KCl, 1.2 mMNaH2PO4, 30mMNaHCO3, 20mMHEPES, 25mM
glucose, 1 mMMgSO4, 2 mMCaCl2, 1 mM kynurenic acid Na salt
and 0.05% BSA, pH adjusted to 7.35 with Tris base, osmolarity
range 320–330 mOsm). Cells were counted with a hemocytometer
and the final cell densities were verified to be in the range of 400–
2,500 cells/ml. The density of single-cell suspension was adjusted
with resuspension-ACSF if necessary.

4.5 Transcriptomic Library Construction
Cell suspension volumes containing 16,000 cells–expected to
retrieve an estimated 10,000 single-cell transcriptomes–were
added to the 10x Genomics RT reaction mix and loaded to the
10x Single Cell Chip A (230027, 10x Genomics) for 10x v2
chemistry or B (2000168, 10x Genomics) for 10x v3 chemistry
per the manufacturer’s protocol (Document CG00052, Revision
F, Document CG000183, Revision C, respectively). We used the
Chromium Single Cell 3’ GEM and Library Kit v2 (120237, 10x
genomics) or v3 (1000075, 10x Genomics) to recover and
amplify cDNA, applying 11 rounds of amplification. We took
70 ng to prepare Illumina sequencing libraries downstream of
reverse transcription following the manufacturer’s protocol,
applying 13 rounds of sequencing library amplification.

4.6 Viral Library Construction
We selectively amplified viral transcripts from 15 ng of cDNA
using a cargo-specific primer binding to the target of interest and
a primer binding the partial Illumina Read 1 sequence present on
the 10x capture oligos (Supplemental Table 1). For animals
injected with a single cargo, amplification was performed only
once using the primer for the delivered cargo; for animals with
distinct cargo sequences per variant, amplification was
performed in parallel reactions from the same cDNA library
using different cargo-specific primers for each reaction. We
performed the amplification using 2x KAPA HiFi HotStart
ReadyMix (KK2600) for 28 cycles at an annealing temperature
of 53°C. Afterwards, we performed a left-sided SPRI cleanup
with a concentration dependent on the target amplicon length, in
accordance with the manufacturer’s protocol (SPRISelect,
Beckman Coulter B23318). We then performed an overhang
PCR on 100 ng of product with 15 cycles using primers that bind
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the cargo and the partial Illumina Read 1 sequence and
appending the P5/P7 sequences and Illumina sample indices.
We performed another SPRI cleanup, and analyzed the results
via an Agilent High Sensitivity DNA Chip (Agilent 5067-4626).

4.7 Sequencing
Transcriptome libraries were pooled together in equal molar
ratios according to their DNA mass concentration and their
mean transcript size as determined via bioanalyzer. Sequencing
libraries were processed on Novaseq 6000 S4 300-cycle lanes. The
run was configured to read 150 bp from each end. Sequencing
was outsourced to Fulgent Genetics and the UCSF Center for
Advanced Technology.

All viral transcript libraries except barcoded UBC-mCherry
were pooled together in equal molar ratios into a 4 nM sequencing
library, then diluted and denatured into a 12 pM library as per the
manufacturer’s protocol (Illumina Document #15039740v10). The
resulting library was sequenced using a MiSeq v3 150-cycle
reagent kit (MS-102-3001), configured to read 91 base pairs for
Read 2 and 28 base pairs for Read 1. To characterize the effect of
sequencing depth, one viral transcript library was additionally
processed independently on a separate MiSeq run.

The UBC-mCherry viral transcript library, which was
recovered with primers near the polyadenylation site, consisted
of fragments ~307 bp long. Since this length is within the
common range for an Illumina NovaSeq run, this viral
transcript library was pooled and included with the
corresponding transcriptome library.

4.8 Transcriptome Read Alignment
For transcriptome read alignment and gene expression
quantification, we used 10x Cell Ranger v5.0.1 with default
options to process the FASTQ files from the transcriptome
sequencing library. The reads were aligned against the mus
musculus reference provided by Cell Ranger (mm10 v2020-A,
based on Ensembl release 98).

To detect viral transcripts in the transcriptome, we ran an
additional alignment using 10x Cell Ranger v5.0. 1 with a custom
reference genome based on mm10 v2020-A. We followed the
protocol for constructing a custom Cell Ranger reference as
provided by 10x Genomics. This custom reference adds a single
gene containing all the unique sequences from our delivered
plasmids in the study, delineated as separate exons. Sequences
that are common between different cargo are provided only once,
and annotated as alternative splicings.

4.9 Viral Transcript Read Alignment
For viral read alignment, we aligned each Read 2 to a template
derived from the plasmid, excluding barcodes. The template
sequence was determined by starting at the ATG start site of the
XFP cargo and ending at the AATAAA polyadenylation stop site.
We used a Python implementation of the Striped Smith-
Waterman algorithm from scikit-bio to calculate an alignment
score for each read, and normalized the score by dividing by the
maximum possible alignment score for a sequence of that length,
minus the length of the barcode region. For each Read 2 that had
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a normalized alignment score of greater than 0.7, we extracted
the corresponding cell barcode and UMI from Read 1, and any
insertions into the template from Read 2.

4.10 Constructing the Variant
Lookup Table
For co-injections with multiple templates and injections of
barcoded templates, we constructed a lookup table to identify
which variant belongs to each cell barcode/UMI. For each
template, we counted the number of reads for each cell
barcode/UMI. For reads of barcoded cargo, we only counted
reads where the detected insertion in the barcode region
unambiguously aligned to one of the pre-defined variant
barcodes. Due to sequencing and PCR amplification errors,
most cell barcode/UMI combinations had reads associated
with multiple variants. Thus, we identified the variant with the
largest count for each cell barcode/UMI. We discarded any cell
barcode/UMIs that had more than one variant tied for the largest
count. Finally, each cell barcode/UMI that was classified as a viral
transcript in the transcriptome (see Transcriptome Read
Alignment) was converted into the virus detected in the variant
lookup table, or was discarded if it did not exist in the variant
lookup table.

4.11 Estimating Transduction Rate
To determine an estimate of the percent of cells within a group
expressing viral cargo above background, we compared the viral
transcript counts in that group of cells to a background
distribution of viral transcript counts in debris (see Droplet
Type Classification). First, we obtained the empirical
distribution of viral transcript counts by extracting the viral
counts for that variant in cell barcodes classified as the target cell
type as well as cell barcodes classified as debris. Next, we assumed
a percentage of cells containing debris. For each viral transcript
count, starting at 0, we calculated the number of cells that would
contain this transcript count, if the assumed debris percentage
was correct. We then calculated an error between this estimate
and the number of cells with this transcript count in the cell type
of interest. We tallied this error over all the integer bins in the
histogram, allowing the error in a previous bin to roll over to the
next bin. We repeated this for all possible values of percentage of
debris from 0 to 100 in increments of 0.25, and the value that
minimized the error was the estimated percentage of cells whose
viral transcript count could be accounted for by debris. The
inverse of this was our estimate of the number of cells expressing
viral transcripts above background.

To validate that this method reliably recovers an estimate of
transduction rate, we performed a series of simulations using
models of debris viral transcript counts added to proposed cell
type transcript count distributions across a range of
parameterizations. To get estimates of the background
distribution of debris, we used diffxpy (https://github.com/
theislab/diffxpy) to fit the parameters of a negative binomial
distribution to the viral transcript counts in debris droplets
within a sample. We then postulated 1,000 different
parameterizations of the negative binomial representing
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transcript counts in groups of cells, with 40 values of r ranging
from 0.1 to 10, spaced evenly apart, and 25 values of p ranging
from 0.001 to 0.99, spaced evenly apart. For each proposed
negative binomial model, we drew 1,000 random samples of viral
counts from the learned background distribution, and 1,000
random samples from the proposed cell distribution, and
summed the two vectors. This summed vector was then used
in our transduction rate estimation function, along with a
separate 1,000 random samples of background viral transcripts
for the function to use as an estimate of the background signal.
We calculated the true probability of non-zero expression in our
proposed cell negative binomial model (1 – P(X = 0)), and
compared this value with the estimated value from the
transduction rate estimation method.

4.12 Calculating Viral Tropism
For each variant vn and cell type of interest ci, we estimated the
percentage of cells expressing viral cargo. To calculate tropism
bias, we used this estimated expression rate, tci ,vn , to estimate the
number of cells expressing viral transcripts in that cell type, Tci ,vn
out of the total number of cells of that type, Nci :  Tci ,vn = tci ,vnNci .
Cell type bias, bci ,vn , within a sample was then calculated as the
ratio of the number of cells of interest divided by the total
number of transduced cells, bci ,vn =

Tci ,vn

SjTcj ,vn
. Finally, to calculate the

difference in transduction bias for a particular variant relative to
other variants in the sample, dci ,vn , we subtracted the bias of the
variant from the mean bias across all other variants, dci ,vn =Tci ,vn

SjTcj ,vn
−

Sm≠nTci ,vm

Sm≠nSjTcj ,vm
.

4.13 Histology
4.13.1 Immunohistochemistry
The immunohistochemistry procedure was adapted from a
previous publication (163). Brain tissue was fixed in 4%
paraformaldehyde (PFA) at 4°C overnight on a shaker.
Samples were immersed in 30% sucrose in 1x phosphate
buffered saline (PBS) solution for >2 days and then embedded
in Tissue-Tek O.C.T. Compound (102094-104, VWR) before
freezing in dry ice for 1 h. Samples were sectioned into 50 mm
coronal slices on a cryostat (Leica Biosystems). Brain slices were
washed once with 1x phosphate buffered saline (PBS) to remove
O.C.T. Compound. Samples were then incubated overnight at 4°
C on a shaker in a 1x PBS solution containing 0.1% Triton X-100,
10% normal goat serum (NGS; Jackson ImmunoResearch, PA,
USA), and primary antibodies. Sections were washed three times
for 15 min each in 1x PBS. Next, brain slices were incubated at 4°
C overnight on a shaker in a 1x PBS solution containing 0.1%
Triton X-100, 10% NGS, and secondary antibodies. Sections
were washed again three times for 15 min each in 1x PBS. Finally,
slices were mounted on glass microscope slides (Adhesion
Superfrost Plus Glass Slides, #5075-Plus, Brain Research
Laboratories, MA, USA). After the brain slices dried, DAPI-
containing mounting media (Fluoromount G with DAPI, 00-
4959-52, eBioscience, CA, USA) was added before protecting the
slices with a cover glass (Cover glass, #4860-1, Brain Research
Laboratories, MA, USA). Confocal images were acquired on a
Zeiss LSM 880 confocal microscope (Zeiss, Oberkochen,
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Germany). The following primary antibodies were used: rabbit
monoclonal to NeuN (Rbfox3) (1:500; ab177487; Abcam, MA,
USA), rabbit monoclonal to S100 beta (1:500; ab52642; Abcam,
MA, USA), and rabbit monoclonal to Olig2 (1:500; ab109186;
Abcam, MA, USA). The following secondary antibody was used:
goat anti-rabbit IgG H&L Alexa Fluor 647 (1:500; ab150079;
Abcam, MA, USA).

4.13.2 Fluorescent In Situ Hybridization Chain
Reaction
FISH-HCR was conducted as previously reported (99). Probes
targeting neuronal markers were designed using custom-written
software (https://github.com/GradinaruLab/HCRprobe). Probes
contained a target sequence of 20 nucleotides, a spacer of 2
nucleotides, and an initiator sequence of 18 nucleotides. Criteria
for the target sequences were: (1) a GC content between 45%–60%,
(2) no nucleotide repeats more than three times, (3) no more than
20 hits when blasted, and (4) the DG had to be above –9 kcal/mol
to avoid self-dimers. Last, the full probe sequence was blasted and
the Smith-Waterman alignment score was calculated between all
possible pairs to prevent the formation of cross-dimers. In total,
we designed 26 probes for Gad1, 20 probes for Vip, 22 probes for
Pvalb, 18 probes for Sst, and 28 probes for Slc17a7. Probes were
synthesized by Integrated DNA Technologies.

4.14 Droplet Type Identification
scRNA-seq datasets were analyzed with custom-written scripts
in Python 3.7.4 using a custom fork off of scVI v0.8.1, and scanpy
v1.6.0. To generate a training dataset for classifying a droplet as
debris, multiplets, neuronal, or non-neuronal cells, we randomly
sampled cells from all 27 cortical tissue samples. We sampled a
total of 200,000 cells, taking cells from each tissue sample
proportional to the expected number of cells loaded into the
single-cell sequencing reaction. Within each sample, cells were
drawn randomly, without replacement, weighted proportionally
by their total number of detected UMIs. For each sample, we
determined a lower bound on the cutoff between cells and empty
droplets by constructing a histogram of UMI counts per cell from
the raw, unfiltered gene count matrix. We then found the most
prominent trough preceding the first prominent peak, as
implemented by the scipy peak_prominences function. We
only sampled from cells above this lower bound. Using these
sampled cells, we trained a generative neural network model via
scVI with the following parameters: 20 latent features, 2 layers,
and 256 hidden units. These parameters were chosen from a
coarse hyperparameter optimization centered around the scVI
default values (Supplemental Table 3). We included the sample
identifier as the batch key so that the model learned a latent
representation with batch correction.

After training, Leiden clustering was performed on the
learned latent space as implemented by scanpy. We used
default parameters except for the resolution, which we
increased to 2 to ensure isolation of small clusters of cell
multiplets. Using the learned generative model, we draw 5000
cells from the posterior distribution based on random seed cells
in each cluster. We draw an equal number conditioned on each
October 2021 | Volume 12 | Article 730825

https://github.com/GradinaruLab/HCRprobe
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Brown et al. Single-Cell AAV Characterization
batch. From these samples, we then calculated a batch-corrected
probability of each cluster expressing a given marker gene (see
Cluster Marker Gene Determination). For this coarse cell typing,
we chose a single marker gene for major cell types expected in the
cortex (Supplemental Table 2). If a cluster was expressing the
neuron marker gene Rbfox3, it was labeled as “Neurons”. If a
cluster was expressing any of the other non-neuronal marker
genes, it was labelled as “Non-neurons”. Next, we ran Scrublet on
the training cells to identify potential multiplets. Scrublet was
run on each sample independently, since it is not designed to
operate on combined datasets with potential batch-specific
confounds. We then calculated the percentage of droplets in
each cluster of the combined data that were identified as
multiplets by Scrublet. We found a percentage threshold for
identifying a cluster as containing predominantly multiplets by
using Otsu’s threshold, as implemented by scikit-image. All
droplets in any cluster above the multiplet percentage
threshold were labelled as “Multiplets”. All other clusters were
labelled as “Debris”.

Next, we trained a cell-type classifier using scANVI on the
droplets labeled as training data. We used the weights from the
previously trained scVI model as the starting weights for
scANVI. Rather than using all cells for every epoch of the
trainer, we implemented an alternative sampling scheme that
presented each cell type to the classifier in equal proportions.
Once the model was trained, all cells above the UMI lower noise
bound were run through the classifier to obtain their cell-type
classification. Droplets classified as “Neurons” or “Non-neurons”
were additionally filtered by their scANVI-assigned probability.
We retained only cells above an FDR threshold of 0.05, corrected
for multiple comparisons using the Benjamini-Hochberg
procedure. Finally, since the original run of Scrublet for
multiplet detection was performed on only the training data,
and thus did not take advantage of all the cells available, we ran
Scrublet on all droplets classified as cells, and removed any
identified multiplets.

4.15 Cluster Marker Gene Determination
To identify which clusters are expressing marker genes, we
determined an estimated probability of a marker gene being
expressed by a random cell in that cluster. For each cluster, we
randomly sampled 5,000 cells, with replacement. We used scVI
to project each cell into its learned latent space, and then used
scVI’s posterior predictive sampling function to generate an
example cell from this latent representation, and tallied how
many times the gene is expressed. We repeated this for each
batch, conditioning the posterior sample on that batch, to
account for technical artifacts such as sequencing depth. Once
we obtained a probability of expression of a marker gene for each
cluster, we find a threshold for expression using Otsu’s method,
as implemented by scikit-image. Clusters that have a probability
of expression above the threshold are considered positive for that
marker gene.

4.16 Neuronal Subtype Classification
Cells classified as neurons were further subtyped using
annotations from a well-curated reference dataset. We used the
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Mouse Whole Cortex and Hippocampus 10x dataset from the
Allen Institute for Brain Science as our reference dataset (95).
First, we filtered the reference dataset to contain only cell types
that are found within the brain regions collected for our
experiments. To ensure that, overall, enough cells per cell type
were present in our datasets, we merged cell types with common
characteristics, such as expression of key marker genes. We re-
aligned our cell transcriptome reads to the same pre-mRNA
reference used to construct the reference dataset, so that the gene
count matrices had a 1:1 mapping. We then trained a joint
scANVI model with all cells identified as neurons from our
samples and the reference database to learn a common latent
space between them. The model was trained to classify cells
based on the labels provided in the reference dataset. Cells were
sampled from each class in equal proportions during training.
After the model was trained, all neurons from our sample were
run through the model to obtain their cell type classification.

4.17 Non-Neuronal Subtype Classification
Cells classified as non-neuronal were further subtyped using
automatic clustering and marker gene identification. We trained
an scVI model using only the non-neuronal cells and performed
Leiden clustering as implemented by scanpy on the latent space.
We determined which clusters were expressing each of 31
marker genes across 13 cell subtypes. Marker genes were
identified from a review of existing scRNA-seq, bulk RNA-seq,
or IHC studies of mouse brain non-neuronal subtypes
(Supplemental Table 2). Each cluster was assigned to a cell
subtype if it was determined positive for all the marker genes for
that cell subtype (see Cluster Marker Gene Determination). If a
cluster contained all the marker genes for multiple cell subtypes,
the cluster was assigned to the cell subtype with the greatest
number of marker genes. Clusters that did not express all the
marker genes for any cell subtype were labeled as “Unknown”.
Clusters that expressed all the marker genes for multiple cell
subtypes with the same total number of marker genes were
labeled as “Multiplets”. For cell types that contained multiple
clusters, we then calculated the probability of every gene being
zero in each cluster (see Cluster Marker Gene Determination).
We then compared gene presence between clusters of the same
cell type to see if there were any subclusters that had a dominant
marker gene (present in > 50% of samples), that was not present
in any of the other clusters (< 10% of samples). For the three cell
types that had unique marker genes, we named the cluster after
the gene with the highest 2-proportion z-score between the
sampled gene counts in that cluster vs the rest.

4.18 Quantification of Images
Quantitative data analysis of confocal images was performed
blind with regard to AAV capsid variant. Manual quantification
was performed using the Cell Counter plugin, present in the Fiji
distribution of ImageJ (National Institutes of Health, Bethesda,
MD) (164). Transduction rate was calculated as the total number
of double positive cells (i.e. viral transgene and cell type marker)
divided by the total number of cell type marker labeled cells. For
each brain slice, at least 100 cells positive for the gene markers of
interest were counted in the cortex.
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4.19 Differential Expression
To calculate differential expression within cell types between
groups of animals, we used the DESeq2 R package (165). For
each cell type, the gene counts are summed across all cells of that
type and treated as a pseudo-bulk sample. The summed gene
counts from each animal are then included as individual columns
for a DESeq2 differential expression analysis. We performed DE
for 3 DPI and 25 DPI separately, testing each sample against
saline-injected controls. For each cell type, only genes that were
present in all samples of at least one condition are included.

4.20 Marker Gene Dot Plots
To generate dot plots for marker genes, we used scanpy’s dotplot
function (166). Gene counts were normalized to the sum of the
total transcript counts per cell using scanpy’s normalize_total
function. Normalized gene expression values are log-
transformed as part of the plotting function.

4.21 Statistics
Statistical analyses comparing the fraction of transduced cells
and transduction rate in different cell types for Figures 2, 3, 4D, E
and 5A were conducted using GraphPad Prism 9. Statistical
analyses comparing proportions of transduced cells within an
animal in Figures 4F and Figure 6 were performed using the
Python statsmodels library v0.12.1. No statistical methods were
used to predetermine sample sizes. The statistical test applied,
sample sizes, and statistical significant effects are reported in each
figure legend. The significance threshold was defined as a = 0.05.
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