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Introduction: High-dose chemotherapy followed by autologous hematopoietic stem cell
transplantation (auto-HSCT) represents a standard treatment regime for multiple myeloma
(MM) patients. Common and potentially fatal side effects after auto-HSCT are infections
due to a severely compromised immune system with hampered humoral and cellular
immunity. This study delineates in depth the quantitative and functional B cell defects and
investigates underlying extrinsic or intrinsic drivers.

Methods: Peripheral blood of MM patients undergoing high-dose chemotherapy and
auto-HSCT (before high-dose chemotherapy and in early reconstitution after HSCT) was
studied. Absolute numbers and distribution of B cell subsets were analyzed ex vivo using
flow cytometry. Additionally, B cell function was assessed with T cell dependent (TD) and T
cell independent (TI) stimulation assays, analyzing proliferation and differentiation of B cells
by flow cytometry and numbers of immunoglobulin secreting cells in ELISpots.

Results: Quantitative B cell defects including a shift in the B cell subset distribution
occurred after auto-HSCT. Functionally, these patients showed an impaired TD as well as
TI B cell immune response. Individual functional responses correlated with quantitative
alterations of CD19+, CD4+, memory B cells and marginal zone-like B cells. The TD B cell
function could be partially restored upon stimulation with CD40L/IL-21, successfully
inducing B cell proliferation and differentiation into plasmablasts and immunoglobulin
secreting cells.
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Conclusion: Quantitative and functional B cell defects contribute to the compromised
immune defense in MM patients undergoing auto-HSCT. Functional recovery upon TD
stimulation and correlation with CD4+ T cell numbers, indicate these as extrinsic drivers of
the functional B cell defect. Observed correlations of CD4+, CD19+, memory B and MZ-
like B cell numbers with the B cell function suggest that these markers should be tested as
potential biomarkers in prospective studies.
Keywords: B cell defects, autologous hematopoiectic stem cell transplantation, T cell dependent B cell activation,
immune reconstitution, multiple myeloma, secondary immunodeficiencies
INTRODUCTION

B cells make up an essential part of the adaptive immune system
as drivers of humoral immune responses. Two different pathways
leading to B cell activation and thereby the induction of antibody
synthesis are often described. These are the T cell dependent (TD
from thymus dependent) and the T cell independent (TI from
thymus independent) activation. The TD activation is initiated by
protein antigens, which are presented to follicular naïve B cells by
antigen presenting cells (APC). Interaction with CD4+ T cells,
that previously encountered the same antigen, is necessary in
order for naïve B cells to differentiate and synthesize antibodies (1).
A germinal center reaction with intense B cell proliferation and
repeated B - T cell interaction further induces immunoglobulin class
switch and somatic hypermutation to increase antibody affinity (2).
During the B - T cell interactions several costimulating factors are
essential. For B cell activation CD40L and IL-21 pose to be most
relevant (3). TI B cell activation is prompted by mitogens like
lipopolysaccharides and bacterial DNA or by polysaccharides on
encapsulated bacteria, which activate B cells by crosslinking B cell
receptors (BCR). It addresses primarily B cells of the marginal zone
(MZ) of the spleen as well as their circulating counterpart (MZ-like
B cells also known as IgM+IgD+ memory B cells) and B1 cells (4, 5).
The result is a fast and IgM driven B cell response, eliminating
pathogens that would otherwise escape a humoral reaction due to
the capsule protecting them from phagocytosis by APCs (4).

Autologous hematopoietic stem cell transplantation (auto-
HSCT) has been established as a standard treatment regime for
patients suffering of multiple myeloma (MM) who are not
weakened by major comorbidities (6, 7). After induction
therapy, aiming to induce remission of the tumor, stem cell
mobilization and apheresis is performed. Shortly before the auto-
HSCT, a high-dose chemotherapy with Melphalan is
administered in order to eliminate residual tumor cells. This
treatment causes a secondary immunodeficiency (SID) in
patients by depleting the innate and adaptive immune system.
It is leaving patients with a high susceptibility to infections, of
which the majority is of bacterial origin (8, 9). Within the first
month especially risk factors such as neutropenia and mucosal
damage accumulate, being the principal reason for infectious
complications and early treatment-related mortality after auto-
HSCT (10, 11). After the innate immune system recovered the
reconstitution of the humoral and cellular immunity is causing a
post-engraftment SID (12). While CD8+ T cell counts recover
within one month after auto-HSCT, CD4+ T cells and CD19+ B
org 2
cells show a delayed recovery (13). Overall B cell numbers
recover within 4-8 months after auto-HSCT (14), while certain
subpopulations like MZ-like and class switched (CS) memory B
cells (memB) take more than a year (15). For the differentiation
into CS memB and hence their recovery, CD4+ T cells are
essential (16). Quantitatively, CD4+ T cells are known to be
the last cell population to recover after auto-HSCT as they
require de novo synthesis from the thymus and are reduced for
more than two years after auto-HSCT (13, 17–19). A more rapid
reconstitution of lymphocytes is associated with improved
overall survival in MM patients after auto-HSCT (20).

Functionally, hampered serological responses to vaccines have
been reported after auto-HSCT in other illnesses. Further, low
immunoglobulins and hampered reactions to in vitro stimulations
especially within the first three months are described (21–24). So
far, B cell function could not be recovered in vitro. Polyclonal
stimulations composed of Staphylococcus aureus Cowan I (SAC),
poke weed mitogen (PWM) and oligonucleotides with cytosine
and guanin motives (CpG) or CD40L, (IL-21) and CpG that were
used in this study have been shown to recover B cell functions in
other B cell deficiencies including common variable
immunodeficiency (CVID) and systemic autoimmune diseases
(25, 26)[Steiner et al. unpublished]. The combination of SAC,
PWM and CpG has become an established B cell activation assay
introduced by Crotty et al. (27). Similarly, CD40L, IL-21 and CpG
described by Cao et al. and Muir et al. have also shown to induce a
B cell proliferation and differentiation into immunoglobulin
secreting cells (ISCs) and long-lived plasma cells (28, 29). SAC,
PWM and CpG measure the TI and TD B cell function in
the presence of functional T cells while the combination of
CD40L, IL-21 and CpG induces a primarily TD response by
substituting costimulatory molecules expressed by CD4+ T cells.

Evoked through the reduced overall survival due to an
increased occurrence of infections after auto-HSCT and the
significant humoral deficiencies, the aim of this study was to
decipher the effect of high-dose chemotherapy and auto-HSCT
on the B cell compartment in MM patients in detail. To further
distinguish if functional B cell defects are of intrinsic or extrinsic
origin, we utilized TD and TI stimulation assays previously
discovered to be potent polyclonal B cell activators. This study
thereby gives an overview of the phenotypic and functional B cell
immunity of patients undergoing treatment for MM especially
during early recovery after auto-HSCT. It further lays the
foundation for diagnostic and therapeutic strategies targeting
SID in patients undergoing auto-HSCT.
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MATERIALS AND METHODS

Collection of Peripheral Blood From
Healthy Donors and Oncological Patients
For this study peripheral blood was drawn from 11 healthy
donors (HD) and 14 MM patients undergoing high-dose
chemotherapy and auto-HSCT. Patients’ characteristics are
shown in Supplementary Table 3. Patients’ peripheral blood
was analyzed twice in paired fashion, once right before receiving
high-dose chemotherapy (pre-HSCT) and the second assessment
was within the first month (range: 14-31 days) after auto-HSCT
(post-HSCT). Blood was drawn in heparin tubes and processed
within five hours. This study was approved by the ethics
committee of Charité - University Medicine Berlin in
accordance with the 1964 Declaration of Helsinki and its later
amendments (no. EA1/252/14). Patients and HDs gave
informed consent.

Flow Cytometry
Flow cytometry was used in three instances. Firstly, 100µl whole
blood was stained for 15 minutes with fluorochrome-conjugated
antibodies for a leucocyte panel (Supplementary Table 1).
Erythrocyte lysis was performed using Erythrocyte lysis buffer
(Quiagen, Hilden, Germany) and events/µl detected with the
flow cytometer. CD4+ T cell counts were extracted from this
data. Second and thirdly, the B cell compartment was
characterized by isolation of peripheral blood mononuclear
cells (PBMCs) from the remaining whole blood by density
gradient centrifugation and analyzed ex vivo and after a seven-
day stimulation. PBMCs were stained extracellular with
fluorochrome-conjugated antibodies (Supplementary Table 2)
according to a B cell panel adapted from Wehr et al. for CVID
patients (30). Dead cells were excluded by staining with DAPI
(4′,6-Diamidino-2-phenylindole) (Biolegend, San Diego, USA).
All flow cytometric measurements were performed with a
Cytoflex S or Cytoflex LX Flow Cytometer (Beckman Coulter,
Krefeld, Germany). The data was evaluated using the software
Cytexpert version 2.3.0.84 (Beckmann Coulter) and FlowJo
version 10.6.2 (BD Biosciences, Franklin Lakes, USA).

Stimulation of PBMCs
Freshly isolated PBMCs (4x106 cells) were cultured in a 6-well
plate. They were diluted in 3ml RPMI medium + 10% fetal calf
serum + 1% penicillin/streptomycin (culture medium) and
stimulated at 37°C and 5% CO2 for seven days. Stimulation
protocols were adapted from Crotty et al. and Muir et al. (27, 28).
For stimulation two different assays were added. A combination
of SAC 1 mg/ml (1:10,000) (Sigma-Aldrich, St. Louis, USA), 100
ng/ml PWM (Sigma-Aldrich, St. Louis, USA), 6 µg/ml CpG -
ODN M362 (type C) (Innaxon Biosciences, Tewkesbury, UK)
and 50 µM/ml Mercaptoethanol (b-ME) (Sigma-Aldrich) (S/P/
C) was used in order to assess TI and TD B cell function in the
presence of functional T cells. The second assay comprised 270
ng/ml CD40L (Biolegend), 30 ng/ml IL-21 (ImmunoTools,
Friesoythe, Germany) and 6 µg/ml CpG ODN M362 (C/I/C),
substituting two costimulatory molecules involved in the
TD activation.
Frontiers in Immunology | www.frontiersin.org 3
Identification of Immunoglobulin Secreting
Cells Using ELISpot Assays
B cell ELISpot assays were performed after seven-day
stimulations to quantify immunoglobulin secreting cells (ISCs).
96-well multiscreen filter plates were coated overnight with 1,2
µg/ml goat anti-human IgG (Dianova, Hamburg, Germany), 15
µg/ml goat anti-human IgA (Dianova) or 10 µg/ml goat anti-
human IgM (Dianova) primary antibodies in Dulbecco’s
phosphate-buffered saline (PBS) (Thermo Fisher Scientific,
Waltham, USA). Control wells were coated with PBS only.
After blocking of the plates with culture medium and washing,
cells were added at concentrations ranging from 1.56x103 over
3.125x103, 6.25x103, 1.25x104, 2.5x104 to 5x104 per 100 µl culture
medium per well to identify Spots at an optimal dilution. Plates
were incubated for four hours, washed and stained with
corresponding biotinylated secondary antibodies (IgG and IgM
1:5000 (BD Biosciences), IgA 1:500 (Thermo Fisher Scientific))
overnight. The development of spots was induced by one-hour
incubation with 2,5 µg/ml streptavidin-HRP (Biolegend) at room
temperature, washing and finally by a combination of 3-amino-
9-ethyl-carbazole, Dimethylformamid (1:30) and 3% H2O2 in
acetate buffer (0.3 M sodium acetate solution, 0.2 M acetic acid
solution, Aqua dest., pH = 5.0) added for three minutes. The
reaction was stopped by rinsing the plates with water. Plates were
read and analyzed using the AID ELISpot Reader 7.0.0.0 and the
ELISpot software.

Statistics
Statistical analysis was performed using GraphPad Prism 9.0.1.
As data was not normally distributed median and interquartile
range (IQR) were calculated for summary statistics. Comparative
analysis was performed using nonparametric tests. Patient data
to HDs was compared using two-tailed Mann-Whitney-U tests.
For dependent samples pre- to post-HSCT and changes upon S/
P/C to C/I/C the Wilcoxon test was applied. Groups of three
were compared using Kruskal-Wallis-Tests. Correlations were
analyzed using the Spearman’s rank correlation test. The
correlation coefficient was applied to define weak (0.3<r<0.5),
moderate (0.5<r<0.7) and strong (r>0.7) correlations. Exact two-
sided statistical significance was defined as a p value <0.05.
RESULTS

Treatment-Induced Quantitative B Cell
Defects in MM Patients
In our work the B cell compartment of MM patients undergoing
high-dose chemotherapy and auto-HSCT was analyzed and
compared to HDs. Patients’ characteristics are shown in
Supplementary Table 3. 64% of patients were male and 36%
female and average age was 60 years while in HDs 45% were male
and 55% female with an average age of 42 years. The most
common MM subtype was IgG MM (64,3%), followed by light
chain MM (21,4%) and IgA MM (14,3%). The majority of
patients (36%) were diagnosed at stage II, 21% at stage III and
14% at stage I, according to the revised International Staging
September 2021 | Volume 12 | Article 736137
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System (ISS). At the time of high-dose chemotherapy
administration 3 patients had achieved complete response, 4
showed a very good partial response, 5 had a partial response
and 2 patients only showed a minimal response according to the
International Myeloma Working Group consensus (31). HDs
were all free from infection within the last 14 days. Pre-HSCT one
patient had a reported infection while 10 out of the 14 patients
suffered infections within the first month after auto-HSCT,
highlighting the increased susceptibility to infections induced
through high-dose chemotherapy and auto-HSCT.

Quantitative B cell analysis was performed ex vivo by flow
cytometry using a B cell panel adapted from Wehr et al. (gating
strategy in Supplementary Figure 1) (30). Measurements showed
significantly reducedCD19+ cell counts inpatients before andmost
pronounced after HSCT compared to HD (pre-HSCT: p=0.007;
post-HSCT: p<0.001) (Figure 1A). Pre-HSCT patients had
previously undergone induction therapy in most cases consisting
of Bortezomib, Cyclophosphamide and Dexamethasone (VCD) as
well as stem cell mobilization with Cyclophosphamide and
Granulocyte colony-stimulating factor (G-CSF) administration. A
detailedoverviewofpatients’ treatmentbackgroundcanbe found in
Supplementary Table 3. In these patients the median count of
CD19+ cells was at 88.5 [36.0-277.3] CD19+/10,000 PBMCs
(median [IQR]), which corresponds to a quarter of counts
detected in HD (HD: median=357 [303-713] CD19+ cells/10,000
PBMCs). However, reduced numbers of CD19+ cells (212 [154.5-
260]CD19+cells/10,000PBMCs)were also found inuntreatedMM
patients highlighting quantitative B cell defects prior to any
treatment (data not shown) (19). The high-dose chemotherapy
Frontiers in Immunology | www.frontiersin.org 4
with Melphalan followed by auto-HSCT entailed an almost
complete depletion of CD19+ B cells, resulting in a median drop
of 95% from pre-HSCT to 4.1 [1.6-12.25] CD19+ cells/10,000
PBMCs post-HSCT (p<0.001).

Treatment-Induced Alterations in the
Distribution of B Cell Subpopulations
Consistent with the total CD19+ B cells, all measured B cell
subpopulations decreased significantly from pre-HSCT to post-
HSCT (Supplementary Figure 2). However, the treatments
affected B cell subpopulations to different degrees, which led to
altered B cell subset distributions as it can be seen in Figure 1B.
The distribution of subpopulations in the HD group
encompassed 56% of total naïve cells out of which 6%
comprised transitional B cells. IgM only and CS memB
together made up 21%, while MZ-like B cells covered almost
15%. Double negative B cells (DN) reached a median of 8%.
Plasmablasts (PBs), which represent the smallest population in
healthy individuals, made up <2%. An altered subset distribution
became apparent in MM patients who had undergone induction
treatment. A disproportional and significant reduction was
observed of especially MZ-like B cells (p<0.001), which
subsequently made up only 1% of B cells. Further, the share of
mature naïve and memB cells was down to 8% of CD19+ cells
each (naïve p<0.001, memB p=0.037). PBs and most markedly
transitionals gained a disproportionally high percentage, with
transitionals rising up to around 1/3 of the B cells (p=0.013).
Following high-dose Melphalan and auto-HSCT the most
eminent change to pre-HSCT was seen in a rise of PBs to 37%
A

B

FIGURE 1 | (A) Quantitative B cell defects are most pronounced after high-dose chemotherapy and auto-HSCT (post-HSCT). Flow cytometry was used to analyze
CD19+ B cell counts per 10,000 PBMCs. (B) The reduced B cell compartment shows an altered B cell population distribution ex vivo with a greater proportion of
PBs post-HSCT. A comparison of the B cell compartments of HD, pre-HSCT and post-HSCT patients is shown. Using Flow cytometry the percentage of naïve B
cells, memB cells, MZ-like cells, double negative (DN) B cells, transitionals and PBs within CD19+ B cells was determined. Bars represent the median ± IQR. Mann-
Whitney-U tests were applied to compare HD and patient groups and Wilcoxon tests to compare pre- and post-HSCT with *p < 0.05; **p < 0.001.
September 2021 | Volume 12 | Article 736137
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of the B cells (p<0.001). In contrast to a healthy distribution, the
compartment post-HSCT comprised a higher proportion of
memB cells (15%) than naïve B cells, which sank to 3% (pre-
to post-HSCT p=0.041). In this early reconstitution phase
transitionals remained at 5%. DN were disproportionally high
pre- and post-HSCT at a median of 21% (pre-HSCT p<0.001,
post-HSCT p=0.21).

Ex Vivo Stimulation With CD40L/IL-21
Partially Restores B Cell Proliferation
With the intention to decipher functional B cell defects in MM
patients undergoing auto-HSCT and to further distinguish
between B cell intrinsic and extrinsic causes for the hampered
function, ex vivo B cell stimulation assays were performed. As a
common marker for successful B cell activation, B cell
proliferation was assessed by comparing CD19+ counts
measured in flow cytometry before and after the stimulations.
Patients’ samples exhibited a higher proliferation than HDs with
the strongest CD19+ increase upon C/I/C stimulation post-HSCT
(x9.56). An exception was a reduction to the S/P/C stimulus post-
HSCT (x0.86) (Table 1). To evaluate whether these induction
rates served to recover B cell numbers, CD19+ cells/10,000
PBMCs after stimulation were compared between HD and the
patients (Figure 2Ai). Pre-HSCT, both the C/I/C as well as the S/
P/C stimulation induced a proliferation strong enough to
compensate the quantitative deficit ex vivo, reaching a median
of CD19+ cells that did not differ significantly from HD (C/I/C:
median HD=471 [374-704], median pre-HSCT=343 [207.8-
1325]; S/P/C: median HD=706 [610-1030], median pre-
HSCT=687[191-1032]). Post-HSCT the initial deficit was too
extensive for either stimulation to compensate, causing the
median CD19+ counts to remain significantly reduced in
comparison to HDs (C/I/C and S/P/C p<0.001). However, there
was a great difference between the two stimulation assays. C/I/C
provoked a strong proliferation to a median of 41.5 [9.2-212.5]
CD19+/10,000 PBMCs and led to normalized CD19+ counts in 4
patient samples. The S/P/C stimulation in contrast did not
provoke any proliferation and remained on a median of 4.4
Frontiers in Immunology | www.frontiersin.org 5
[1.2-10.9] CD19+/10,000 PBMCs. Overall C/I/C showed a 10
times higher CD19+ count post-HSCT than S/P/C (p<0.001)
(Figure 2Aii) and could partially reverse the CD19+ deficit.

Ex Vivo Stimulation With CD40L/IL-21
Partially Restores Differentiation Into PBs
and ISCs
A second parameter to assess B cell function was differentiation
into PBs and ISCs upon stimulation.

To measure differentiation into PBs the change of distribution of
B cell subpopulations within the CD19+ compartment upon
stimulation was determined. In HDs a successful B cell activation
was marked by a reduction of memB, naïve, transitional and MZ-
like cells through apoptosis and differentiation into PBs, which
consequently increased (Table 1) (32–34). The TD focused C/I/C
assay led to a stronger induction of CS PB and the combined TI
activating assay S/P/C induced a bigger increase of IgM PBs in HDs
and pre-HSCT however, failed to do so post-HSCT (Table 1).

The overall count of PB/10,000 CD19+ cells was compared
between HDs and patients to determine a successful differentiation
into PBs (Figure 2B). Since this parameter is reflecting the B cell
function for existing B cells only, it remains unaffected by the
quantitative defect. In this setting, the C/I/C stimulation generates
PBs to healthy levels before and after auto-HSCT with post-HSCT
levels even significantly exceeding thoseofHDs (p=0.02). SinceC/I/C
activates especially memB cells, this is most likely due to a higher
memB cell proportion post-HSCT forming a more extensive
response (35). The S/P/C stimulation on the other hand resulted in
a weaker PB generation especially post-HSCT (HD: median=8020
[4560-9330]; post-HSCT: median=4760 [1345-9530]; p=0.23 ns)
with high variability among the patients (IQR=1345-9530). Post-
HSCT PB counts upon C/I/C significantly exceeded those upon S/P/
C (C/I/C: median=8310 [6068-9423]; S/P/C: median=4760 [1345-
9530]; p=0.01) bringing to light a hamperedBcell functionuponS/P/
C whereas differentiation into PBs is fully restored upon C/I/C.

Differentiation into ISCs, measured in B cell ELISpots,
confirmed an IgM weighted response upon S/P/C in HD and
pre-HSCT and IgG and IgA weighted upon C/I/C in all groups
TABLE 1 | Median induction rates of B cell populations upon C/I/C or S/P/C stimulation.

HD Pre-HSCT Post-HSCT

C/I/C S/P/C C/I/C S/P/C C/I/C S/P/C

CD19+ 1,18 1,51 5,51 4,56 9,56 0,86

PB 28,47 42,93 21,57 16,50 2,10 1,77

IgM PB 16,11 22,89 7,59 87,08 1,25 0,87

CS PB 15,59 14,32 12,23 3,55 1,61 0,86

memB 0,24 0,03 0,27 0,08 0,07 0,35

IgM memB 0,53 0,04 0,24 0,23 0,05 0,07

CS memB 0,21 0,04 0,21 0,06 0,07 0,39

naive 0,23 0,12 0,38 0,14 0,34 0,31

transitionals 0,04 0,02 0,01 0,01 0,23 0,03

MZ-like 0,16 0,01 1,44 0,36 0,22 1,96
September 202
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Green fields indicate a positive induction; red fields a reduction of the cell population.
Shown are CD19+ cells per 10,000 PBMCs and B cell subpopulations per 10,000 CD19+ cells.
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with no significant differences in the overall ISCs (data not
shown). Post-HSCT ISCs were reduced compared to HD,
which could be attributed to the lesser amount of B cells.
However, a deficient differentiation upon S/P/C was confirmed
with significantly less overall ISCs compared to C/I/C (S/P/C:
median=17 [3-51]; C/I/C: median=76 [29-266]; p<0.001), less
IgG (S/P/C: median=11 [2-39]; C/I/C: median=56 [21-198];
p<0.001) and less IgA (S/P/C: median=2 [0-5]; C/I/C:
median=15 [5-58]; p<0.001) ISCs upon S/P/C than C/I/C. In
fact even IgM ISCs were reduced upon S/P/C (S/P/C: median=1
Frontiers in Immunology | www.frontiersin.org 6
[0-5]; C/I/C: median=2 [0-9]; p=0.05) indicating a strongly
defic ient immunoglobul in product ion upon S/P/C
stimulation (Figure 2C).

B Cell Proliferation and Differentiation
Upon Stimulation Correlate With Ex Vivo
CD4+, CD19+, memB and MZ-Like Counts
Initiated through the variance in B cell responses to the
stimulations in post-HSCT patients, correlations between the
counts of relevant B cell populations ex vivo and the measured
A

B

C

FIGURE 2 | (A) Ex vivo C/I/C stimulation can partially reverse the quantitative B cell defect. (i) Comparison of CD19+ counts/10,000 PBMCs between HD, pre-
HSCT and post-HSCT patients measured in flow cytometry after either C/I/C or S/P/C stimulation. Mann-Whitney-U tests were performed. Bars represent median ±
IQR. The dotted lines mark the median of HDs upon C/I/C (green) or S/P/C (orange). (ii) Post-HSCT measurements of CD19+ cells/10,000 PBMCs upon C/I/C or S/
P/C stimulation were compared with the Wilcoxon test. Boxes mark the median counts after C/I/C (green) or S/P/C stimulation (orange). All graphs in (A–C) are
plotted on a log 10 scale and *p < 0.05, **p < 0.001. (B) Differentiation to PBs is hampered after S/P/C stimulation post-HSCT, but appears functional after C/I/C
stimulation. (i) The differentiation into PBs is evaluated by analyzing PBs per 10,000/CD19+ cells measured by flow cytometry upon C/I/C or S/P/C stimulation.
Mann-Whitney-U tests were performed for comparing HD and patients. The dotted lines mark the median of HDs upon C/I/C (green) or S/P/C (orange). Bars
represent the median ± IQR. (ii) Wilcoxon test is applied to compare post-HSCT PBs per 10,000/CD19+ cells between stimulation assays. Boxes mark the median
counts after C/I/C (green) or S/P/C stimulation (orange). (C) Differentiation to ISCs is hampered after S/P/C stimulation post-HSCT, but appears regular after C/I/C
stimulation. (i) Differentiation into ISCs was assessed by identifying ELISpots per 10,000 added cells, assuming one spot equals one ISC. Here the amount of spots
generated upon C/I/C or S/P/C stimulation was compared using the Wilcoxon-test in post-HSCT patients’ samples. Boxes mark the median counts after C/I/C
(green) or S/P/C stimulation (orange). (ii) Representative ELISpot wells of a HD and a post-HSCT patient upon C/I/C or S/P/C stimulation and control wells. Dilutions
refer to the amount of PBMCs that were added per well.
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parameters for B cell function were calculated (Table 2). Both
stimulations showed a moderate to strong correlation between
the B cell function and the total number of CD19+ B cells. MemB
cells showed a stronger correlation with the PB induction upon
C/I/C than S/P/C stimulation and only a weak influence on the
ISC production in both stimulations. Overall, the total numbers
of CD19+ cells as well as memB cells were identified as
correlating parameters to whether B cell activation was
successful. MZ-like B cells served as an additional parameter to
evaluate the response to S/P/C and hence could predict
successful TI response. A moderate to strong correlation was
measured between the differentiation of B cells upon S/P/C and
the count of MZ-like B cells. The influence on proliferation was
low. Upon C/I/C, MZ-like cells only showed a moderate
correlation with PB/CD19+ cells hinting to a low relevance of
the MZ-like cells and hence the TI response upon this assay.
CD40L/IL-21 Restore CD4+ T Cell
Dependent B Cell Function
Due to the significant differences in B cell responses between the
C/I/C and S/P/C assay post-HSCT, the divergence between the
two assays was further investigated. Since CD40L and IL-21 are
costimulatory molecules usually expressed on CD4+ T cells
in vivo a dependence of the B cell recovery and differentiation
on CD4+ T cells was assessed. Hence, additionally the correlation
between the B cell function and CD4+ cells was calculated. Upon
the C/I/C stimulation, all functional parameters showed a
moderate to strong correlation to the count of CD4+ T cells
while they only had some relevance for the proliferative outcome
upon S/P/C (Table 2). Since CD4+ T cells are essential players in
Frontiers in Immunology | www.frontiersin.org 7
the TD B cell activation a correlation with CD4+ T cell counts
suggested a recovered TD activation under C/I/C.

Looking at the PB counts per CD19+ cells - the most sensitive
marker for B cell function in this study - two thresholds of CD4+
cells could be identified to be associated with a better B cell
function upon C/I/C stimulation (Figure 3A). These were at 10
cells/µl and 30 cells/µl, splitting the patients in three groups:
1) CD4+ cells <10/µl (n=2), 2) 10-29 cells/µl (n=3) and 3) ≥30
cells/µl (n=7). In combination with the C/I/C stimulation CD4+
cell counts between 10 and 29 cells/µl sufficed to mount an
effective PB response, however not as successful as CD4+ cell
counts above 30 cells/µl. Comparing these three groups, there
was a significant increase of PB/10,000 CD19+ cells (p<0.001)
(Figure 3B). Since PBs were measured per 10,000 cells, numbers
could not increase above 10,000, possibly covering up a
continuous increase. The relevance of the two thresholds could
also be seen when comparing the groups to other functional
parameters analyzed in this work (CD19+/PBMCs: p=0.002; PB/
PBMCs: p=0.001; ISCs/PBMCs: p=0.004) (Figure 3C).
DISCUSSION

Lymphocyte reconstitution following auto-HSCT is an essential
factor to protect MM patients from infections and tumor relapse
and can hence contribute to reduce morbidity and mortality of
these patients (36). This study further deciphered a specific
pathomechanism underlying the slow B cell recovery after
auto-HSCT and additionally detected alterations that could
pave the way for new diagnostic and therapeutic strategies.
TABLE 2 | Correlation of cell counts ex vivo and parameters for B cell functionality.

C/I/C S/P/C

cell population ex vivo functional parameter p-value correlation
coefficient (r)

p-value correlation
coefficient (r)

CD19+ CD19+/PBMC 0,005* 0,724 <0,001* 0,887

PB/CD19+ 0,001* 0,790 0,046* 0,546

PB/PBMC 0,002* 0,770 0,001* 0,788

overall ISCs 0,009* 0,682 0,039* 0,562

memB CD19+/PBMC 0,027* 0,596 0,006* 0,710

PB/CD19+ 0,006* 0,706 0,192 0,371

PB/PBMC 0,015* 0,644 0,035* 0,574

overall ISCs 0,087 0,477 0,096 0,464

MZ-like CD19+/PBMC 0,381 0,252 0,164 0,394

PB/CD19+ 0,055 0,528 0,004* 0,744

PB/PBMC 0,237 0,336 0,008* 0,693

overall ISCs 0,177 0,382 0,007* 0,701

CD4+ CD19+/PBMC 0,016* 0,692 0,07 0,546

PB/CD19+ 0,020* 0,671 0,528 0,203

PB/PBMC 0,012* 0,713 0,379 0,280

overall ISCs 0,016* 0,692 0,342 0,301
Septembe
r 2021 | Volume 12 |
faint green: weak correlation; medium green: moderate correlation; dark green: strong correlation.
The correlation coefficient (r) was used to divide relationships into weak (0.3<r<0.5), moderate (0.5<r<0.7) and strong (r>0.7) correlations.
*p < 0.05.
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SID after auto-HSCT reportedly does not differ significantly
between MM patients and other underlying diseases. This has
been investigated in regard to infections (37) and could be
concluded by comparing our work and a study from Gernert
et al. in regard to the composition of the B cell compartment
(15). This suggests that results shown in this work could be
transferred to patients with various illnesses who are undergoing
treatment with auto-HSCT. However, the limited patient cohort
size underscores the exploratory nature of the study.

Quantitative B cell defects contributing to the increased
susceptibility to infections in treated MM patients have previously
been described and aremost prominent after auto-HSCT (19). The
present study measured almost complete depletion of peripheral
blood B cells following high-dose chemotherapy and auto-HSCT.
Thishas alsobeendescribed inotherdiseases and is attributed to the
cytoreductive high-dose chemotherapy with Melphalan that is
especially affecting immune cells (19, 38). The partial recovery of
B cell counts through proliferation upon ex vivo C/I/C stimulation
in this study suggests an additional functional (qualitative) defect
contributing to the quantitative deficit. Because ex vivo stimulation
was able to trigger efficient proliferation of patients’ B cells, an
extrinsic rather than intrinsic cause seems likely.

All measured B cell subpopulations were significantly reduced
post-HSCT. A shift in the distribution of subpopulations within
the B cell compartment contributed further to the B cell
deficiency. The major proportion of the B cell compartment
post-HSCT consisted of PBs and DN B cells while populations
that can respond to new pathogens such as naïve, MZ-like and
Frontiers in Immunology | www.frontiersin.org 8
transitional B cells comprised a smaller share. Gernert et al.
observed a similar composition of the B cell compartment after
the first month following auto-HSCT in patients with systemic
sclerosis (15). Gernert et al. noted a higher percentage of
transitional B cells though, most likely due to the fact that in
our study blood frommost patients was obtained earlier than one
month after auto-HSCT at which point reconstitution was not as
progressed (39). The high proportion of PBs most likely reflects
the acute systemic inflammation reaction following the high-
dose chemotherapy, weakening the immune system in addition
to the quantitative defects (40).

In order to further address intrinsic versus extrinsic factors
for B cell defects after auto-HSCT, polyclonal stimulation assays
were used to analyze the TD and TI B cell function. While the
results deliver information about general B cell function a
limitation of this study is, that they do not necessarily reflect
antigen specific responses. The functional analysis revealed a
reduced B cell function within the first month post-HSCT, which
was marked by a hampered immune response upon S/P/C. This
assay served as a control since it induces TI and TD B cell
activation in the presence of functional T cells. SAC induces a TI
activation enhanced by CPG, which can be seen in a response
with IgM PBs and ISCs (27, 41). PWM delivers additional signals
for a TD stimulation inducing class switch and differentiation,
reflected primarily in CS PBs and ISCs (42, 43). A significantly
hampered differentiat ion into PBs and ISCs of al l
immunoglobulin subclasses led to the conclusion of a defect
TD and TI response. The mitogens SAC and PWM have
A B

C

FIGURE 3 | Thresholds of 10 and 30 CD4+ T cells/µl were associated with an improved B cell function upon C/I/C stimulation. (A) A spearman correlation between
the count of CD4+ T cells (cells/µl) ex vivo and the functional parameter PB/10,000 CD19+ cells revealed two thresholds of 10 cells/µl and 30 cells/µl, marked here
with dotted lines. (B) Thresholds are highlighted by splitting samples into three groups according to the CD4+ count: CD4 <10/µl; CD4 10-29/µl; CD4 ≥30/µl plotted
against PB/10,000 CD19+ cells. (C) Three groups of CD4+ counts plotted against other functional parameters: CD19+/10,000 PBMCs; PB/10,000 PBMCs; ISCs/
10,000 PBMCs. (B, C) Bars represent median ± IQR. Groups were compared by Kruskal-Wallis-Test with *p < 0.05 and **p < 0.001.
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previously been tested after auto-HSCT and bone marrow
transplantation in leukemia patients. These studies also
observed a hampered proliferation upon stimulation within the
first three months and in certain cases beyond that (21, 22, 44).
Based on the fact that B cell function could not be recovered
in vitro an intrinsic B cell defect was previously assumed (21, 23).

In contrast, CD19+ recovery and differentiation into
primarily CS PBs and ISCs upon C/I/C stimulation implied a
TD response recovery upon extrinsic factors. Correlations of
functional outcomes with CD4+ cells confirmed a stronger TD
response with higher CD4+ T cell counts. This highlighted the
effective T cell help provided by the present CD4+ cells upon C/I/
C stimulation. Two thresholds at 10 cells/µl and 30 cells/µl could
be identified suggesting low levels of CD4+ cells suffice to
provide effective help in this setting. However, these results
should be interpreted with caution until confirmed in a larger
cohort, since the sample size particularly for the group <10 CD4+
cells/µl was very limited.

CD4+ T cells are known to be reduced in MM patients after
undergoing auto-HSCT (13, 19) and have been described to
contribute to a hampered TD B cell response. However, CD4+
cell counts did not correlate with a better function upon S/P/C
stimulation, which contains the TD dependent stimulant PWM.
This is highlighting the restorative effect that the stimulants CD40L
and IL-21 have on the TD B cell function. CD40L and IL-21 are
costimulatory molecules primarily expressed by CD4+ T cells in
vivo and are indispensable in the T - B cell interaction (45, 46). The
restorative effect on the TD B cell function of these molecules
implies a distorted T - B interaction in patients recovering from
high-dose therapy and auto-HSCT. This is further supported by
similarities of their SID concerning B cell function and clinical
presentation to other immunodeficiencies. Patients with CVID or
ICOS deficiency also show a reduced ISC generation upon
stimulation (25) and suffer of hypogammaglobulinemia, a
reduced germinal center reaction and a reduced serological
response due to an inefficient T cell help to B cells (47).

The costimulatory factor IL-21 is also known to be reduced
after auto-HSCT (48). Details about the expression of CD40L on
activated T cells early after HSCT are missing. However, it has
been described that the expression is reduced on cord blood T
cells (49) and that reconstitution after HSCT follows the
ontogenetic development (50). A reduced CD40L expression
and IL-21 secretion could hence influence the T - B interaction
post-HSCT. In vitro CD40L enhances intercellular adhesion and
both CD40L and IL-21 have shown to induce B cell proliferation
as well as differentiation into ISCs including immunoglobulin
class switch (41, 51–53). The stimulation with CD40L and IL-21
in our study could have provoked a synergistic function of the
existing CD4+ T cells and the stimulants, restoring the T - B
interaction and explaining the successful TD response upon the
C/I/C in contrast to the S/P/C assay.

The mechanism by which CD40L and IL-21 restore TD B cell
activation could be based on affecting and altering suppressive
mechanisms. A suppressive effect of T cells on antibody
production has been described after HSCT (44). A recent study
on B cell function in systemic autoimmune diseases revealed a B
Frontiers in Immunology | www.frontiersin.org 9
cell hyporesponsiveness through chronic in vivo stimulation
without T cell help through CD40-CD40L interaction. This
resulted in decreased phosphorylation of BCR-related signaling
molecules. CD40L stimulation in vitro increased BCR signaling
and induced proliferation in contrast to a hampered response to
CpG only (26). Whether a similar pathomechanism could be
involved after auto-HSCT and whether stimulation with CD40L
and IL-21 affects phosphorylation patterns in patients after auto-
HSCT should be explored in prospective studies.

Whether the restorative effect is confined to TD B cell
function or if also TI function can be improved through
CD40L and IL-21 needs to be further investigated. A great
variance especially in the PB/CD19+ B cell response upon S/P/
C correlated with the number of MZ-like cells, which are known
to be key players in the TI B cell response (4, 5) and have been
described to be significantly and long-term reduced after auto-
HSCT (15). Although acting T cell independent, specific
interactions such as CD40-CD40L in the presence of IL-21
have also been discussed for inducing CS of immunoglobulins
produced by MZ-like cells (32). However, if the TI response post-
HSCT was only lacking CD40L-CD40 interaction, an IgM
response upon S/P/C stimulation would have been expected.

Based on the high variability of B cell responses among patients
within and in between the TD and TI assays certain cell
populations were investigated as predictors for the B cell
response ex vivo. Both stimulation assays showed a correlation of
CD19+ and memB cells with the overall B cell function. While the
primarily TD activating C/I/C assay correlated with the number of
CD4+ T cells, the B cell function upon the also TI activating S/P/C
assay correlated with the MZ-like cells. A previous work observed a
correlation between CD4+ and CD19+ cell counts with
opportunistic infections after auto-HSCT (19). In young
children, splenectomized patients and CVID patients, the
reduction of MZ-like cells goes along with a higher susceptibility
to TI antigens such as encapsulated bacteria like streptococcus
pneumoniae or haemophilus influenza, which also affect patients
after HSCT (54–56). These findings suggest CD19+ and memB
cells as parameters for determining general B cell function early
after HSCT and CD4+ cells for TD and MZ-like cells for TI B cell
function. Assessment of these cell populations should therefore be
further evaluated to whether they potentially serve as diagnostic
parameters for predicting B cell function in patients early after
auto-HSCT. The detected CD4+ cell thresholds moreover suggest
that diagnostic levels could be identified in vivo.
CONCLUSION

Quantitative and functional B cell defects occur after high-dose
chemotherapy and auto-HSCT. Efficient B cell proliferation and
differentiation upon TD ex vivo stimulation highlight the role of
extrinsic roots for the functional defect. Correlations of the TD B
cell function with CD4+ T cell counts highlight the restorative
effect of the applied stimulants CD40L and IL-21. The in vivo role
of CD40L and IL-21 suggests a hampered B - T interaction as the
underlying defect. By further deciphering the pathomechanism
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involved in B cell defects after auto-HSCT, these findings
contribute new elements to the constant search of ways to
improve immune reconstitution after auto-HSCT. Besides CD4
+ T cells, also numbers of B cells, memB cells and MZ-like B cells
correlated with B cell function ex vivo. Quantitative assessment of
these cell populations should further be explored as potential
biomarkers for estimating B cell function in patients early after
auto-HSCT.
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