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Neuromyelitis optica spectrum disorders (NMOSD) comprise a variety of disorders being described by optic neuritis and myelitis. This disorder is mostly observed in sporadic form, yet 3% of cases are familial NMO. Different series of familial NMO cases have been reported up to now, with some of them being associated with certain HLA haplotypes. Assessment of HLA allele and haplotypes has also revealed association between some alleles within HLA-DRB1 or other loci and sporadic NMO. More recently, genome-wide SNP arrays have shown some susceptibility loci for NMO. In the current manuscript, we review available information about the role of genetic factors in NMO.
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Introduction

Neuromyelitis optica spectrum disorders (NMOSD) comprise a variety of disorders being described by acute inflammatory responses in the optic nerve and spinal cord, i.e., optic neuritis and myelitis, respectively (1). NMO is mostly triggered by IgG autoantibodies against aquaporin 4 (AQP4) (2). AQP4 monomers comprise six transmembrane helical domains and two small helical parts around a thin aqueous pore (3). These monomers lump together to make corresponding tetramers with the ability of being aggregated in cell plasma membranes. The constructed supramolecular collections are named as orthogonal arrays of particles (OAPs) (3). AQP4 is the supreme ample water-channel protein in the central nervous system (CNS) (1). A number of NMO patients do not have AQP4-IgG, yet they have IgG antibodies against myelin oligodendrocyte glycoprotein, a glycoprotein in the outer myelin sheath of CNS neurons (4).

Following the discovery of AQP4-specific proliferative T cells in NMO patients, it has been recognized that AQP4-specific T cells exhibit Th17 features and display molecular mimicry with a peptide sequence encoded by the commensal bacterium Clostridium perfringens. Further studies have revealed distinct features of gut microbiota in NMO cases versus both multiple sclerosis (MS) cases and healthy subjects (5).

Although this disorder has some similarities with MS, it is important to distinguish between these two conditions, particularly at early stages of the disorder, since therapeutic modalities for these disorders are different (6). Most importantly, a number of prescribed agents for MS might be harmful for patients with NMO (7, 8). NMO and MS can be differentiated through assessment of NMO antibody. Although the existence of cerebral lesions has been formerly regarded as a criterion for differentiation between these two conditions, it is currently acknowledged that these lesions do not exclude NMO. In fact, with the advent of NMO antibody assessment techniques, some cases diagnosed as MS for a long time have been found to have NMO (9).

Typically, NMO manifests around the ages of 35 to 45 years, yet less than 20% of cases occur in children, and elderlies account for 18% of cases. NMO is recognized as a condition with female predominance. Although 70% to 90% of total NMO patients are female, such sex bias is not seen in children (6, 10). In NMO-AQP4 cases, gender influences both age at disease onset and site of attack (11).

NMO is most probably a complex multifactorial disorder. Most cases of this disorder are sporadic, yet 3% of cases are familial (12). A previous meta-analysis of whole-genome association studies in NMO has shown association of AQP4-IgG positive NMO with two independent signals in the MHC region. Notably, one of these signals has been suggested to be related with structural variations in the complement component 4 region. Moreover, a significant causal effect has been found between AQP4-IgG positive NMO and recognized risk variant for systemic lupus erythematosus (SLE). Most notably, such causal link has not been observed with MS risk variants (13). A number of other studies have reported an association between genetic variants and gene expressions alterations and NMO. In the current manuscript, we review available information about the role of genetic factors in NMO.



Family Studies

Familial and sporadic NMO are similar in terms of clinical manifestations, age onset of disease, gender-based effects, and proportion of AQP4-IgG positive cases (12). A pioneer study in this field has reported occurrence of NMO in identical twin sisters at the ages of 24 and 26, respectively (14). A subsequent study reported NMO manifestations such as sudden loss of vision and transverse myelopathy in two sisters at the age of 3. Notably, HLA haplotyping revealed a shared haplotype between these two sisters, yet an unaffected sib also had this haplotype (15). More recently, a group of researchers described a series of familial NMO cases including siblings, parent–child, and aunt–niece pairs, more than 80% of them being female. A number of reported cases had either maternal or paternal transmission. More than 75% of cases had AQP4-IgG. About half of cases had clinical manifestations or serologic markers of another immune-related condition. The observed familial transmission of NMO suggested a complex genetic etiology for this disorder (12). A number of other studies also reported familial clustering of NMO cases, with some of them reported the presence of a shared haplotype among affected cases. Table 1 summarizes the results of family studies in NMO.


Table 1 | Summary of the results of family studies in neuromyelitis optica [HLA, human leukocyte antigen, AQP4-Ab, aquaporin-4 antibody (NMO-IgG)].





HLA Studies

An HLA genotyping study in seropositive Brazilian NMO patients has revealed some susceptibility loci for NMO, most importantly HLA-DRB1*04:05 and *16:02. A number of alleles within HLA class I showed association with NMO, yet this association did not remain significant after corrections for multiple comparisons (22). Another study in Afro-Caribbean NMO cases has shown higher frequency of HLA-DRB1*03 in NMO patients. On the other hand, HLA-DRB1*15, but not DRB1*03 allele has been recognized as a susceptibility locus for MS. In brief, distribution of HLA-DRB1 and DQB1 has been different among NMO and MS cases in this population (23). Another study in seropositive Brazilian NMO patients has shown overrepresentation of the HLA-DRB1*03 allele group in NMO cases compared with unaffected individuals. On the other hand, MS patients have shown higher frequency of the HLA-DRB1*15 allele group. DRB3 and DRB5 have had higher frequencies in NMO and MS cases, respectively (24). Another study has confirmed overrepresentation of HLA-DRB1*03 and HLA-DRB1*10 alleles in another group of Brazilian NMO patients compared with controls, in spite of no significant overrepresentation of MS-associated alleles (25). In addition, the DR3 and DR15 haplotypes have been found to be more common in NMO and MS, respectively. The association between HLA-DRB1*03:01 allele and NMO has not been dependent on seropositivity (26). In a study in Japanese patients, HLA-DRB1*08:02 and HLA-DRB1*16:02 have been found as risk loci, while HLA-DRB1*09:01 has been a protective allele (27). Table 2 shows the results of HLA studies in NMO cases in different populations.


Table 2 | HLA studies in neuromyelitis optica (SSP-PCR, sequence-specific primers–polymerase chain reaction; PCR-SSO, polymerase chain reaction–sequence specific oligoprobes; SBT, sequencing-based typing; MOG-Ab, myelin oligodendrocyte glycoprotein antibody).





Genomic Studies

Whole-exome sequencing (WES) has facilitated identification of risk loci for NMO. Application of this method in addition to HLA sequencing in seropositive NMO cases of Chinese origin has shown significant association between HLA-DQB1*05:02 and NMO. Additionally, the frequency of “HLA-DQB1*05:02-DRB1*15:01” haplotype has been higher in the NMO group compared with controls. Besides, this study has shown higher frequency of loss-of-function mutations in NOP16 in these patients compared with healthy subjects. The G390R of IgG1, which decreases the threshold for BCR activation, has been another NMO-associated variant. Notably, most of the NMO-associated genetic factors have been enriched pathways related with nervous system and immune responses (43).

Another genome-wide study using an SNP array has identified the rs1964995 in the MHC region as a risk locus for NMO. Notably, three MS-associated variants have also been found to be associated with NMO. A variant within KCNMA1 gene has been associated with disability score as well as presence of transverse myelitis (27).

The importance of copy number variations (CNVs) in conferring risk of NMO has been previously assessed using a genome-wide method. The majority of identified CNVs have been located at TCRγ and TCRα regions. These CNVs have been mostly deletions with sizes of 5 to 50 kb. Since they have been only in the peripheral blood T cells, it has been deduced that they are most probably somatically acquired CNVs. Moreover, it has been an association between the presence of CNVs in NMO cases and seronegativity for AQP4-IgG or low antibody titer (44).

Several SNPs within AQP4 gene have been genotyped in NMO cases to find possible risk loci for this condition in different ethnic groups. For instance, Matiello et al. have compared genotype frequencies of 8 SNPs within AQP4 gene in sporadic and familial NMO cases as well as healthy controls. One of these SNPs has been found to be associated with risk of NMO. Moreover, two missense mutations at Arg19 have been found in three NMO patients. The authors have reported that apart from one infrequent SNP, no other examined SNP or haplotype has been linked to NMO, possibly excluding the importance of AQP4 variants in conferring risk of NMO (45). Qiu et al. have also genotyped eight SNPs in AQP4 in a group of AQP4-IgG-positive NMO cases. They have shown associations between a number of SNPs and clinical manifestations of NMO such as extensive transverse myelitis, optic neuritis, or simultaneous systemic autoimmune disorders (46). Table 3 shows the results of genomic studies in NMO cases.


Table 3 | Genomic studies in neuromyelitis optica.







Expression Studies

Expressions of several immune-related genes have been assessed in NMO cases at transcript or protein levels. Moreover, a number of high-throughput sequencing strategies have been employed to assess expression of different subtypes of transcripts. For instance, lncRNA and mRNA profile has been assessed in these patients using microarray technique. Such type of analysis has led to the identification of more than 1,300 lncRNAs with differential expression between NMO cases and normal controls. Moreover, more than 700 mRNAs have been found to be differentially expressed between NMO cases and normal subjects. These genes have been functionally correlated with IL-23-related cascades, IFN-γ signaling, natural killer-κB pathway, and a number of other immune-related mechanisms (74). Another RNA expression profiling experiment has shown possible contribution of T-cell-related genes and the TNF/NF-kB cascade in the pathogenesis of NMO. Notably, IL7Ra (CD127) has been found to be downregulated in the circulation of NMO patients compared with control subjects. Moreover, transcription factors located in the upstream of CD127 and survival pathways in its downstream have been considerably downregulated. These expression changes have been accompanied by decrease in the quantities of naïve T cells, reduction of BID-mediated T-cell survival signaling and activation of cell apoptosis. Taken together, these observations indicate the importance of IL7Ra signaling in the pathoetiology of NMO (75). A high-throughput expression profiling in brain tissue samples obtained from an NMO patient as well as patients with Parkinson’s disease and amyotrophic lateral sclerosis has shown upregulation of more than 200 genes in brain lesions of NMO patients with the mostly upregulated ones being associated with immune response. Upregulation of IFI30, CD163, and SPP1 has also been confirmed by further RNA and protein-based techniques. Genes with high expression in NMO brain lesions has been functionally related with NF-κB and Blimp-1, indicating the importance macrophage-mediated inflammatory responses in the pathoetiology of NMO brain lesions (76).

With the aim of finding effective markers for the assessment of response of NMO patients to therapeutic options, Vaknin-Dembinsky et al. have assessed miRNAs profile in the blood of NMO patients before and following treatment with rituximab. They have reported upregulation of 14 miRNAs and downregulation of 32 miRNAs in NMO patients after treatment with rituximab. Moreover, they have shown higher levels of 17 miRNAs and lower levels of 25 miRNAs in untreated cases compared with healthy controls. Notably, rituximab could normalize expression of a number of these miRNAs, among them have been brain-specific or brain-enriched miRNAs. Cumulatively, circulatory miRNA profile can be used as a biomarker for therapeutic response (77).

The pleiotropic cytokine IL-6 is also implicated in the pathogenesis of NMO through enhancement of survival of plasmablasts, induction of release of antibodies against AQP4, disruption of integrity of blood–brain barrier and its functionality, as well as increasing differentiation and activity of proinflammatory T cells (78). Expression of this cytokine has been reported to be elevated in CSF and blood samples of NMO patients (79). Table 4 shows the results of expression studies in NMO.


Table 4 | Expression studies in neuromyelitis optica (NPSLE, neuropsychiatric systemic lupus erythematosus; ONND, other non-inflammatory neurological disorders; OND, other neurological disorders).








In Vitro Studies

A number of in vitro studies have appraised the functional mechanisms of development of NMO. In an effort to find the impact humoral factors on astrocyte injury in NMO, Haruki et al. have conducted a series of experiments on immortalized human primary astrocytes. Moreover, they assessed the effect of TY09 human brain microvascular endothelial on the quantity and localization of AQP4 protein in astrocytes. Serum samples of NMO patients have been shown to induce cytotoxic effects on AQP4-expressing astrocytes. Moreover, these serum samples could decrease AQP4 expression at both mRNA and protein levels, while increasing release of TNF-α and IL-6 from astrocytes. Experiments in an in vitro BBB model has shown localization of AQP4 protein at the astrocytic membrane following co-culture with TY09, in contact with these cells (132).

Sera samples of these patients or even NMO-IgG have also been shown to rapidly downregulate AQP4 levels on the surface of astrocytes. Astrocytes treated with NMO-IgG, IL-6/R, and NMO-IgG + IL-6/R have shown over-production of IL-6 transcripts. Moreover, NMO-IgG could elicit alterations in gene transcription via the JAK/STAT3 pathway. Cumulatively, NMO-IgG has been reported to induce the JAK1/2/STAT3 pathway in astrocytes, representing a crucial event in the pathoetiology of NMO. Besides, suppression of JAK1/2 signaling might be a therapeutic modality for NMOSD (133).

Another in vitro study has shown similar magnitude of lymphoproliferation and cytokine profiles in peripheral blood mononuclear cells of NMO cases and healthy controls in reponse to Staphylococcus aureus and Candida albicans. However, NMO-originated Escherichia coli-induced cell cultures have exhibited higher proliferation of CD4+ T cells in association with higher production of IL-1β, IL-6, and IL-17. IL-10 release has been lower in NMO-derived cells compared with controls. Notably, the in vitro E. coli-stimulated expressions of IL-6 and IL-17 have been correlated with neurological debilities. Overproduction of Th17-associated cytokines has been associated with the production of IL-23 and IL-6 by LPS-stimulated monocytes. Consistently, LPS levels have been higher in the plasma samples of NMO cases. Therefore, increase in Th17 type response to E. coli might contribute in the pathogenesis of NMO (134). Table 5 shows the results of in vitro mechanistical studies in NMO.


Table 5 | In vitro studies (BMECs, brain microvascular endothelial cells).





Discussion

NMO comprises a group of immune-meditaed conditions with complex etiology. While family studies have shown clustering of NMO cases in some familites, the exact genetic background of this disorder has not been clarified yet. Since the first report of familial NMO cases in 1936 (14), several studies have attempted to find susceptibility loci for NMO. The first attempts have been focused on the HLA region, based on the importance of this region in the regulation of immune responses and their association with MS, a disorder that clinically resembles NMO. However, various studies have shown that HLA-related susceptibility loci for NMO is distinct from MS. The HLA-DRB1*03 allele has been the mostly appreciated risk locus for NMO. Several other HLA-DRB1, DQB1, and DPB1 alleles have been found to be associated with NMO. Yet, the results of these studies have not been validated in independent cohorts from different ethnic backgrounds.

Exome sequencing and genome-wide SNP arrays have also validated the significance of the HLA region in conferring risk of NMO. In addition, they have shown other risk loci within AQP4, CYP27B1, CYP7A1, CD226, CD58, CD6, FCRL3, GPC5, MIF, ATG5, PD-1.3, IL2RA, IL7RA, and IL17A. With the exception of AQP4 and CD58, almost other genes have been assessed in single studies, needing confirmation in independent cohorts. Moreover, a number of variants, particularly within SLC28A3 and SLC29A1, have been associated with clinical course or some immune markers in patients with NMO.

Deletion-type CNVs can also been regarded as predisposing factors for NMO. Notably, these CNVs have been found to occur as somatic changes.

In addition to several cytokines that are altered in the course of NMO development, expressions of numerous mRNAs, lncRNAs, and miRNAs have been found to be deregulated in the peripheral blood or brain lesions of NMO patients. Not surprisingly, these genes are mostly enriched in pathways related to functions of the immune system.

Finally, in vitro studies have shown the effects of NMO sera on deregulation of function of astrocytes, suggesting the impact of humoral responses on pathoetiology of this condition. Moreover, these circulatory markers could negatively affect permeability of the blood–brain barrier.

Taken together, NMO has a complex genetic background with prominent roles of immune-related genes, particularly cytokine coding genes and those coding cytokine receptors. Future genome-wide studies in NMO patients from different ethnic background would facilitate identification of risk loci for this condition. Finally, systematic review and meta-analysis studies are recommended to produce quantitative results without any bias along with an overview of genetic aspects of disease. Also, further studies should assess treatment responses in association with distinct genetic backgrounds. Finally, a limitation of studies conducted in this filed is that the expression profiles of genes and cytokines have not been assessed in association with different treatment options.
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- Poymorphism at ~1003 bp (A-G) positon of promoter O s associaed
wih AQP4-Ab presonce.

- Poymorphisms between ~401 bp axd-400 bp locations of pomer 1
‘wero moro fequent in NMO compared 1 conros.

T sl of 52075575 i promoter rogion vas sgnantly more freauent
NMO and ed to downvoguiaton of AQP4 gere.

Oy 151800683 i the TNFRSF 1A locus tended 10 bo associated with
MO,

I SLC28A3 gons, 1510868138 and 1512376361 were corsated wih
igher and lower enyivocyte concentaton of 6-TGNS,rospoctve.
15507964 n SLO29A1 was assodated with kower eytocyte concontiaton
O 6:MMPNs and 6 MMPN6-TGNS rato.
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31 NMO patents and
39 heatty controls
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20 heathy controls.
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16 NMO patients and
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21 WO patonts and
16 healhy contros
21 NMO patents and
12 healhy contros

18 rlapsing NMO (11
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anct 30 heathy contros

31 MO patents and
49 heaty controls.
30NV patnts and
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20 heaty controls.
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1L-6 serum level was lower than controls whereas IL-17 level was higher in
MO patients.

IL6,IL-17, and 1L:21 wero Highy secreed fom O3 T cols i patrts.
Disabity scao n patients corclated with L6 and L:21 leves. Fstharmore,
antIL:6R had potental o dacreased Thi7 cytokines.

1132 serum el was ghes in patients and conelated wih EDSS, 1L, and
WLATA loves.

IL21, 1L, and 1L-17 concentraions werd sigicanty ighes i NNO whio.
IL10 was lower i patients. T cels werd igher i reapsing courss and
‘conelted wih isease actay. Th cels were decreased under
Methyrecisolone veaiment.

TH17 cots and L-17-secreting COB(v) T ks wero sgnicanty ighar i NM.
Sorum IL-17, 1L-21 and 123 wore sgifcanty Hghar in NMO sampls.

Ao paramaters were sgrifcanty highr in NMO and coneated ith
isease duration and eapse. Futhermore, niavanous metyfpredhisoon
herapy coukd dcrease IL-23 o n patients.

(GSF IL:21 el was signicanty higherin NMO and coreiated with humora
mune oty

Proportions of Th22 and Thi7 were sigicanty higher i patienisIL21, L
22,200 FN-yconcentraton wero increased i NMO.

THI-/TI7 responses wero deroguated s patiens. Serum L9 ovel wero.
Pigherin ACP#+ ptints comparec 0 negaie seroype.

L7 lves weo Sricanty increased n patients and consatod wih EDSS
and diseaso cueaton.

NE.xB. Bc12 and MAPGKT gono exprossion was uproguated i O, L1
0t TN o wero levatod and o 10 MAPGKT incction, which
Promoted NF-x8 expression eated 0 suvival of CDA+ T cels.

‘Spocic subsets wero increasadt n NMO patients along wih 01l monocyes
anc hey coukd bo decraased i gucocoricods 1hoapy. n a06ton, 15
anct TNF-a expression lvel wero sigéicanty upreguttad in NMO.

L1, TN, and ENA 78 plasna el were sgnficanty increased 1 NV,
Thero was sgnican condation batwoen ENA 78 oxprossion and EDSS i
patients.

Thcel percentage and IL21 were sgnfcanty increased i patents. Some.
‘Subsots werd condated wih AQPA-ab and WBC count i CSF.
(Cortcosterod therapy suppressed sublypes and L-21 e,

4 eptopes of AGPA wera showed in NMIO and thof speciicy changed
g dissase course cel fesponses 0 heso epiopes represented mors L
17 and 110 socrofons.
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34 NMO patents (20
i N eatment) and
30 hesthy coniros

31 NV patents and
22 contos wih
norintammatory
neclogial dseass
23 NMO patents and
16 hoathy contoss

22404+ NVOSD
patients and 13 haathy.
contols

45 NMO patents and
45 beatthy contros

28 NMO patents and
28 bty controls

17 NMO patents at
elapss tme and 21
ON patents

23 NMO patents and
19 heathy contos

95 NMO patents (69
acuto and 35 chvonic
phase) and 333 OND
22 VO patents and
14 hoathy contios

13 NMO patents and
200MD and 24
dopainc CNS
infammatory patients
a5 control group.

9 dafto NNIO patents
and 8 imited foms of
MO with et

8 NMOan 16 heatny
contros

56 NMOSD patents
and 100 heaty
contros

29 MO patents and
20 M patents

22 MO patents and
14 heathy contos

42 NMOSD patents
2nd 30 ONND patnts

Taanese

Soun
Korean

ranion
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Brazians
dapansse

Turksh

Augentines.

Taiancso

Criose

dapansse

Sarumcytometic
bead aray (CBA)

csFRUSA

CSF and seuny
eusa
PRGN cytometry

SoumELSA

CsFRACS.

Sarum and OSF/
usA
SoFoLEA

CsFRUSA

SOFEUSA

SOFEUSA and
radommunoassay

SoumEUSA

SOFEUSA

(OSF and seum/
EUsAmna CLER

1L2,1L-4, 1L, 110, TNF-a, and IFN-g loves vera sigrifcanty hgherin
patients, Patents who receved IFN-g reament had hghes EDSS and IL-17
andlower L2 ovol.

(G027 concentraton was Higher in NO patints, especialy n AGPA-19G
posive cases compared to the contol group. s higher kvelcorelted with
(CSF total proten and worse cisease isabity.

5SDC-1 concentraion was hgher n NMO patients. i had a posive
orrelaion with cseass sverty and CSF lvels of L6, 118, and L-17.

8109 cots as IL-10-r00ucng B (B10) ols wers ebvated n patients et
omelated with AQPA-/Abin aditon,IL-17+Treg cots wore Higher in
remissin phase ofisease.

L4 serum lovels wore croased n patients compare 1 hedithy contos.
Futhemor, gender (e and AQPd-Ab were assooted wih L4 el
L4 igherlvels i NMO represented of s crucil e n T reguiaory call
actvaton.

Soicanty i leves f L6 entfed in NMO patins.

Higher el of L1 was idantfiad n saa and SCF samplas of patients,
particury i seroposiive AQP-ab than negatv type. CSF IL-6 ovel o
conclated with dsoase sovet and AQPA-ab e,

NMO patints had igher L lvels of CSF. L6 represented igh senstiy
and specicy for NMO Gagnasss, s conceniraton corelated wih spial
cord lesion length and AQP-Ab.

1L:6.3nd SL-6R lvels were sgnifcanty highes i NMO, sL6R level aiso
conelted with EDSS.

(CSF conceniraton of L6 and GFAP was sigifcanty higher durng il
NMOSD attacks. They coud iagnosi ear stage of NMOvith high
sensiy.

Higher lovls of L6 2nd L-18 were shown i dofte VIO patets
ompared 1o mited fom.

Higherlovels of L5, 1L-6, MOG-ab, and aosiophi-ated factors were
dentfed in NMIO ptins.

L6 and IL-17A serum el were igher i patiens. Thee was sgnfcant
assocation between owerinsuin senstiviy and highe love of L6

A8 parmeters e Significanty igher n NV patiens. HGB level
comelated with TNF-a N, 20 L-17 leves, HGB coud Giagnose and
ferenttl NMIO it High sensiivly and specicty.

HMGB1 was highar in CSF of NN patents and cordated with IL:6 and IL-
17loves.

HMGB1 CSF loves were signiartly sovaled i NMOSD. s conosatation
orelated with other CSF paramotes such asiL6 lvel, G couns, proten
lovels, ghal Roritary ackic protein levels, and CSF/serum albumin raio,
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Cases

Identical twin sisters

2 sisters

2 sisters

Mother and daughter

2 sisters, Niece-aunt,
Daughter-mother,
Daughter—father, Brother—
sister, Monozygotic twin
sisters, Son-mother

2 sisters

Mother and daughter

2 sisters

Mother and daughter

Population

American

American

Japanese

Unknown (published
from USA)

Lao, African
American, Mexican,
Brazilian,
Vietnamese, Korean,
African Caribbean
Japanese

Unknown (published
from USA)

Unknown (report
from USA)

Taiwanese

Age at  AQP4-Ab HLA
onset
(vears)
24and __ —
26
3 _ HLA-A1, 2 BW35,
(similar) W40, BW622
HLA- A1, X BW35,
YBW62
(Shared haplotype)
59and __ HLA-A 2/33, B 39/
62 44, Cw7/2,

DR 4/6, DQ 1/3
HLA-A26/33, B 44/
62, Cw3/2, DR 6/
12,DQ 1/2, DP1/

2, (Shared
haplotype)

HLA-DRB1*1202,
1302, DQB1*0604,
0301,
DPB1*0501,0402

62 and Positive in

29 mother (test
was not
performed in
daughter)

Different  76% of
patients were
NMO-IgG
positive

25and Positive

78 and  positive =
38
3and  positive _
35

39and positive

HLA- A*31, B'61,
26 *51, DRB1*0802,
and DPB1*0501

HLA-DRB1*03 and
22 HLA-DPB1*04

Environmental
factors

They had a
history of
bronchitis,
measles and
chickenpox.

The same until
first episode of
disease

Mother had
history of
recurrent urinary
tract infections

Year

1936

1982

2000

2007

2010

2011

2015

2016

2019

Comments

Severity of the disease was different

between cases. They had an

unaffected sister until 3 years old,

with a shared HLA haplotype.

One of the cases had rheumatoid

arthritis since she was 30.

The daughter had a history of

myasthenia gravis in childhood.

48% of cases had clinical or
serologic sign of another
autoimmune disorder (thyroid

disease, T1DM, Sjégren syndrome,

CIDP and psoriasis).

Genetic factors may influence age

at onset of disease while

environmental factors might be

related to relapsed courses.

There was genetic anticipation in

familial NMO.

NMO can have extended remission
course but a persistent tendency to

relapse.
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12722189 typing

L7RA: 56897932

L7 167 VO patents (57 Soubeastem  Porpheal bood/ 156897932 i L-7RA was sgcanty assocated with NMO especalyin (69

51520853 AQP3_AB)and 479 Han Crinose  MassARRAY system  AQPA-Ab' patients.

51545208 heaity controls and Sanger

54739140 sequencng
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7R
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13SNPs inIL7A4 9BNMOpatenisand Korean  Perpheralbiood/  There was no sgnificant assacaton wih NN, )
238 heaity contros Taqban assay

17 52AQP-Ab" MO Southem Han Parphoralbood/ T el of 5763780 was sgrfantly more frequent n NO patiets &

52275013 patentsand 131 Chinese  sequencing ‘compared to contos

L17F: healty cortrols

763780
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Genes and cells

AQPA4IL-6TNF-
aCytotoxicity

AQP4IL-6

Immune responsiveness
to Escherichia coli (EC),
Staphylococcus aureus
(SA) and Candida
albicans (CA)
MMP-2MMP-9claudin-
5VCAM-1

AQPAGFAPmyelin
immunoreactivity

Eosinophil

27 cytokines/chemokines

T-cell functions

Number and type
of samples

5 AQP4+ NMO
patients and 5
healthy controls

10 NMOSD patients
and 10 healthy
controls

20 NMO patients
and 20 healthy
controls

14 NMOSD patients
and 10 healthy
controls

AQP4+ NMOSD
patients

NMO patients

20 NMOSD patients
and 10 healthy
controls

20 NMO patients
and 20 healthy
controls

Population

Japanese

Chinese

Brazilian

Japanese

Japanese

Brazilians

Source of samples/assay
method

Astrocyte cells (hAST-AQP4)
exposure to human sera/Qrt-
PCR, Western blot and
Immunocytochemistry
Astrocyte cells exposed to
human sera/Western blot,
gRT-PCR, and ELISA

PBMC exposed to EC, SA,
and CA/flowcytometry and
ELISA

BMECs, astrocytes, and FH-
BNBs cells treated with human
sera in presence of MMPs
inhibitor/ELISA

Spinal cord slice cultures of
null AQP4 mice treated with
NMOSD SCF and serum

Eosinophils cultured from
mouse bone marrow exposed
to NMO sera

BMECs treated with human
sera/multiplexed fluorescent
bead-based immunoassay
system and ELISA

PBMC, CD4-free PBMC, and
purified CD4+ T cells cultured
and exposed to glucocorticoid
inhibitor/flow cytometry and
ELISA

Results

NMO sera had a cytotoxic and harmful effect on astrocyte
cells. Also decreased d AQP4 mRNA and protein levels while
increased IL-6 and TNF-a in astrocytes.

NMO sera downregulated AQP4 levels on the astrocyte
surfuce and induced JAK1/2/STAT3-dependent inflammatory
response through IL-6 expression.

Upregulation of IL-1b, IL-6, IL-17, and CD4+ T-cell
proliferation, which correlated with neurological disability and
downregulation of IL-10 represented in NMO-derived EC-
stimulated cell cultures. Increase in LPS levels was reported in
plasma of NMO patients.

MMP-2/9 and VCAM-1 secretion was increased in BMECs
after exposure to NMOSD sera that led to increased BBB
permability.

AQP4-IgG bound to astocytes in spinal cord slice cultures and
led to a decrease in AQP4, GFAP, and myelin. NMO lesion was
more severe according to increase in specific immune cells and
cytokines.

Eosinophils induced antibody-dependent cell-mediated
cytotoxicity in AQP4-expressed cells and through complement-
dependent cell-mediated cytotoxicity led to killing cells.

IL-6, MCP-1, and IP-10 were significantly upregulated in
BMECs treated with NMOSD acute phase sera. IP-10 levels
were correlated with CSF/serum albumin ratio.

T-cell proliferation and Th1 cytokine production were
significantly lower in NMO cell cultured, while Th17-like
phenotype, IL-6, and IL-23 production were increased. IL-6,
IL-21, and IL-23 secretion were less sensitive to glucocorticoid
inhibitor.

Ref
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(135)
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AQP4 isoforms

51 NMO patients and
37 heathy contros

11relapsing NMO
patints and 11 heathy
contros

13 NMO patnts and
14 beaithy contros

29 NMO patients and
27 OND patints

14 soopostive AGPS
NMOSD patents and
10 heatthy contros
40 NMOSD patents
20 g00d and 20 poor
recoreny)

18NMOSD 2N 8
healty conirols

16NMO patonts and
30 hesthy contros
20 NMO patients and
20 hesthy contros
50 NMO patients and
65 heathy contios.

1 NMO patent and 12
ol neurciogc patients
as control group.

Onineso.

Otineso.

Spanish

CSF/iow cytometry
and EUSA

SorunvELISA and
spectrophotometic
mathods

Sorum and CSF/
EusA

OSF and sy
immunofucresconco
and EUSA

Sorunv
inmunoforesoonce
Assay and ELSA

‘Sorumitestem biot

Porpheral boodAT-
PORd EUSA
SerumvELISA

Post mortem CNS
issuelsequencing
and Realme-POR

Proportons of CD19(+) CO4GNCO3BIgN) reguisory B col and
prodcing IL-10 were sgnfcanty decreased in MO, wie BAFF and
(CXCLY3 el were hgher nthen. Futharmors, thess proportions were
ower n AQP-4 posiive sampies.

‘Dosnveguiation of 110 and TNE-ccand upeoguaton of Xt stress
markers were shown i tho tudy.

‘Serum MMPO leve was sigrifcanty hgher in NMO and is conceniration
‘coneated with CSF IL:8, CSF/sorum albumi rato and EDSS. MMP9 piayed
acrucal e n BBB dnupton

MMP-2, TIVP-1, 1L lvels, and MMP-2/TIVP 2 o i CSF were
Srvcanty increased in NMOMMP-2 concentaions corried wih L6
levels nd BBB permeabity.

Thore wero no sigicant Gorences i MVP2 and MYP kovels i NMOSD.
‘compared to contos.

Patnts wih poor recovery had igher AGPA-AD serum el Futhermore,
AGP-Ab n good recovery patients s oven awer than podr roup aftor
reatment. CXCL12 level was signéicant lower 1 poor recovery group and
egativey conlated with AQPA-Ab leve. It was 850 reated 10 TNFac and
GFAP CSF vl

‘Accordng to therasuls, ony an-AQP4 antbodios couk act 2 a bomarker
91NMOSD diagnosis, and s lovl was ot corrtated with iseaso.
progression

Wester biotassay couid dstnguish immuncreacivity of AOPA isolorns.

040 expressin evel was dowveguited i patients compared fo contos,
‘whil thero were o signficant ciferences i serum leves.

G6PD sorum lvelwas sinfcanty ower 1 NMO patints compared o
contos.

AGP sofoms oxpressin patten corrolaed wih MO tiseas locaizaton
and th highest mANA MT:M23 rao was dentied in optic nerve and spinal
cord.
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