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Neuromyelitis optica spectrum disorders (NMOSD) comprise a variety of disorders being
described by optic neuritis and myelitis. This disorder is mostly observed in sporadic form,
yet 3% of cases are familial NMO. Different series of familial NMO cases have been
reported up to now, with some of them being associated with certain HLA haplotypes.
Assessment of HLA allele and haplotypes has also revealed association between some
alleles within HLA-DRB1 or other loci and sporadic NMO. More recently, genome-wide
SNP arrays have shown some susceptibility loci for NMO. In the current manuscript, we
review available information about the role of genetic factors in NMO.
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INTRODUCTION

Neuromyelitis optica spectrum disorders (NMOSD) comprise a variety of disorders being described
by acute inflammatory responses in the optic nerve and spinal cord, i.e., optic neuritis and myelitis,
respectively (1). NMO is mostly triggered by IgG autoantibodies against aquaporin 4 (AQP4) (2).
AQP4 monomers comprise six transmembrane helical domains and two small helical parts around
a thin aqueous pore (3). These monomers lump together to make corresponding tetramers with the
ability of being aggregated in cell plasma membranes. The constructed supramolecular collections
are named as orthogonal arrays of particles (OAPs) (3). AQP4 is the supreme ample water-channel
protein in the central nervous system (CNS) (1). A number of NMO patients do not have AQP4-
IgG, yet they have IgG antibodies against myelin oligodendrocyte glycoprotein, a glycoprotein in the
outer myelin sheath of CNS neurons (4).

Following the discovery of AQP4-specific proliferative T cells in NMO patients, it has been
recognized that AQP4-specific T cells exhibit Th17 features and display molecular mimicry with a
peptide sequence encoded by the commensal bacterium Clostridium perfringens. Further studies
have revealed distinct features of gut microbiota in NMO cases versus both multiple sclerosis (MS)
cases and healthy subjects (5).
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Although this disorder has some similarities with MS, it is
important to distinguish between these two conditions,
particularly at early stages of the disorder, since therapeutic
modalities for these disorders are different (6). Most
importantly, a number of prescribed agents for MS might be
harmful for patients with NMO (7, 8). NMO and MS can be
differentiated through assessment of NMO antibody. Although
the existence of cerebral lesions has been formerly regarded as a
criterion for differentiation between these two conditions, it is
currently acknowledged that these lesions do not exclude NMO.
In fact, with the advent of NMO antibody assessment techniques,
some cases diagnosed as MS for a long time have been found to
have NMO (9).

Typically, NMO manifests around the ages of 35 to 45 years,
yet less than 20% of cases occur in children, and elderlies account
for 18% of cases. NMO is recognized as a condition with female
predominance. Although 70% to 90% of total NMO patients are
female, such sex bias is not seen in children (6, 10). In NMO-
AQP4 cases, gender influences both age at disease onset and site
of attack (11).

NMO is most probably a complex multifactorial disorder.
Most cases of this disorder are sporadic, yet 3% of cases are
familial (12). A previous meta-analysis of whole-genome
association studies in NMO has shown association of AQP4-
IgG positive NMO with two independent signals in the MHC
region. Notably, one of these signals has been suggested to be
related with structural variations in the complement component
4 region. Moreover, a significant causal effect has been found
between AQP4-IgG positive NMO and recognized risk variant
for systemic lupus erythematosus (SLE). Most notably, such
causal link has not been observed with MS risk variants (13).
A number of other studies have reported an association between
genetic variants and gene expressions alterations and NMO. In
the current manuscript, we review available information about
the role of genetic factors in NMO.
FAMILY STUDIES

Familial and sporadic NMO are similar in terms of clinical
manifestations, age onset of disease, gender-based effects, and
proportion of AQP4-IgG positive cases (12). A pioneer study in
this field has reported occurrence of NMO in identical twin
sisters at the ages of 24 and 26, respectively (14). A subsequent
study reported NMO manifestations such as sudden loss of
vision and transverse myelopathy in two sisters at the age of 3.
Notably, HLA haplotyping revealed a shared haplotype between
these two sisters, yet an unaffected sib also had this haplotype
(15). More recently, a group of researchers described a series of
familial NMO cases including siblings, parent–child, and aunt–
niece pairs, more than 80% of them being female. A number of
reported cases had either maternal or paternal transmission.
More than 75% of cases had AQP4-IgG. About half of cases had
clinical manifestations or serologic markers of another immune-
related condition. The observed familial transmission of NMO
suggested a complex genetic etiology for this disorder (12).
Frontiers in Immunology | www.frontiersin.org 2
A number of other studies also reported familial clustering of
NMO cases, with some of them reported the presence of a shared
haplotype among affected cases. Table 1 summarizes the results
of family studies in NMO.
HLA STUDIES

An HLA genotyping study in seropositive Brazilian NMO
patients has revealed some susceptibility loci for NMO, most
importantly HLA-DRB1*04:05 and *16:02. A number of alleles
within HLA class I showed association with NMO, yet this
association did not remain significant after corrections for
multiple comparisons (22). Another study in Afro-Caribbean
NMO cases has shown higher frequency of HLA-DRB1*03 in
NMO patients. On the other hand, HLA-DRB1*15, but not
DRB1*03 allele has been recognized as a susceptibility locus for
MS. In brief, distribution of HLA-DRB1 and DQB1 has been
different among NMO and MS cases in this population (23).
Another study in seropositive Brazilian NMO patients has shown
overrepresentation of the HLA-DRB1*03 allele group in NMO
cases compared with unaffected individuals. On the other hand,
MS patients have shown higher frequency of the HLA-DRB1*15
allele group. DRB3 and DRB5 have had higher frequencies in
NMO and MS cases, respectively (24). Another study has
confirmed overrepresentation of HLA-DRB1*03 and HLA-
DRB1*10 alleles in another group of Brazilian NMO patients
compared with controls , in spite of no significant
overrepresentation of MS-associated alleles (25). In addition,
the DR3 and DR15 haplotypes have been found to be more
common in NMO and MS, respectively. The association between
HLA-DRB1*03:01 allele and NMO has not been dependent on
seropositivity (26). In a study in Japanese patients, HLA-
DRB1*08:02 and HLA-DRB1*16:02 have been found as risk
loci, while HLA-DRB1*09:01 has been a protective allele (27).
Table 2 shows the results of HLA studies in NMO cases in
different populations.
GENOMIC STUDIES

Whole-exome sequencing (WES) has facilitated identification of
risk loci for NMO. Application of this method in addition to
HLA sequencing in seropositive NMO cases of Chinese origin
has shown significant association between HLA-DQB1*05:02
and NMO. Additionally, the frequency of “HLA-DQB1*05:02-
DRB1*15:01” haplotype has been higher in the NMO group
compared with controls. Besides, this study has shown higher
frequency of loss-of-function mutations in NOP16 in these
patients compared with healthy subjects. The G390R of IgG1,
which decreases the threshold for BCR activation, has been
another NMO-associated variant. Notably, most of the NMO-
associated genetic factors have been enriched pathways related
with nervous system and immune responses (43).

Another genome-wide study using an SNP array has
identified the rs1964995 in the MHC region as a risk locus for
October 2021 | Volume 12 | Article 737673
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NMO. Notably, three MS-associated variants have also been
found to be associated with NMO. A variant within KCNMA1
gene has been associated with disability score as well as presence
of transverse myelitis (27).

The importance of copy number variations (CNVs) in
conferring risk of NMO has been previously assessed using a
genome-wide method. The majority of identified CNVs have
been located at TCRg and TCRa regions. These CNVs have been
mostly deletions with sizes of 5 to 50 kb. Since they have been
only in the peripheral blood T cells, it has been deduced that they
are most probably somatically acquired CNVs. Moreover, it has
Frontiers in Immunology | www.frontiersin.org 3
been an association between the presence of CNVs in NMO cases
and seronegativity for AQP4-IgG or low antibody titer (44).

Several SNPs within AQP4 gene have been genotyped in
NMO cases to find possible risk loci for this condition in
different ethnic groups. For instance, Matiello et al. have
compared genotype frequencies of 8 SNPs within AQP4 gene
in sporadic and familial NMO cases as well as healthy controls.
One of these SNPs has been found to be associated with risk of
NMO. Moreover, two missense mutations at Arg19 have been
found in three NMO patients. The authors have reported that
apart from one infrequent SNP, no other examined SNP or
TABLE 1 | Summary of the results of family studies in neuromyelitis optica [HLA, human leukocyte antigen, AQP4-Ab, aquaporin-4 antibody (NMO-IgG)].

Cases Population Age at
onset
(years)

AQP4-Ab HLA Environmental
factors

Year Comments Ref

Identical twin sisters American 24 and
26

__ __ They had a
history of
bronchitis,
measles and
chickenpox.

1936 __ (14)

2 sisters American 3
(similar)

__ HLA-A1, 2 BW35,
W40, BW622
—————

HLA- A1, X BW35,
YBW62
(Shared haplotype)

__ 1982 Severity of the disease was different
between cases. They had an
unaffected sister until 3 years old,
with a shared HLA haplotype.

(15)

2 sisters Japanese 59 and
62

__ HLA-A 2/33, B 39/
44, Cw7/2,
DR 4/6, DQ 1/3
—————

HLA-A26/33, B 44/
62, Cw3/2, DR 6/
12, DQ 1/2, DP1/
2, (Shared
haplotype)
HLA-DRB1*1202,
1302, DQB1*0604,
0301,
DPB1*0501,0402

__ 2000 One of the cases had rheumatoid
arthritis since she was 30.

(16)

Mother and daughter Unknown (published
from USA)

62 and
29

Positive in
mother (test
was not
performed in
daughter)

__ __ 2007 The daughter had a history of
myasthenia gravis in childhood.

(17)

2 sisters, Niece–aunt,
Daughter–mother,
Daughter–father, Brother–
sister, Monozygotic twin
sisters, Son–mother

Lao, African
American, Mexican,
Brazilian,
Vietnamese, Korean,
African Caribbean

Different 76% of
patients were
NMO-IgG
positive

__ __ 2010 48% of cases had clinical or
serologic sign of another
autoimmune disorder (thyroid
disease, T1DM, Sjögren syndrome,
CIDP and psoriasis).

(12)

2 sisters Japanese 25 and
26

Positive HLA- A*31, B*61,
*51, DRB1*0802,
and DPB1*0501

The same until
first episode of
disease

2011 Genetic factors may influence age
at onset of disease while
environmental factors might be
related to relapsed courses.

(18)

Mother and daughter Unknown (published
from USA)

78 and
38

positive __ Mother had
history of
recurrent urinary
tract infections

2015 There was genetic anticipation in
familial NMO.

(19)

2 sisters Unknown (report
from USA)

3 and
3.5

positive __ __ 2016 NMO can have extended remission
course but a persistent tendency to
relapse.

(20)

Mother and daughter Taiwanese 39 and
22

positive HLA-DRB1*03 and
HLA-DPB1*04

__ 2019 __ (21)
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TABLE 2 | HLA studies in neuromyelitis optica (SSP-PCR, sequence-specific primers–polymerase chain reaction; PCR-SSO, polymerase chain reaction–sequence
specific oligoprobes; SBT, sequencing-based typing; MOG-Ab, myelin oligodendrocyte glycoprotein antibody).

HLA regions Number of samples Population Source of sample/
assay methods

Associations Year Ref

HLA-A, B, C
HLA-DRB1, DQB1, DPB1

15 NMO patients and 606
healthy controls

Southern
Brazilian

Peripheral blood/
Sanger sequencing

There was significant association between HLA-DRB1*16:02,
*04:05, C*15:02 alleles and NMO susceptibility.

2019 (22)

HLA-DRB1, DQB1 42 NMO patients and 150
healthy controls

French
Afro-
Caribbean

Peripheral blood/
PCR-SSO

There was significant association between HLA-DRB1*03
alleles and NMO disease.

2010 (23)

HLA-DRB1, 3, 4 and 5 27 NMOSD patients and
28 healthy controls

Mulatto
Brazilian
(Ribeira˜o
Preto)

Peripheral blood/
PCR-SSP

HLA-DRB1*03 and DRB1*10 alleles were overrepresented in
NMOSD patients compared to controls.

2009 (24)

HLA-DRB1 35 NMO patients and 99
healthy controls

Brazilian
(Mexico
City)

Peripheral blood/
PCR-SSP

HLA-DRB1*03 and DRB1*10 alleles were more common in
NMO cases compared to controls.

2016 (25)

HLA-DRB1, DQA1 and
DQB1

65 NMO patients and 100
healthy controls

Brazilian
(Rio de
Janeiro)

Peripheral blood/
PCR-SSO and SSP

HLA-DRB1*01:02, 03:01, DQB1*02:01 and DQA1*01:05
alleles were more common in NMO cases compared to
controls.
DRB1*03:01- DQA1*05:01/3/5-DQB1*02:01, DRB1*01:02-
DQA1*01:01-DQB1*05:01 and DRB1*10:01-DQA1*01:04/5-
DQB1*05:01 haplotypes were associated with NMO.

2017 (26)

HLA-A, B, C, DRB1 and
DQB1

71 NMO patients and 97
healthy controls

Mexican Peripheral blood/
SBT

Risk HLA alleles for NMO: DQB1*03:01, DRB1*08:02,
DRB1*16:02, DRB1*14:06, DQB1*04:02, B*35:14, B*39:06
and protective alleles include: DQB1*03:02, DQB1*02:02,
DRB1*04:07, DRB1*07:01 and B*39:05

2020 (28)

HLA-A, B, DQA1, DQB1,
DRB1, and DPB1

39 NMO, 6 patients at risk
of NMO, and 100 healthy
controls

French
Caucasian

Peripheral blood/
PCR-RFLP and
PCR-SSP

HLA-DQA1*102, * 501, DQB1*0201 DRB1*03 alleles were
significantly associated with NMO.
There was no correlation between distribution of HLA alleles
and IgG antibody subgroups

2009 (29)

HLA-DRB1 22 NMO patients and 225
healthy controls

Spanish
Caucasian

Peripheral blood HLA-DRB1*10 allele was significantly associated with NMO
disease.

2011 (30)

HLA-A, B, C, DRA, DRB1,
DQA1, DQB1, DPA1,
DPB1, E, F, G, DOA,
DOB, DMA, and DMB

31 NMOSD patients and
429 healthy controls

Japanese Peripheral blood/
NGS-based HLA
genotyping

HLA-DQA1*05:03 allele had the most association with
NMOSD.

2019 (31)

HLA-DRB1 and DPB1 77 NMO, 39 NMOSD
patients and 367 healthy
controls

Japanese Peripheral blood/
PCR-SSO

Higher occurrence of HLA-DRB1*1602, DPB1*0501 and
lower occurrence of DRB1*0901 alleles were associated with
anti-AQP4 antibody positive patients.

2012 (32)

HLA-DRB1 and DPB1 165 NMOSD patients Japanese Peripheral blood/
SSO (Luminex)

HLA-DRB1*08:02 and DPB1*05:01 alleles were associated
with disease and DRB1*09:01 was protective allele in
NMOSD.

2021 (33)

HLA-DRB1 and DPB1 184 NMOSD patients and
317 healthy controls

Japanese Peripheral blood/
PCR- SSO

HLA-DRB1*08:02, -DRB1*16:02 alleles were associated to
NMO whereas DRB1*09:01 allele was protective factor.

2020 (27)

HLA-DRB1 and DPB1 38 NMOSD AQP4-Ab+

patients and 125 healthy
controls

Japanese Peripheral blood/
PCR-SSO

HLA-DPB1*0501 allele was associated with NMOSD and
reinforced presence of anti AQP4-Ab

2008 (34)

HLA-DRB1 61 NMO and 32 NMOSD
patients and 300 healthy
controls

Indian Peripheral blood/
PCR-SSP

HLA-DRB1*03 allele was significantly associated with disease
and persist associated with anti-AQP4 subtype.
HLA-DRB1*10 allele was trended to associated with disease.

2015 (35)

HLA-DP 86 NMOSD patients and
29 healthy controls

Chinese Peripheral blood/
flow cytometry and
real-time PCR

HLA-DPB1*0501 allele was associated with NMOSD through
affect transcription levels of HLA-DP gene in antigen
presenting cells.

2019 (36)

HLA-DQA1, DQB1 and
DRB1

41 NMO patients and 200
healthy controls

Caucasian
(Danish)

Peripheral blood/
PCR-SSO

HLA-DQB1*0402 allele was significantly associated with
NMO disease. There were no significant differences in HLA
distributions between anti-AQP4 subtypes.

2011 (37)

HLA-DQ and DR 8 NMOSD patients with
AQP4-Ab, 10 with MOG-
Ab and 14 healthy
controls

Swiss Peripheral blood/
PCR-SSP

HLA DQB1∗02, DRB1∗01 and DRB1∗03 alleles were
significantly associated with AQP4-Ab+patients.

2020 (38)

HLA-A, B, C, DQA1,
DQB1, DRB1 and DPB1

5 NMO patients Southern
Finnish

Peripheral blood/
NGS and SSP

HLA-DPB1*0501 allele was associated with AQP4-Ab+ NMO
patient.

2015 (39)

HLA-A, -B, -Cw, DRB1,
DQB1 and DRB3/4/5

85 patients (include 43
MOG-IgG and 42 AQP4-

Dutch Peripheral blood/
SSO (Luminex) and
PCR-SSO

HLA-A*01, B*08, and -DRB1*03 alleles were significantly
associated with AQP4-IgG NMOSD. There was no
association of MOG-IgG cases with HLA alleles.

2020 (40)

(Continued)
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haplotype has been linked to NMO, possibly excluding the
importance of AQP4 variants in conferring risk of NMO (45).
Qiu et al. have also genotyped eight SNPs in AQP4 in a group of
AQP4-IgG-positive NMO cases. They have shown associations
between a number of SNPs and clinical manifestations of NMO
such as extensive transverse myelitis, optic neuritis, or
simultaneous systemic autoimmune disorders (46). Table 3
shows the results of genomic studies in NMO cases.
EXPRESSION STUDIES

Expressions of several immune-related genes have been assessed
in NMO cases at transcript or protein levels. Moreover, a number
of high-throughput sequencing strategies have been employed
to assess expression of different subtypes of transcripts.
For instance, lncRNA and mRNA profile has been assessed in
these patients using microarray technique. Such type of analysis
has led to the identification of more than 1,300 lncRNAs with
differential expression between NMO cases and normal controls.
Moreover, more than 700 mRNAs have been found to be
differentially expressed between NMO cases and normal
subjects. These genes have been functionally correlated with
IL-23-related cascades, IFN-g signaling, natural killer-kB
pathway, and a number of other immune-related mechanisms
(74). Another RNA expression profiling experiment has shown
possible contribution of T-cell-related genes and the TNF/NF-kB
cascade in the pathogenesis of NMO. Notably, IL7Ra (CD127)
has been found to be downregulated in the circulation of NMO
patients compared with control subjects. Moreover, transcription
factors located in the upstream of CD127 and survival pathways
in its downstream have been considerably downregulated.
These expression changes have been accompanied by decrease
in the quantities of naïve T cells, reduction of BID-mediated T-
cell survival signaling and activation of cell apoptosis.
Taken together, these observations indicate the importance of
IL7Ra signaling in the pathoetiology of NMO (75). A high-
throughput expression profiling in brain tissue samples obtained
from an NMO patient as well as patients with Parkinson’s disease
and amyotrophic lateral sclerosis has shown upregulation of
more than 200 genes in brain lesions of NMO patients with the
mostly upregulated ones being associated with immune
response. Upregulation of IFI30, CD163, and SPP1 has also
Frontiers in Immunology | www.frontiersin.org 5
been confirmed by further RNA and protein-based techniques.
Genes with high expression in NMO brain lesions has been
functionally related with NF-kB and Blimp-1, indicating the
importance macrophage-mediated inflammatory responses in
the pathoetiology of NMO brain lesions (76).

With the aim of finding effective markers for the assessment
of response of NMO patients to therapeutic options, Vaknin-
Dembinsky et al. have assessed miRNAs profile in the blood of
NMO patients before and following treatment with rituximab.
They have reported upregulation of 14 miRNAs and
downregulation of 32 miRNAs in NMO patients after
treatment with rituximab. Moreover, they have shown higher
levels of 17 miRNAs and lower levels of 25 miRNAs in untreated
cases compared with healthy controls. Notably, rituximab could
normalize expression of a number of these miRNAs, among
them have been brain-specific or brain-enriched miRNAs.
Cumulatively, circulatory miRNA profile can be used as a
biomarker for therapeutic response (77).

The pleiotropic cytokine IL-6 is also implicated in the
pathogenesis of NMO through enhancement of survival of
plasmablasts, induction of release of antibodies against AQP4,
disruption of integrity of blood–brain barrier and its
functionality, as well as increasing differentiation and activity
of proinflammatory T cells (78). Expression of this cytokine has
been reported to be elevated in CSF and blood samples of NMO
patients (79). Table 4 shows the results of expression studies
in NMO.
IN VITRO STUDIES

A number of in vitro studies have appraised the functional
mechanisms of development of NMO. In an effort to find the
impact humoral factors on astrocyte injury in NMO, Haruki
et al. have conducted a series of experiments on immortalized
human primary astrocytes. Moreover, they assessed the effect of
TY09 human brain microvascular endothelial on the quantity
and localization of AQP4 protein in astrocytes. Serum samples of
NMO patients have been shown to induce cytotoxic effects on
AQP4-expressing astrocytes. Moreover, these serum samples
could decrease AQP4 expression at both mRNA and protein
levels, while increasing release of TNF-a and IL-6 from
astrocytes. Experiments in an in vitro BBB model has shown
TABLE 2 | Continued

HLA regions Number of samples Population Source of sample/
assay methods

Associations Year Ref

IgG seropositive) and
5,604 healthy controls

HLA-DRB1 and DQB1 35 NMO patients and 74
healthy controls

Israeli
Muslim

Peripheral blood/
PCR-SSO, Luminex
technology and
PCR-SSP

There was a significant positive association of HLA-
DRB1*04:04 and DRB1*10:01 alleles and negative
association of HLA-DRB1*07 and DQB1*02:02 alleles with
NMO.

2016 (41)

HLA-DRB1 and DPB1 30 NMO patients and 93
controls

Southern
Han
Chinese

Peripheral blood/
SBT

The frequency of HLA-DRB1*1602 and DPB1*0501 alleles
was significantly higher in NMO AQP4-Ab-positive patients.
DRB1*0901 allele had lower frequency in disease.

2010 (42)
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TABLE 3 | Genomic studies in neuromyelitis optica.

Genes Number and type of
samples

Population Source of samples/
assay method

Associations Ref

Exome sequence 228 AQP4+ NMOSD
patients and 1,400
healthy controls

Chinese Peripheral blood/
whole exome
sequencing

The result represented most variants related to immune and nervous
system. Significant variation in HLA region specifically DQB1, DQA2, and
DQA1 was shown and the most significant allele was HL A-DQB1*05:02.
NOP16 mutation and g G1-G390 R variant were also more common in
patients.

(43)

Genome wide
SNPs

203 NMO patients and
1782 healthy controls

Japanese Peripheral blood/
GWAS
(HumanOmniExpress-
12 BeadChip)

- 46 SNPs were identified around the AQP4 gene
- rs1964995 in the MHC region was the most associated SNP in NMO.
- rs7186814 in chr 16 was associated SNP out of MHC region.
- Three variants of MS risk were associated with NMO susceptibility.
rs6677309 [CD58], rs1813375 [EOMES – CMC1], and rs694739 [PRDX5 –

CCDC88B])
- rs1516512 in the KCNMA1 was associated with EDSS and transverse
myelitis.

(27)

Copy number
variations

Identification phase:
135 NMO/NMOSD
patients and 288
healthy controls
Confirmation phase:
76 NMO/NMOSD
patients and 790
healthy controls

Japanese Peripheral blood/
GWAS (high density
SNP microarray) and
qPCR

- 24 CNVs were significantly associated to NMO/NMOSD. They were
mostly located on chr14.
- A CNV deletion between 22,762,299 and 22,775,479 in TRA were
prevalence in 13.27% of NMO.
- Other CNVs were located on chr6 and 18.
- Patients carrying CNVs tended to be AQP4-Ab-.

(44)

8 SNPs in AQP4 177 sporadic NMO
patients, 14 familial
NMO patients, and
1,363 matched healthy
controls

African
American,
Latino, Asian,
Arabic and
unknown

Peripheral blood/
TaqMan-based assay
and sequencing

On of AQP4 SNPs (NC 18.8; chromosome pos. 22695167: T>A) was
associated with disease. Two different allelic missense mutations, Arg19
(R19I and R19T) was specific to NMO.

(45)

8 SNPs in AQP4 208 NMO patients
(AQP4-Ab+) and 204
healthy controls

Chinese Peripheral blood - rs1058424 (A/T) and rs3763043 (C/T) were correlated with LETM.
- rs1058424 (A/T), rs335929(A/C), and rs151244(C/T) were correlated with
optic neuritis.
- rs6508459 and rs3763040 were associated with concurrent systemic
autoimmune diseases.

(46)

6 SNPs in AQP4 62 NMOSD patients
and 109 healthy
controls

Northern Han
Chinese

Peripheral blood/
high-resolution
melting

There were no substantial differences in frequency of alleles between NMO/
NMOSD and controls.

(47)

AQP4 exon
1,2,3,4,5

72 NMO patients Chinese Peripheral blood/
sequencing

- 6 SNP sites in exons 2 and 5 were identified in NMO patients.
- AQP4-Ab serum levels were significantly different between R108T/I110N,
E280R/D281R, E317M variants and original cell line.

(48)

AQP4 sequence
and 10 SNPs

64 NMO and 58
NMOSD for
sequencing
111 NMO, 97 NMOSD
and 204healthy
controls for genotyping

Chinese Peripheral blood/
sequencing and
PCR-LDR

A/T genotype of rs1058424 and C/T genotype of rs3763043 were more
frequent in NMO.

(49)

AQP4 exon
1,2,3,4,5

27 NMO patients and
40 healthy controls

Han Chinese Peripheral blood/
sequencing

rs72557968 in exon 2 was identified in one NMO-IgG+ patient. The
mutated sequence correlated with higher AQP4-Ab expression.

(50)

AQP4 promoters 18 NMO patients and
39 healthy controls

Southern Han
Chinese

Peripheral blood/PCR
and sequencing

- Polymorphism at −1003 bp (A-G) position of promoter 0 was associated
with AQP4-Ab presence.
- Polymorphisms between −401 bp and−400 bp locations of promoter 1
were more frequent in NMO compared to controls.

(51)

AQP4 exons and
5 SNPs

16 AQP4-Ab+ NMO
patients and 255
healthy controls

Japanese Peripheral blood/
sequencing and
TaqMan assay

T allele of rs2075575 in promoter region was significantly more frequent in
NMO and led to downregulation of AQP4 gene.

(52)

35 non-MHC MS
risk loci

110 NMO patients and
332 healthy controls

Southeastern
China

Peripheral blood/
MALDI-TOF MS

Only rs1800693 in the TNFRSF1A locus tended to be associated with
NMO.

(53)

Thiopurine
nucleotides and
SNPs in MTHFR
TPMP, SLC29A1,
SLC28A1,
ABCB1,
SLC28A3, HLA,
ABCC4, SLC28A2

32 NMO patients Chinese Peripheral blood/LC-
MS/MS, MassARRAY
and multiple
SNaPshot techniques

In SLC28A3 gene, rs10868138 and rs12378361 were correlated with
higher and lower erythrocyte concentration of 6-TGNs, respectively.
rs507964 in SLC29A1 was associated with lower erythrocyte concentration
of 6-MMPNs and 6-MMPNs:6-TGNs ratio.

(54)
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TABLE 3 | Continued

Genes Number and type of
samples

Population Source of samples/
assay method

Associations Ref

CYP27B1:
rs12368653
rs10876994
rs118204009
rs703842
CYP24A1:
rs2248359

110 NMO patients and
294 healthy controls

Han Chinese Peripheral blood/
MassARRAY system
and sanger
sequencing

rs703842 and rs10876994 were significantly associated with NMO
compared to controls.

(55)

11 SNPs in
CYP7A1

90 NMO patients and
240 controls

Korean Peripheral blood/
Bead Express

- rs3808607 and rs1457043 were associated with NMO.
-”G/G” genotype of rs3808607 had a higher protective effect on the risk of
disease.

(56)

Promoter region of
CYP7A1

89 NMO patients and
325 controls

Han Chinese Peripheral blood/
sanger sequencing

−204A>C (rs3808607), −469T>C (rs3824260) and −208G>C were
significantly associated with NMO.

(57)

CD226:
rs763361

89 NMO patients and
129 healthy controls

Southern Han
Chinese

Peripheral blood/
sequencing

TT genotype of rs763361/Gly307Ser was associated with NMO
susceptibility.

(58)

CD58:
rs17426456
rs2300747
rs1335532
rs12044852
rs1016140
rs12025416

98 NMO patients
(AQP4-Ab+) and 238
healthy controls

Korean Peripheral blood/
TaqMan assay

- 4 SNPs (rs2300747, rs1335532, rs12044852, and rs1016140) and 2
haplotypes in the CD58 gene were significantly associated with NMO.
- rs1016140 led to T-cell hyperactivity that caused AQP4-Ab access to
CNS.

(59)

9 SNPs in
CD58:
rs1335532
rs10802189
rs56302466
rs472291
rs3789716
rs1335531
rs1335532
rs2300747
rs1016140

230 NMOSD patients
and 487 healthy
controls

Han Chinese Peripheral blood/
SNPscan Kit and
PCR-LDR

- rs2300747, rs1335532, rs56302466, rs1016140, and rs12044852 were
associated with NMOSD.
- TAGCCCAA haplotype increased and TATTACGG haplotype reduced
NMOSD risk.

(60)

21 SNPs in CD6,
TNFRSF1A and
IRF8

99 NMO patients and
237 healthy controls

Korean Peripheral blood/
TaqMan assay

rs12288280 in CD6 gene and rs767455, rs4149577, rs1800693, and ht2,
ht3 haplotypes in TNFRSF1A were significantly associated with NMO.

(61)

6 SNPs in FCRL3 150 NMO patients and
300 healthy controls

Chinese Peripheral blood/
MALDI-TOF-MS

G allele of -1901A>G and T allele of -658C>T polymorphism were
significantly more frequent in patients

(62)

7 SNPs in FCRL3:
rs7528684
rs11264799
rs945635
rs3761959
rs2210913
rs2282284
rs2282283

132 NMO patients and
264 healthy controls

Chinese Peripheral blood/
TaqMan assay and
sequencing

Both allelic and homozygote model of s7528684, rs945635, rs3761959,
and rs2282284 were significantly associated with NMO susceptibility.

(63)

9 SNPs in GPC5 99 NMO patients and
237 healthy controls

Korean Peripheral blood/
TaqMan assay

rs1411751, rs9523762 and BL1_ht3 haplotype of GPC5 were significantly
associated with NMO.

(64)

MIF−173
rs755622

70 NMO patients and
60 healthy controls

Caucasian Peripheral blood/
PCR-RFLP

CC/GC genotypes in polymorphism were correlated with higher EDSS.
These genotypes were more frequent in patients with both optic neuritis
and myelitis.
MIF-173 in more associated with severity rather than susceptibility.

(65)

5 SNPs in ATG5:
rs2245214
rs548234
rs573775
rs6568431
rs6937876

109 NMO patients and
288 healthy controls

Southern Han
Chinese

Peripheral blood/
MALDI-TOF-MS

CC genotype of rs548234 associated with NMO susceptibility while T allele
of rs548234 and A allele of rs6937876 played a protective role in AQP4-
Ab+ patients.

(66)

PD-1.3 and
PTPN22 (1858
C/T)

41 NMO patients and
200 healthy controls

Danish
Caucasian

Peripheral blood/
sequencing and
PCR-RFLP

-PD-1.3 A allele was associated with NMO.
-There was no association between PTPN22 polymorphism and NMO.

(37)
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localization of AQP4 protein at the astrocytic membrane
following co-culture with TY09, in contact with these cells (132).

Sera samples of these patients or even NMO-IgG have also
been shown to rapidly downregulate AQP4 levels on the surface
of astrocytes. Astrocytes treated with NMO-IgG, IL-6/R, and
NMO-IgG + IL-6/R have shown over-production of IL-6
transcripts. Moreover, NMO-IgG could elicit alterations in
gene transcription via the JAK/STAT3 pathway. Cumulatively,
NMO-IgG has been reported to induce the JAK1/2/STAT3
pathway in astrocytes, representing a crucial event in the
pathoetiology of NMO. Besides, suppression of JAK1/2
signaling might be a therapeutic modality for NMOSD (133).

Another in vitro study has shown similar magnitude of
lymphoproliferation and cytokine profiles in peripheral blood
mononuclear cells of NMO cases and healthy controls in reponse
to Staphylococcus aureus and Candida albicans. However, NMO-
originated Escherichia coli-induced cell cultures have exhibited
higher proliferation of CD4+ T cells in association with higher
production of IL-1b, IL-6, and IL-17. IL-10 release has been
lower in NMO-derived cells compared with controls. Notably,
the in vitro E. coli-stimulated expressions of IL-6 and IL-17 have
been correlated with neurological debilities. Overproduction of
Th17-associated cytokines has been associated with the
production of IL-23 and IL-6 by LPS-stimulated monocytes.
Consistently, LPS levels have been higher in the plasma samples
of NMO cases. Therefore, increase in Th17 type response to
E. colimight contribute in the pathogenesis of NMO (134). Table 5
shows the results of in vitro mechanistical studies in NMO.
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION

NMO comprises a group of immune-meditaed conditions with
complex etiology. While family studies have shown clustering
of NMO cases in some familites, the exact genetic background of
this disorder has not been clarified yet. Since the first report of
familial NMO cases in 1936 (14), several studies have attempted
to find susceptibility loci for NMO. The first attempts have been
focused on the HLA region, based on the importance of this
region in the regulation of immune responses and their
association with MS, a disorder that clinically resembles NMO.
However, various studies have shown that HLA-related
susceptibility loci for NMO is distinct from MS. The HLA-
DRB1*03 allele has been the mostly appreciated risk locus for
NMO. Several other HLA-DRB1, DQB1, and DPB1 alleles have
been found to be associated with NMO. Yet, the results of these
studies have not been validated in independent cohorts from
different ethnic backgrounds.

Exome sequencing and genome-wide SNP arrays have also
validated the significance of the HLA region in conferring risk of
NMO. In addition, they have shown other risk loci within AQP4,
CYP27B1, CYP7A1, CD226, CD58, CD6, FCRL3, GPC5, MIF,
ATG5, PD-1.3, IL2RA, IL7RA, and IL17A. With the exception of
AQP4 and CD58, almost other genes have been assessed in single
studies, needing confirmation in independent cohorts. Moreover,
a number of variants, particularly within SLC28A3 and SLC29A1,
have been associated with clinical course or some immune
markers in patients with NMO.
TABLE 3 | Continued

Genes Number and type of
samples

Population Source of samples/
assay method

Associations Ref

IL2RA:
rs2104286
rs12722489
rs7090512

75 NMO/NMOSD and
238 healthy controls

Japanese Peripheral blood/
TaqMan assay

There was no significant association between IL2RA polymorphisms and
NMO.

(67)

IL2RA:
rs2104286
rs12722489
IL7RA: rs6897932

67 NMO patients and
133 healthy controls

Southern Han
Chinese

Peripheral blood/
sequencing-based
typing

G allele frequency of rs2104286 in IL2RA gene was significantly higher in
NMO patients.

(68)

IL-7:
rs1520333
rs1545298
rs4739140
rs6993386
rs7816065
rs2887502
IL-7RA:
rs6897932

167 NMO patients (57
AQP4_Ab+) and 479
healthy controls

Southeastern
Han Chinese

Peripheral blood/
MassARRAY system
and Sanger
sequencing

rs6897932 in IL-7RA was significantly associated with NMO especially in
AQP4-Ab+ patients.

(69)

13 SNPs in IL7RA 98 NMO patients and
238 healthy controls

Korean Peripheral blood/
TaqMan assay

There was no significant association with NMO. (70)

IL-17A:
rs2275913
IL-17F:
rs763780

52 AQP4-Ab+ NMO
patients and 131
healthy controls

Southern Han
Chinese

Peripheral blood/
sequencing

T allele of rs763780 was significantly more frequent in NMO patients
compared to controls.

(71)

4 SNPs in IRF5 111 NMO patients and
300 healthy controls

Southeastern
Han Chinese

Peripheral blood/
MALDI-TOF-MS

There was no association between IRF5 polymorphisms and NMO. (72)

CH25H 14 NMO patients and
882 healthy controls

European
and Asian

Peripheral blood/
exome sequencing

c.51G>C, p.Q17H variant was identified in 2 Asian female patients. (73)
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TABLE 4 | Expression studies in neuromyelitis optica (NPSLE, neuropsychiatric systemic lupus erythematosus; ONND, other non-inflammatory neurological disorders;
OND, other neurological disorders).

Genes Number and type of
samples

Population Source of samples/
assay method

Associations Ref

lncRNA and
mRNA profiles

16 NMO patients and
16 healthy controls

Chinese Peripheral blood/
microarray and qRT-
PCR

Results represented differential expression of 1310 lncRNAs and 743 mRNAs
in NMO compared to the healthy group, which is related to IL23-mediated
signaling events, IFN-g signaling, NF-kB signaling pathway, chemokine
receptors, GPCR ligand binding, and metabolic disorders of biological
oxidation enzyme pathways.

(74)

526 immune-
related genes

65 NMO patients and
37 healthy controls

Israelis Peripheral blood/
Nano String n
Counter technology,
RT-PCR, ELISA and
Flow cytometry

Two main clusters were differentially expressed in NMO, namely, T-cell
associated genes and NF-KB signaling genes. IL-7Ra was the most
differentiated gene in the T-cell cluster that downregulated in patients.
Furthermore, sIL7Ra and mIL7Ra isoforms were also lower in NMO especially
AQP4+ samples.

(75)

mRNAs profile 1 NMO patient,1
Parkinson patient and 1
ALS patient

__ Post mortem Brain
tissues/microarray,
Real-time PCR,
northern blot and
Western blot

200 genes were significantly upregulated in NMO brain tissue which mostly
related to immune regulation involved NF-kB and Blimp-1.

(76)

microRNAs
profile

9 rituximab-responsive
NMO patients,16
nontreated AQP4+
NMO patients and 15
healthy controls

Israelis Peripheral blood/
RNA-seq and real-
time PCR

miRNA expression signatures were different in patients compared to healthy
controls, also between rituximab responders and non-responders (e.g., miR-
125). Rituximab changed the expression patterns similar to healthy controls
(miR-7 and miR-124).

(77)

QKI-V5
QKI-V6
QKI-V7

23 NMO patients and 8
healthy controls

Israelis Peripheral blood/
qPCR and Western
Blot

QKI-V5 was significantly downregulated in patients. (80)

MOG and AQP4
antibodies

215 NMOSD patients
(adult and pediatric
patients)

Japanese
and
Brazilian

Serum/cell-based
assay (CBA)

64.7% of patients were AQP4-ab positive and 7.4% were MOG-ab positive.
No one had both antibodies. MOG-ab+ patients had better prognosis.

(81)

AQP4-Ab25(OH)
D3

29 NMOSD patients Iranian Serum/
chemiluminescence
immunoassay
(LIAISON®) and
immunofluorescence

25(OH) D3 serum levels were significantly lower in AQP4-Ab+ patients than
patients with negative AQP4-Ab.

(82)

25(OH)D3 51 AQP4-ab positive
NMOSD patients and
204 healthy controls

Korean Peripheral blood/LC-
MS/MS

25(OH)D3 levels were significantly lower in NMOSD patients compared to
controls and its levels negatively correlated with EDSS scores.

(83)

25(OH) D3 19 NMO patients and
33 healthy controls

Indonesian Serum/
chemiluminescence
immunoassay

There were no significant differences in 25(OH) D3 serum levels between
NMO patients and healthy controls, and its levels were lower in patients who
received corticosteroid treatments.

(84)

25(OH) D3 76 NMO/NMOSD
patients and 54
patients with
demyelination events

Thais Peripheral blood/
Elecsys®

There was no significant difference in 25(OH) D3 levels among patients with
demyelinating disease

(85)

ANA
Anti-dsDNA,
anti-
nucleosome,
AQP4 and MOG
antibodies
Cytokines and
chemokines

6 NMO patients with
SLE diagnosis history
(during relapse and
remission) and 11
healthy controls

Hungarian Serum/flowcytometry,
ELISA and MSD
Human V-Plex kit

AQP4-IgG1 was presented years before NMO diagnosis in SLE patients and
correlated with the concentration of IFN-g, CXCL10/IP-10, and CCL17/TARC.
AQP4-IgG1, ANA, anti-dsDNA, and anti-nucleosome antibodies were
increased during relapse. Autoantibody responses in NMO/SLE followed by
Th1 responses.

(86)

27 cytokines/
chemokines/
growth factors

22 AQP4+ NMO
patients and 32 NPSLE
patients as a control
group

Japanese CSF/multiplex
cytokine bead- based
assay

IL-17, IL-2, FGF-basic, IL-5, IL-15, IL-9, IFN-gamma, IL-12, IL-10, IL-7, IL-13,
TNF-a, and EOTAXIN levels were significantly lower in NMO compared to
NPSLE.

(87)

27 cytokines/
chemokines and
growth factors

20 NMO/NMOSD
patients and 18 OND
patients as a control
group

Japanese CSF/Multiplexed
fluorescent bead-
based immunoassay

Upregulation in a group of Th17- and Th1-related proinflammatory cytokines/
chemokines was represented in NMO. IL-6 and CXCL8 levels were
significantly correlated with CSF protein concentration, cell count, neutrophil
count, and EDSS.

(88)

27 cytokines/
chemokines
Th17 cell-

31 NMO patients and
18 ONND patients as a
control group

Japanese CSF and serum/ The CSF levels of IL-1 receptor antagonist, IL-6, IL-8, IL-13, IL-10, g-csf, and
IP-10 were significantly higher in NMO, while only IL-6 level in serum has
upregulation. CSF IL-6 level correlated with CSF cells and glial fibrillary acidic
protein.

(79)
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TABLE 4 | Continued

Genes Number and type of
samples

Population Source of samples/
assay method

Associations Ref

associated
cytokines
Th1, Th2, and
Th17 cytokines

34 NMO patients (20
with IFN treatment) and
30 healthy controls

Taiwanese Serum/cytometric
bead array (CBA)

IL-2, IL-4, IL-6, IL-10, TNF-a, and IFN-g levels were significantly higher in
patients. Patients who received IFN-g treatment had higher EDSS and IL-17
and lower IL-2 level.

(89)

Soluble CD27 31 NMO patients and
22 controls with
noninflammatory
neurological diseases

Chinese CSF/ELISA CD27 concentration was higher in NMO patients, especially in AQP4-IgG
positive cases compared to the control group. Its higher level correlated with
CSF total protein and worse disease disability.

(90)

Soluble
Syndecan-1
(sSDC-1)

23 NMO patients and
16 healthy controls

Chinese CSF and serum/
ELISA

sSDC-1 concentration was higher in NMO patients. It had a positive
correlation with disease severity and CSF levels of IL-6, IL-8, and IL-17.

(91)

B-cell subsets
and T-cell
subsets

22 AQP4+ NMOSD
patients and 13 healthy
controls

South
Korean

PBMC/flow cytometry Breg cells as IL-10-producing B (B10) cells were elevated in patients and
correlated with AQP4-Ab.in addition, IL-17+Treg cells were higher in
remission phase of disease.

(92)

IL-4 45 NMO patients and
45 healthy controls

Iranian Serum/ELISA IL-4 serum levels were increased in patients compared to healthy controls.
Furthermore, gender (female) and AQP4-Ab were associated with IL-4 levels.

(93)

IL-4
IFN-gamma

28 NMO patients and
28 healthy controls

Afro-
Brazilians

Plasma/ELISA IL-4 higher levels in NMO represented of its crucial role in Th2 regulatory cell
activation.

(94)

IL-2
IL-4
IL-6
IL-10
TNF-a
IFN-c

17 NMO patients at
relapse time and 21
OND patients

Japanese CSF/FACS Significantly higher levels of IL-6 identified in NMO patients. (95)

IL-6 23 NMO patients and
19 healthy controls

Turkish Serum and CSF/
ELISA

Higher level of IL-6 was identified in sera and SCF samples of patients,
particularly in seropositive AQP4-ab than negative type. CSF IL-6 level also
correlated with disease severity and AQP4-ab levels.

(96)

IL-6 95 NMO patients (59
acute and 36 chronic
phase) and 333 OND

Japanese SCF/CLEIA NMO patients had higher IL-6 levels of CSF. IL-6 represented high sensitivity
and specificity for NMO diagnosis. Its concentration correlated with spinal
cord lesion length and AQP4-Ab.

(97)

IL-6
sIL-6R

22 NMO patients and
14 healthy controls

Chinese CSF/ELISA IL-6 and sIL-6R levels were significantly higher in NMO. sIL-6R level also
correlated with EDSS.

(98)

IL-6
GFAP

13 NMO patients and
20 ONND and 24
idiopathic CNS
inflammatory patients
as a control group

Japanese CSF/CLEIA CSF concentration of IL-6 and GFAP was significantly higher during initial
NMOSD attacks. They could diagnosis early stage of NMO with high
sensitivity.

(99)

IL-6
IL-1B

9 definite NMO patients
and 8 limited forms of
NMO with myelitis

Japanese SCF/ELISA Higher levels of IL-6 and IL-1B were shown in definite NMO patients
compared to limited form.

(100)

IL-6
IL-5
IL-12
MOG-Ab
eosinophil
cationic protein
(ECP)

8 NMO and 16 healthy
controls

Argentines SCF/ELISA and
radioimmunoassay

Higher levels of IL-5, IL-6, MOG-ab, and eosinophil-related factors were
identified in NMO patients.

(101)

IL-6
IL-17A
Inulin sensitivity

56 NMOSD patients
and 100 healthy
controls

Iranian Serum/ELISA IL-6 and IL-17A serum levels were higher in patients. There was significant
association between lower insulin sensitivity and higher level of IL-6.

(102)

HMGB1
TNF-a
IFN-g
IL-17

29 NMO patients and
20 MS patients

Taiwanese Plasma/ELISA All parameters were significantly higher in NMO patients. HMGB1 level
correlated with TNF-a, IFN-g, and IL-17 levels. HMGB1 could diagnose and
differentiate NMO with high sensitivity and specificity.

(103)

IL-6
IL-17
HMGB1

22 NMO patients and
14 healthy controls

Chinese SCF/ELISA HMGB1 was higher in CSF of NMO patients and correlated with IL-6 and IL-
17 levels.

(104)

IL-6
HMGB1
GFAP

42 NMOSD patients
and 30 ONND patients

Japanese CSF and serum/
ELISA and CLEIA

HMGB1 CSF levels were significantly elevated in NMOSD. its concentration
correlated with other CSF parameters such as:IL-6 level, cell counts, protein
levels, glial fibrillary acidic protein levels, and CSF/serum albumin ratio.

(105)
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TABLE 4 | Continued

Genes Number and type of
samples

Population Source of samples/
assay method

Associations Ref

IL-6
IL-17A

31 NMO patients and
39 healthy controls

Iranian Serum/ELISA IL-6 serum level was lower than controls whereas IL-17 level was higher in
NMO patients.

(106)

IL-6
IL-10
IL-17
IL-21

20 NMO patients and
20 healthy controls

Brazilian PBMC/flow cytometry
and ELISA

IL‐6, IL‐17, and IL‐21 were highly secreted from CD4+ T cells in patients.
Disability scale in patients correlated with IL-6 and IL-21 levels. Furthermore,
anti‐IL‐6R had potential to decreased Th17 cytokines.

(107)

IL-32a
IL-6
IL-17A

26 NMO patients and
22 healthy controls

Chinese Serum/ELISA IL-32a serum level was higher in patients and correlated with EDSS, IL-6, and
IL-17A levels.

(108)

IL-21, IL-6, IL-
17, IL-10
TNF-a
AQP4-antibody
follicular helper T
(Tfh) cells

35 NMO patients and
20 healthy controls

PBMC/flow cytometry
and ELISA

IL-21, IL-6, and IL-17 concentrations were significantly higher in NMO while
IL-10 was lower in patients. Tfh cells were higher in relapsing course and
correlated with disease activity. Tfh cells were decreased under
Methylprednisolone treatment.

(109)

Th17
CD8(+) T cells
IL-17, IL-6, IL-
21, IL-23 and
TGF-b

14 NMO patients and
16 healthy controls

Peripheral blood/Flow
cytometry and ELISA

Th17 cells and IL-17-secreting CD8(+) T cells were significantly higher in NM.
Serum IL-17, IL-21 and IL-23 were significantly higher in NMO samples.

(110)

peripheral
memory Th17
IL-17A
IL-23

16 NMO patients and
16 healthy controls

Chinese Peripheral blood/flow
cytometry and ELISA

All the parameters were significantly higher in NMO and correlated with
disease duration and relapse. Furthermore, intravenous methylprednisolone
therapy could decrease IL-23 levels in patients.

(111)

IL-21 21 NMO patients and
16 healthy controls

Chinese CSF/ELISA CSF IL-21 level was significantly higher in NMO and correlated with humoral
immune activity.

(112)

Th22
Th17
CD4+IL-22+IL-
17A+T cells
IL-22, IL-6, IL-
21, IL-27 and
IFN-g

21 NMO patients and
12 healthy controls

Chinese Peripheral blood/flow
cytometry and ELISA

Proportions of Th22 and Th17 were significantly higher in patients.IL-21, IL-
22, and FN-g concentration were increased in NMO.

(113)

IL-4, IL-10, IL,9,
IL-12, IFN-g, IL-
17, IL-23, and
TGF-b

18 relapsing NMO (11
AQP4+ and 7 AQP4-)
and 30 healthy controls

Turkish Serum/ELISA Th1-/Th17 responses were deregulated in patients. Serum IL-9 levels were
higher in AQP4+ patients compared to negative serotype.

(114)

IL-37 31 NMO patients and
49 healthy controls

Iranian Plasma/ELISA IL-37 levels were significantly increased in patients and correlated with EDSS
and disease duration.

(115)

IL-1b
TNF-a
NF-kB
Bcl-2
PI3K/Akt
MAP3K7 in
CD4+ T cells

30 NMO patients and
25 healthy controls

Chinese Peripheral blood/
cytokine multiplex
assay

NF-kB. Bcl-2 and MAP3K7 gene expression was upregulated in NMO. IL-1b
and TNF-a levels were elevated and led to MAP3K7 induction, which
promoted NF-kB expression related to survival of CD4+ T cells.

(116)

IL-1b
TNF-a in CD14+
and CD16++
subset cells

15 NMO patients and 9
OND and 15 healthy
individuals as controls

Chinese Peripheral blood,
CSF/Flow cytometry,
qRT-PCR, ELISA

Specific subsets were increased in NMO patients along with total monocytes
and they could be decreased via glucocorticoids therapy. In addition, IL-1b
and TNF-a expression levels were significantly upregulated in NMO.

(117)

IL-1b
TNF-a
ENA 78

25 NMO patients and
20 healthy controls

Chinese Plasma/MILLIPLEX®

map
IL-1b, TNF-a, and ENA 78 plasma levels were significantly increased in NMO.
There was significant correlation between ENA 78 expression and EDSS in
patients.

(118)

IL-21 and
AQP4-Ab in
memory T
follicular helper
(Tfh) cells

25 NMO/NMOSD
patients (before and
after treatment) and 17
healthy controls

Chinese Peripheral blood and
CSF/flow cytometry
and ELISA

Tfh cell percentage and IL-21 were significantly increased in patients. Some
subsets were correlated with AQP4-ab and WBC count in CSF.
Corticosteroid therapy suppressed subtypes and IL-21 levels.

(119)

Cytokine and
chemokine
induced by
specific AQP4

14 NMO patients and 7
controls

Israelis PBMC/cytometric
bead array and flow
cytometry

4 epitopes of AQP4 were showed in NMO and their specificity changed
during disease course cell responses to these epitopes represented more IL-
17 and IL-10 secretions.

(120)

(Continued)
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Deletion-type CNVs can also been regarded as predisposing
factors for NMO. Notably, these CNVs have been found to occur
as somatic changes.

In addition to several cytokines that are altered in the course
of NMO development, expressions of numerous mRNAs,
lncRNAs, and miRNAs have been found to be deregulated in
the peripheral blood or brain lesions of NMO patients. Not
surprisingly, these genes are mostly enriched in pathways related
to functions of the immune system.

Finally, in vitro studies have shown the effects of NMO sera
on deregulation of function of astrocytes, suggesting the impact
Frontiers in Immunology | www.frontiersin.org 12
of humoral responses on pathoetiology of this condition.
Moreover, these circulatory markers could negatively affect
permeability of the blood–brain barrier.

Taken together, NMO has a complex genetic background
with prominent roles of immune-related genes, particularly
cytokine coding genes and those coding cytokine receptors.
Future genome-wide studies in NMO patients from different
ethnic background would facilitate identification of risk loci for
this condition. Finally, systematic review and meta-analysis
studies are recommended to produce quantitative results
without any bias along with an overview of genetic aspects of
TABLE 4 | Continued

Genes Number and type of
samples

Population Source of samples/
assay method

Associations Ref

peptides/
epitopes
BAFF-R
CXCR5
VLA-4
B cell produce
IL-10, IFN-g
circulating
memory and
regulatory cells

51 NMO patients and
37 healthy controls

Chinese CSF/flow cytometry
and ELISA

Proportions of CD19(+) CD24(high)CD38(high) regulatory B cell and
producing IL-10 were significantly decreased in NMO, while BAFF and
CXCL13 levels were higher in them. Furthermore, these proportions were
lower in AQP-4 positive samples.

(121)

MMP9
TIMP1
TNF-a
IFN-g
IL-10
oxidative stress
markers

11relapsing NMO
patients and 11 healthy
controls

Cuban Serum/ELISA and
spectrophotometric
methods

Downregulation of IL-10 and TNF-a and upregulation of oxidative stress
markers were shown in the study.

(122)

MMP9
TIMP1
IL-17
IL-8
IP-10
MCP-1

13 NMO patients and
14 healthy controls

Japanese Serum and CSF/
ELISA

Serum MMP9 level was significantly higher in NMO and its concentration
correlated with CSF IL-8, CSF/serum albumin ratio and EDSS. MMP9 played
a crucial role in BBB disruption.

(123)

9 MMPs
4 TIMPs
14 cytokines

29 NMO patients and
27 OND patients

Japanese Serum, CSF and
post-mortem brain
tissue/multiplex assay
and
immunohistochemistry

MMP-2, TIMP-1, IL-6 levels, and MMP-2/TIMP-2 ratio in CSF were
significantly increased in NMO.MMP-2 concentrations correlated with IL-6
levels and BBB permeability.

(124)

MMP2
MMP9

14 seropositive AQP4
NMOSD patients and
10 healthy controls

Serum/ELISA There were no significant differences in MMP2 and MMP9 levels in NMOSD
compared to controls.

(125)

AQP4-Ab
TNF-a
GFAP
CXCL12

40 NMOSD patients
(20 good and 20 poor
recovery)

Chinese CSF and serum/
immunofluorescence
and ELISA

Patients with poor recovery had higher AQP4-Ab serum level. Furthermore,
AQP4-Ab in good recovery patients was even lower than poor group after
treatment. CXCL12 level was significantly lower in poor recovery group and
negatively correlated with AQP4-Ab level. It was also related to TNFa and
GFAP CSF levels.

(126)

Anti-AQP4
Anti-AQP1
Anti-MOG

18 NMOSD and 8
healthy controls

Spanish Serum/
Immunofluorescence
Assay and ELISA

According to the results, only anti-AQP4 antibodies could act as a biomarker
in NMOSD diagnosis, and its level was not correlated with disease
progression.

(127)

Anti-AQP4 16 NMO patients and
30 healthy controls

Italian Serum/Western blot Western blot assay could distinguish immunoreactivity of AQP4 isoforms. (128)

OX40 (CD134) 20 NMO patients and
20 healthy controls

Iranian Peripheral blood/RT-
PCR and ELISA

OX40 expression level was downregulated in patients compared to controls,
while there were no significant differences in serum levels.

(129)

G6PD 50 NMO patients and
65 healthy controls

Iranian Serum/ELISA G6PD serum level was significantly lower in NMO patients compared to
controls.

(130)

AQP4 isoforms 1 NMO patient and 12
not neurologic patients
as control group

__ Post mortem CNS
tissue/sequencing
and Real time-PCR

AQP4 isoforms expression pattern correlated with NMO disease localization
and the highest mRNA M1:M23 ratio was identified in optic nerve and spinal
cord.

(131)
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disease. Also, further studies should assess treatment responses
in association with distinct genetic backgrounds. Finally, a
limitation of studies conducted in this filed is that the
expression profiles of genes and cytokines have not been
assessed in association with different treatment options.
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