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The mechanisms underlying the immune remodeling and severity response in coronavirus
disease 2019 (COVID-19) are yet to be fully elucidated. Our comprehensive integrative
analyses of single-cell RNA sequencing (scRNAseq) data from four published studies, in
patients with mild/moderate and severe infections, indicate a robust expansion and
mobilization of the innate immune response and highlight mechanisms by which low-
density neutrophils and megakaryocytes play a crucial role in the cross talk between
lymphoid and myeloid lineages. We also document a marked reduction of several
lymphoid cell types, particularly natural killer cells, mucosal-associated invariant T
(MAIT) cells, and gamma-delta T (gdT) cells, and a robust expansion and extensive
heterogeneity within plasmablasts, especially in severe COVID-19 patients. We confirm
the changes in cellular abundances for certain immune cell types within a new patient
cohort. While the cellular heterogeneity in COVID-19 extends across cells in both lineages,
we consistently observe certain subsets respond more potently to interferon type I (IFN-I)
and display increased cellular abundances across the spectrum of severity, as compared
with healthy subjects. However, we identify these expanded subsets to have a more
muted response to IFN-I within severe disease compared to non-severe disease. Our
analyses further highlight an increased aggregation potential of the myeloid subsets,
particularly monocytes, in COVID-19. Finally, we provide detailed mechanistic insights into
the interaction between lymphoid and myeloid lineages, which contributes to the
multisystemic phenotype of COVID-19, distinguishing severe from non-severe responses.
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1 INTRODUCTION

On track to becoming endemic, the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) virus has triggered the
global pandemic of coronavirus disease 2019 (COVID-19), a
complex infection with multisystemic effects (1). Most
respiratory viruses such as the other beta-coronaviruses,
respiratory syncytial virus (RSV), influenza, and rhinovirus,
trigger a potent innate and adaptive immune response leading
to a rapid resolution of infection and generation of circulating
memory cells, which can combat a reinfection (2–4). Current
research however has indicated a more heterogeneous response
to SARS-CoV-2 in humans, with symptoms ranging from mild
to severe, resulting in hospitalization and mortality (4–7) in
some. Severe COVID-19 involves an extensive cross talk between
the activated immune system and other physiological
mechanisms, in many cases leading to multisystem
comorbidities including acute respiratory distress, septic shock,
seizure, renal failure, heart attack, and thromboembolism (8).
Recent research has extensively utilized high-throughput
techniques such as single-cell RNA sequencing (scRNAseq)
and high-throughput flow cytometry techniques to catalogue
the immune cell-state changes contributing to SARS-CoV-2
response [e.g., (5, 7, 9–11)]. Broadly, these studies have
identified a dramatic remodeling of the major immune players.
Specifically, monocytes and neutrophils (and their several novel
subtypes) have been described to undergo expansion correlating
with disease severity in COVID-19 subjects. COVID-19 research
has also focused largely on deciphering the role of adaptive
immunity, particularly CD4T, CD8T, and B cells (naïve and
mature) in severe, non-severe, and convalescent/recovered
COVID-19 [e.g., (10, 12–19)]. These studies and many others
have identified impaired activation and reduced cytotoxicity
arising from the adaptive arm including B and CD8T cells
within severe disease. A higher percentage of activated and
proliferative CD8T population has been documented within
less severe infections (19). Despite reduced CD4T frequencies,
these studies have suggested normal activity for CD4T within
COVID-19 (12). T cells from COVID-19 patients have shown
significantly higher levels of exhaustion with increasing severity
(14). Research has shown that though the plasma B and
proliferative T-cell repertories correlate with severity,
compositional differences of their precursors are influenced
heavily by age and sex (16) and exhibit reasonably robust long-
term memory against SARS-CoV-2 (18).

Several of these studies, however, have been limited by cohort
sizes, leading to interpretations that while contextually correct
may be non-comprehensive. More importantly, these studies do
not provide an integrative mechanistic understanding of the
remodeling of the immune system and the concomitant
alterations in immune response. To overcome this limitation,
we analyzed scRNAseq data from four published studies from
peripheral blood mononuclear cells (PBMCs) of COVID-19
patients: Lee et al. (4), Wilk et al. (10), Schulte-Schrepping
et al. (5), and Arunachalam et al. (20). These data together
comprise a substantial cohort size (111 patients across ~350K
cells) across 20 immune cell compartments of both lymphoid
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and myeloid lineage. Despite the larger cohort size, a simple
linear analysis such as principal component analysis (PCA) on
donors shows a heterogeneity among patient responses with no
clean separation between non-severe and severe patients (results
not shown). Such lower dimensional analyses demonstrate the
need for more complex dimensionality reduction methods for
delineating the differences between healthy, non-severe, and
severe subjects, as demonstrated by our work. Our integrated
analyses not only enhances the statistical power to enable
functional and mechanistic insights into COVID-19, but allows
for detection of low-frequency or transient cell types that may
otherwise be poorly or superficially characterized in smaller
cohorts. In contrast to two recently published integrated
studies (16, 21), we focus largely on these less characterized
immune cell subsets, which have either low frequencies or are
not well explored within COVID-19 literature. Additionally, we
identify a set of consensus gene signatures across severe and non-
severe disease enabling the characterization of transcriptional
signatures across all immune cell compartments. Taken together,
our analyses allow us to put forth a mechanistic framework
underlying the interconnected host immune responses, driving
and distinguishing severe from non-severe immune responses
within COVID-19.
2 RESULTS

2.1 Integrating Single-Cell RNA
Sequencing Data From COVID-19 Patients
Datasets for each of the published studies referenced above
henceforth referred to as Lee (4), Wilk (10), SS_C1, SS_C2 [two
cohorts from SS, (5)] and PA (20) were downloaded from Gene
Expression Omnibus (GEO) or the sources as indicated in the
original publications (see Materials and Methods). All donor
relevant metadata information (from each study) used within
our integrated dataset are provided in Supplementary Tables
S1–S3. The original datasets were processed and integrated using
Seurat v3.2 as outlined in the Materials and Methods, resulting in
an integrated dataset of 375,438 single-cell transcriptomes from
111 donors (Figure 1A and Supplementary Figures S1A, B). The
resulting parent Seurat object was scaled and clustered into 70
distinct clusters and visualized using UMAP embedding
(Figure 1B). Grouping the 70 clusters based on their cellular
identities revealed 20 distinct immune cell types (Figure 1C and
Supplementary Figure S1C, see Materials and Methods).
Monocytes were the largest major cell type identified,
particularly CD14+ monocytes at ~31% (103,659 cells), with low-
density basophils being the smallest population of recognizable
cells. A visual inspection of the cellular frequencies across severities
revealed some notable differences between the 20 compartments
(Figure 1D and Supplementary Figure S1D). To discern the
trends in cell-type changes and between cell-type interactions, we
grouped the mononuclear cell types by origin into myeloid and
lymphoid cell types (Figure 1E, see Section 4.6). Assuming that the
cellular abundances correlated with levels of circulating cells, we
observed significant gains (p < 0.05) in abundances within
October 2021 | Volume 12 | Article 738073
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COVID-19 (compared with healthy) for monocytes and several
low-frequency cell types including, low-density neutrophils
(LDNs), megakaryocytes (MKs), and plasmablasts (PBs),
consistent with extant research (5, 6, 21). A progressive loss of
several other cell types including dendritic cells (DCs), gdT cells,
natural killer (NK) cells, and mucosal-associated invariant T
(MAIT) was also observed (Figure 1E and Supplementary
Figure S1D).

2.2 Common Transcriptional Signatures
Between Myeloid and Lymphoid Cell
Types in COVID-19
We sought to first understand if a common program of
transcriptional dysregulation exists across the myeloid and
lymphoid milieu and if it differs across severities. Towards this,
Frontiers in Immunology | www.frontiersin.org 3
we extracted differentially expressed genes (DEGs) by comparing
cells from severe and non-severe with healthy cells,
independently, for each of the 20 immune cell compartments
(seeMaterials and Methods). A consensus gene set was defined as
DEGs that were present in at least 50% of all cell types contained
within each lineage for severe and non-severe disease
(Supplementary Figure S2A, Supplementary Tables S5 and
S6). An inspection of the consensus gene signatures across
lineages and severities highlighted the following four broad
features (Figure 1F). First, significant dysregulation of genes
associated with interferon type I (IFN-I) response was observed
in both lymphoid and myeloid cells irrespective of COVID-19
severity (Supplementary Figure S2A). An evaluation of the
transcription factor (TF)-target enrichment for the consensus
DEGs consistently revealed significant enrichment of TFs
A B
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FIGURE 1 | Overview of data integration and cellular heterogeneity. (A) UMAP embedding of the integrated dataset highlighting cell distribution from coronavirus
disease 2019 (COVID-19) and healthy subjects. The integration was performed using Seurat 3.2 (see Materials and Methods) and represents the combined data
from four studies including Arunachalam et al. (PA), Lee et al. (Lee), Schulte-Schrepping (two cohorts SS1 and SS2), and Wilk et al. (Wilk). (B) UMAP embedding of
the 70 clusters detected within the integrated dataset. (C) Twenty distinct cellular compartments identified after grouping the 70 clusters based on automatic (SingleR)
and manual annotation. (D) Abundance distribution of the 20 cell types across healthy, severe, and non-severe diseases. CD14+ monocytes showed the most drastic
expansion within severe and non-severe diseases. Loss of cellular abundances associated within COVID-19 samples for mucosal-associated invariant T (MAIT) and
gamma-delta T (gdT) was observed. (E) The downstream analysis of immune cell types was performed in the context of their origin. Red lettering indicates cell types
that expand within COVID-19, green indicate cell types with reducing abundances in COVID-19, and gray indicates cell types unexplored within our current manuscript.
HSC, hematopoietic stem cells; CLP, common lymphoid progenitor cells; LMPP, LYMPHOID-primed multi-potential progenitor cells; CMP, common myeloid progenitor
cells; MEP, megakaryocyte–erythroid progenitor cells; GMP, granulocyte–macrophage progenitor cells. (F) Outline of the major functional features associated with the
consensus gene signatures identified across lineages and severities.
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STAT1, STAT2, and IRF9 associated with IFN-I signaling
(Supplementary Figure S2B). Several RNA-binding proteins
(RBPs) were also enriched within the consensus gene set
(Supplementary Figure S2C, see Materials and Methods).
Particularly ADAR (IFN-I induced) and YWHAZ were
ubiquitously and significantly differentially expressed across
severities. ADAR1 is multifunctional and has been extensively
studied in the context of innate immunity (22), while YWHAZ
expression in SARS-CoV-2 infection has been hypothesized to
contribute to the associated neurological deficits seen in COVID-
19 (23). Second, lymphoid cells showed an upregulation of
cytokines and chemokines/receptors such as CXCR4 and
interleukin (IL)-32, in both severe and non-severe samples.
Notably, IL-16 was particularly suppressed across multiple
lymphoid cell types. Reduced IL-16 levels have been reported
in plasma from convalescent COVID-19 patients (24). Third,
myeloid cells in both severe and non-severe disease showed an
activation of genes influencing myeloid cell differentiation
including HIF1A, TRIB1, HCLS1, and chemokine receptors
such as CCR1. Several other chemokines and cytokines such as
CXCL16, IL1RN, and IL17RA were significantly dysregulated
among classical monocytes (CMs) and myeloid DCs (mDCs) but
not commonly across all cell types (see Materials and Methods).
Fourth, within severe disease alone, myeloid cells showed an
increased activation of genes associated with leukocyte-mediated
immune response and degranulation (25) including annexins
and their receptors (ANXA2 and FPR1) and complement
receptors such as C5AR1. These cells broadly suppressed
expression of genes associated with mitochondrial respiration/
oxidative phosphorylation and antigen processing and
presentation. Alarmins S100A8 and S100A9, broadly
dysregulated across both lineages and severities, showed a
consistent upregulation in myeloid cells. Both lymphoid and
myeloid ce l l s showed s ignificant dysregula t ion of
immunoglobulin genes including IGHA1/IGHM/IGKC/IGLC2/
IGLC3 involved in complement activation, phagocytosis
(recognition and engulfment), and regulation of humoral
immune response. Interestingly, TRAFD1 and ETV7, negative
regulators of IFN-I response, were enriched in severe disease
across both cell lineages (Supplementary Figure S2B).

In the following sections, we assess several immune subtypes
that exhibit significant cell abundance differences between
healthy and COVID-19 subjects, including mDCs, MAITs,
gdT, PBs, and MKs. We also investigate select subsets within
monocytes and NK cells, which contribute to the abovementioned
gene signatures and have been less explored (functionally and
mechanistically) in COVID-19.

2.3 Myeloid Lineage
2.3.1 Monocytes
Monocytes represent a class of hematopoietic-derived innate
immune cells whose function can range from inflammatory to
anti-inflammatory. Traditionally classified into discrete subsets
classical (CD14high), non-classical (CD16high), or intermediate
monocytes (CD14+CD16+), monocytes are increasingly
acknowledged for their cellular, molecular, and functional
Frontiers in Immunology | www.frontiersin.org 4
plasticity (26, 27). Concurrently, current research in COVID-19
has highlighted the overactivation of CD14+ monocytes and the
emergence of novel monocytic subsets including myeloid-derived
suppressor cell (MDSC)-like suppressive monocytes within
COVID-19 patients (5, 12, 21, 28, 29). Acknowledging this
heterogeneity, we sought to functionally characterize the
monocytes focusing on novel subsets and distinguishing them
between severe and non-severe COVID-19 (5).

2.3.1.1 Expansion of Both Immunosuppressive and
Proinflammatory Subsets
We subsampled and reclustered 22 monocyte clusters (CD14+,
CD16+, and ITM) from the parent Seurat object, resulting in a
total of 19 clusters (Figures 2A, B, Supplementary Figure S3).
Using automatic annotation (SingleR), expression of known
monocyte markers, and the cluster markers (Supplementary
Tables S7, S8), we reannotated the subsampled monocyte space,
identifying 11 distinct monocytic subsets including monocytic
MDSCs (mMDSCs; Figure 2C). Details of transcriptional
signatures defining each subset are described in the Materials
and Methods (Section 4.8). Eight of 11 (CM1–CM8) subsets were
identified to be CD14+ (Figure 2D), of which two subsets were
particularly interesting and are discussed below.

Subset CM1 (clusters 2, 6, 10, and 14) was characterized by an
increased expression of SELL, alarmins (S100A8/9), CD11b/
ITGAM, and CD163+. Notably, these clusters do not show a
loss of HLA-DR expression but express at levels lower than mean
(p.adj < 0.05), as compared with other clusters. This observation
is consistent with published research, which has observed a
distinct upward shift in the S100high HLA-DRlow monocytic
population with increasing severity (5, 6, 13). This subset
particularly has been suggested to be influenced by and
contribute to both the inflammatory proteomic and altered
metabolomic plasma profiles seen in severe disease. An
evaluation of the cluster markers within CM1 indicated
increased expression of S100A8/A9/A12, CD163, PLAC8,
ALOX5AP, CLU, SELL, CREG1, and VCAN, as compared
with other clusters (Figure 2E). These markers have been
previously identified to define a unique monocytic subset
(MS1) among bacterial sepsis patients and in COVID-19 and
may arise from hematopoietic progenitors via emergency
myelopoiesis, with a potentially suppressive function in
pathology (28). TF-target enrichment of all cluster markers
within CM1 identified SPI1 (PU.1) as a potent regulator of this
subset. CM7 (cluster 9) expressed markers associated with an
activated inflammatory state, including CD63, SELL/CD62L,
HLA-DR, and ITGAX/CD11c (Figure 2D). Notably, this
subset expressed MYD88, RELA, and EIF2AK2 (Figure 2E).
Signaling through the adaptor protein MYD88 (an essential
transducer for IL-1B and Toll-like receptor pathways) and the
subsequent IFN-I stimulation has been implicated in
conditioning of MDSC differentiation during sepsis (30). The
frequency of subsets CM1, CM3, and CM7 was increased in
severe compared with non-severe COVID-19. Among CM
subsets with increased abundances in non-severe disease, CM4
(clusters 0 and 8) and CM8 (cluster 15) exhibited upregulation of
October 2021 | Volume 12 | Article 738073
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cluster markers associated with IL-1b response including HIF1A,
NLRP3, EGR1, ICAM1, CCL3, RIPK2, and ANXA2 (p.adj < 0.05).
Constitutively expressed HIF1A plays a role in functional re-
programming of monocytes from proinflammatory to an immune
suppressive phenotype, via its regulation of IRAK3 (31).
Frontiers in Immunology | www.frontiersin.org 5
Differential gene expression analysis (DGEA) of CM1 and
expanded subsets in severe disease (CM7, ITMs, and mMDSC)
showed significant enrichment of proinflammatory markers and
response to IFN-Is (p.adj < 0.05). CM1 and ITM showed a
suppression of genes associated with the mitochondrial respirasome
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FIGURE 2 | Classical monocytes and myeloid dendritic cells. (A) UMAP embedding of monocytes; subset from the original Seurat object. The first of the three
embeddings capture the 18 clusters identified; the next captures the grouping of these clusters into distinct subsets, NCM (non-classical monocyte), ITM
(intermediate monocyte), CM1–CM8 (classical monocytes), and mMDSC (myeloid-derived suppressor cells). The final embedding captures the severity of the cells.
(B) Indicates a dotplot of the average expression of the major markers, which are used to classify monocyte subsets into CM, NCM, ITM, and mMDSC. (C) Relative
cell abundances for each of the 10 subsets identified within healthy, severe, and non-severe subsets. (D) Average expression dotplot of major markers identified
within classical monocytes that were used to further characterize the CM subsets. (E) Average expression dotplot highlighting the expression of several known gene
marker involved in various aspects of monocyte functioning. The outermost five concentric rings in the circle plot correspond to the subsets who each have more
cells from severe samples (mMDSC, ITM, CM7, CM3, and CM1), middle two rings (CM4 and CM8) have more cells from non-severe samples, and inner four rings
(NCM, CM5, CM2, and CM6) have more cells from healthy samples. Colored lines indicate the transcription factor (TF) targets expressed within each subset.
(F) Dotplot highlights the differences in average expression of cluster markers involved in interferon signaling and degranulation within CM1 alone, across severities.
(G) DoRothEA TF analysis for cells from CM1 identified differential activity for TFs such as FOSL1, FOSL2, and SMAD3 particularly within severe disease. (H) For the
subsets with increased abundance in COVID-19 including CM1, CM3, CM4, CM7, CM8, and ITM, expression dotplot highlights increased activity for markers
associated with monocytic adhesion migration and signaling. (I) For the same subsets as in panel H, the heatmap highlights fold changes for genes that have been
previously implicated in the formation of monocyte doublets within pathology. (J) Myeloid dendritic cell (mDC) clusters and their count distribution across severity.
(K) mDCs identified in the integrated dataset represent a mix of conventional DCs (cDC2 and CD1C+ DCs) (cluster 35) and pre-DCs (cluster 62). (L) A functional map
that highlights the role of these various subsets. Relevant cluster markers are highlighted for each subset. We identified two distinct phenotypes associated with the
monocytic subsets-immunosuppressive and proinflammatory. The * by CM1, a suppressive subset, indicates the differential interferon type I (IFN-I) responses
between severe and non-severe disease, in particular, a more suppressed IFN response within severe subsets due to likely action of repressive factors including
FOSL1 (seen in G above). While the theme of interferon response is shared by the subsets, the more nuanced analysis informs us that CM1 and mMDSC lead to
immunosuppressive, specifically T cell-suppressive phenotype. CM1 also expressed genes indicative of emergency myelopoiesis in severe coronavirus disease 2019
(COVID-19) infection. Several CM classes share homotypic aggregation and express genes contributing to platelet-monocyte aggregation, thus leading to the
hypercoagulability phenotype in severe infection. IL-1 dynamics within each of these subsets were particularly interesting, with increased expression within non-
severe disease for CM and mDCs indicative of a dysfunctional mDC state within severe COVID-19.
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including complex I (such as NDUFA11, NDUFB1, NDUFB11,
NDUFB7, NDUFC2, and NDUFV2), complex IV (COX4I1,
COX7A2, and COX7C), and mitochondrial metabolism including
TGFB1, GUK1, PGAM1, UQCR11, and UQCRB, suggestive of
considerable metabolic remodeling associated with these subsets in
both severe and non-severe disease (Supplementary Figures
S3C, D).

2.3.1.2 Expanded CM1 Subset Has an Attenuated
Response to Interferon Type I in Severe Disease
Compared With Non-Severe Disease
CM1 represented the largest subset of monocytes within severe
COVID-19 samples, accounting for 46% of all cells from severe
disease (Supplementary Table S8). Given the marked expansion
of CM1 in severe compared with non-severe disease, we sought
to delineate the transcriptional differences by performing DGEA
between severe and non-severe cells in CM1 alone. Interestingly,
CM1 elicited a more potent suppression of genes responding to
IFN-I/II (IFI27, IFIT1, IFIT3, IRF1, ISG15, ISG20, MX1, OAS2,
OAS3, STAT1, CCL4, CCL5, and FCGR1A) but upregulated
gene targets associated with neutrophil degranulation (RNASE2,
ANXA2, CD63, KLF4, KLF2, RETN, C5AR1, SELL, and CLU) in
severe compared with non-severe disease (Figure 2F,
Supplementary Figure S3E) Additionally, several members of
the proteasomal degradation pathway including PSMB8/9/10,
PSME1/2, UBC, RNF213, and UBE2LG were suppressed within
severe disease for this subset. TF-target analysis revealed
increased STAT/IRF activity in non-severe patients and an
increased activity for FOSL1, FOSL2, and SMAD3 in severe
patients (Figure 2G). Increased viremia has been previously
reported in FOSL1 knockout chimeric mouse. In the presence
of increased viremia and IFN-I production, FOSL1 has been
shown to serve as negative feedback inhibiting expression of
IFN-I (32). On the other hand, FOSL2 and SMAD3 have been
previously shown to cooperatively regulate TGFb signaling (33).
TGFb can also suppress IFN-I responses by disrupting
mitochondrial bioenergetics in alveolar macrophages during
respiratory viral infections (34). Taken together, these
evidences emphasize the suppression of IFN-I responses in
CM1 monocytes especially within severe subjects compared
with non-severe subjects.
2.3.1.3 Monocytes Exhibit an Aggregation Phenotype
in COVID-19
We observed significant enrichment of gene programs associated
with homotypic cell adhesion among several subsets of CMs.
CD63 (tetraspanin), which is associated with platelet/neutrophil
degranulation and intracellular protein trafficking within
monocytes, and L-selectin or SELL (CD62L), which is a major
regulator of monocytic adhesion migration and signaling, were
significantly upregulated in COVID-19, irrespective of severity
(Figure 2H). Patients with certain autoimmune conditions (35)
and viral infections (36) are known to exhibit increased
circulating monocyte aggregates (in both the presence and
absence of platelets), which are characterized by an
Frontiers in Immunology | www.frontiersin.org 6
overexpression of SELL and CD63, among other markers. We
identified several of the other previously documented monocyte
aggregate markers within our analysis including VCAN, and
integrins such as ITGA4, ITGAM, and ITGB2 (Figure 2I).
Additionally, the interaction between platelet specific isoforms
of selectin (P-selectin) and CD63 has been recently implicated in
the increased formation of platelet-monocyte aggregates
contributing to the hypercoagulability phenotype seen in severe
COVID-19 (37).

2.3.2 Myeloid Dendritic Cells
Two clusters within the primary Seurat object were identified as
mDCs. Using previously published markers of human DCs (38),
we identified the mDC subset to represent a mix of conventional
DCs (cDC2, CD1C+ DCs) (cluster 35 with transcriptional
activation of ID2, ZEB2, IRF4, KLF4, CD1C, ITGAX, CLEC4A,
CLEC10A, SIRPA, and FCER1A) and pre-DCs (cluster 62, AXL/
CLEC4C(CD303)/SIGLEC1), which are typically poised towards
cDC2 (Figures 2J, K). Relative cDC2 cell abundances reduced
with increasing severity (2,577 cells from healthy subjects, 1,426
cells from non-severe subjects, and 734 from severe subjects),
consistent with recent observations in severe COVID-19 (39)
(Figure 1D). DGEA with respect to healthy subjects indicated a
robust activation of interferon-stimulated gene (ISG) signatures
and response to IFN-I, as observed in monocytes, irrespective of
severity (Supplementary Figure S3F). Notably, we observed a
suppression of key cDC2 mDCmarkers involved in DC signaling
and response within severe disease compared with non-severe
disease (Supplementary Table S9) including CD83 [marker for
activation of mature mDCs (40)], NR4A2 [expressed in
immunogenic DCs and promotes anti-inflammatory cytokines
(41)], and FCER1A [inflammatory mediator likely promotes
immune homeostasis (42)].The mDC also exhibited increased
expression of IL-1B in non-severe compared with severe disease
(p.adj < 0.05, Supplementary Table S9). This suppression
of IL-1B expression in mDCs has been suggested to lead to
increased production by peripheral monocytes (43) (Figure 2E).
IL-1b production in both monocytes and mDCs involves the
canonical NLRP3 inflammasome-induced IL-1b cleavage and
release, dependent on purinergic receptors such as P2RX4 (44).
These subsets exclusively expressed purinergic receptors such
as P2RX4 (p.adj > 0.05). The impaired IL-1b dynamics arising
in severe compared with non-severe disease in addition to the
suppression of key markers involved in DC signaling are indicative
of a dysfunctional role for mDCs within severe patients. An
integrated perspective on the CM and mDC subsets and their
phenotypic contributions is provided in Figure 2L.

2.3.3 Low-Density Neutrophils
LDN is an umbrella term often used to represent a heterogeneous
group of highly adaptable, dynamic neutrophil-like cells
composed of a mixture of immature and low-density mature
neutrophils, progenitor cells, and granulocytic/polymorphonuclear
MDSCs (PMN-MDSC). Given this cellular heterogeneity, their
function is suggested to exist on a spectrum, ranging from
immunosuppressive to proinflammatory (45, 46).
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Subsampling and reclustering “LDNs” from the parent Seurat
object resulted in nine clusters, grouped subsets into three distinct
subsets based on the expression of a combination of established
Frontiers in Immunology | www.frontiersin.org 7
markers, namely, low-density granulocytes (LDGs), PMN-MDSCs,
and progenitor-like (Figures 3A–D). Details of the transcriptional
characterization of these subsets have been provided in Section 4.8).
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FIGURE 3 | Low-density neutrophils. (A) The UMAP embedding of the low-density neutrophils; subset from the original Seurat object after reclustering, highlighting
the nine clusters identified. (B) This UMAP highlights the grouping of these nine clusters into three distinct neutrophil subsets. (C) The dotplot highlights major
neutrophil markers identified in the nine clusters, which form the basis for clustering into three distinct groups, namely, low-density granulocytes (LDGs), progenitor-
like cells, and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). (D) Distribution of the cells from each of the subsets identified. (E) The top 20
cluster markers identified within the three distinct cellular subsets. (F) Violin plots capture the expression levels of specific genes discussed within the main text,
which are specifically expressed in one of the three subsets. (G) Cell abundances validated within an independent patient cohort highlight the significant expansion of
PMN-MDSCs. (H) A functional map of interaction between the three subsets identified within the low-density neutrophils (LDNs). The cluster markers for each subset
are highlighted within. Red text indicates increase within COVID-19, and green indicates a reduction. (I) Violin plots of markers that define a megakaryocyte
population. (J) The major functional aspects observed within megakaryocytes (MKs) characterized by GATA-1 low expression and a likelihood for emperipolesis are
captured within this representation.
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2.3.3.1 Progenitor-Like Low-Density Neutrophils Are
Proliferative and Increased in Severe COVID-19
The progenitor (like) subset exhibited signatures reminiscent of a
“proneutrophil” state (5) (Figure 3E). We identified this subset
to also express AZU1, RNASE3, CSTA, CTSG, and RETN
(p.adj < 0.05, Figure 3E), which are crucial mediators of
neutrophil communication via the cytoneme and contribute
extensively to NETosis. Interestingly, previous studies have
identified several additional markers expressed in this subset
including MS4A3, PCNA, HMGN2, SRGN, PTMA, STMN1,
DUT, and TUBA1B to be indicative of precursor neutrophils,
which differentiate into neutrophils via alternate maturation
mechanisms (47, 48). This subset also uniquely expressed
MKI67 (p.adj < 0.05) suggestive of active proliferation
(Figure 3F). Taken together, these findings highlight a
population of progenitor-like LDNs, which are highly
proliferative and activated predominantly in severe COVID-19.
Characterizing the transcriptional control (Supplementary
Figure S4A) revealed increased activity of TFs such as LEF1,
MYC, and MYCN within this subset. These TFs are crucial
determinants for neutrophil granulopoiesis, proliferation, and
differentiation (49), further emphasizing the progenitor-like state
for cells contained within this subset.

2.3.3.2 Low-density Granulocytes Respond Potently
to Type 1 Interferons, Albeit Muted in Severe
Disease and Show Reduced Migration Potential
We observed LDGs to be significantly proinflammatory
(expressing chemokines) and IFN-I responsive (Supplementary
Figures S4A–D) (50). Transcriptional control of LDGs was
likewise heavily influenced by TFs such as STAT1/3 and
NFKB1/RELA. The top ranked cluster markers identified within
LDGs have been previously implicated to play significant roles in
neutrophil maturation, activation, and degranulation including
NAMPT, IFITM2, IFNAR1, SOD2, G0S2, AQP9, and CXCR2
(Figure 3E and Supplementary Table S10). Mature neutrophils
in certain conditions, such as inflammation and cancer, can
present at lower densities, at steady state without additional
activation. Notably, activation of AQP9 is associated with
changing densities of mature neutrophils due to water uptake,
irrespective of activation/degranulation status and their
subsequent shift to lower densities (45, 51).

A robust IFN response has been previously reported to
originate from LDGs in vivo and in vitro, with distinct roles in
the pathogenesis of diseases such as lupus and malaria (52, 53).
DGEA (with reference to healthy cells) indicated that LDGs
exclusively had a statistically significant upregulation of genes
associated with a potent IFN-I response and activation of ISGs in
both severe and non-severe subjects (Supplementary Table
S11). Dysregulated genes and TFs included BST2, IFI35, IFI6,
IFIT1, IFIT2, IFIT3, IFITM1, IFITM2, IFITM3, ISG15, ISG20,
MX1, OAS1, OAS3, OASL, RSAD2, XAF1, IRF1, and IRF7.
However, this response to interferon signaling seemed to be
muted in samples from severe patients compared with non-
severe samples. In particular, genes associated with processes
involved in FCg receptor signaling and IFN-I response including
Frontiers in Immunology | www.frontiersin.org 8
CYFIP2, HSP90AA1 HSP90AB1, WIPF1, WAS, ELMO1, CD3G,
FYN, PIK3R1, CD247, VAV1, IFI6, OAS2, MX1, and IFIT1 were
downregulated in severe disease (p.adj < 0.05). Interestingly,
certain proinflammatory ISGs including IFITM1/2/3 and ISG20
were upregulated in severe disease. Alarmins (S100A8/S100A9/
S100A12) were upregulated in COVID-19, but significantly
higher within severe disease (p.adj < 0.05). Additionally, LDGs
within severe samples (compared with both healthy and non-
severe subjects) displayed a transcriptional repression of genes
associated with neutrophil migration such as CXCR2, CXCR1
(Supplementary Figure S4E), CD74, ITGB2, and RAC2 (p.adj <
0.05, Supplementary Table S12). CXCR2/CXCR1 serve as
cognate neutrophil receptors driving neutrophil migration and
are markers of mature neutrophils. In severe sepsis, nitric oxide-
mediated suppression of CXCR2 is associated with an impaired
migration of neutrophils to the infection loci (54).

2.3.3.3 Polymorphonuclear Myeloid-Derived
Suppressor Cells Predominate the Myeloid-Derived
Suppressor Cell Response and Contribute to
Increased Oxidative Stress Within Severe COVID-19
PMN-MDSCs comprise a functionally distinct phenotype of
MDSCs with a neutrophil-like morphology that are known to
play important roles in the immune dysregulation of several
inflammatory states such as sepsis, cancer, and, as shown here, in
severe COVID-19. We confirmed drastic expansion of PMN-
MDSCs in an independent cohort of severe and hospitalized
COVID-19 patients (Figures 3D, G). Given this expansion, we
compared cells from severe and healthy subjects to establish the
transcriptional landscape. Enrichment of DEGs (Supplementary
Figure S4F) revealed an expected suppression of genes, which
regulate T-cell activation including CD47 (a neutrophil
membrane protein), ARG1, CEACAM1, LILRB2, FYN, LYN,
ITK, HLA-DPA1/B1, RAC2, PYCARD, RUNX3, ANXA1,
ITGB2, and CCL5. The T cell- suppressive activity of PMN-
MDSCs is suggested to be driven by a potent induction of
reactive oxygen species (ROS), by the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase system and
neutrophil degranulation (55). We consistently observed an
increased expression of the NADPH generating superoxide
genes such as NCF1 and CYBA among highly ranked DEGs
(Supplementary Table S13) and increased regulation of electron
transport chain genes COX5B, NDUFB7, UQCR11, COX6A1,
and COX4I1, which participate in oxidative phosphorylation
(OXPHOS). PMN-MDSCs in severe samples showed an
upregulation of PGAM1 and GAPDH, suggesting increased
oxygen consumption due to increased mitochondrial/metabolic
energy metabolism via OXPHOS, and increased production of
ROS (hydrogen peroxide (H2O2), superoxide anions, and
hydroxyl radicals through the NADPH system). Enrichment
analysis also indicated a significant enrichment of S-
nitrosylation within PMN-MDSCs (Supplementary Figure
S4F). S-nitrosylation has been suggested to have inflammatory
consequences through a complex interplay of mechanisms
especially within pathologies such as sepsis and cancer (56).
Interestingly, function of GAPDH, a well-studied target of
October 2021 | Volume 12 | Article 738073

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mukund et al. Immune Landscape of COVID-19
S-nitrosylation, is mediated by alarmins S100A8/S100A9.
Figure 3H captures the interplay of mechanisms highlighted in
the sections above for proliferating progenitor-like, suppressive
PMN-MDSCs and the proinflammatory LDGs, particularly
within severe COVID-19.

2.3.4 Megakaryocyte Expansion and Evidence for
Emperipolesis Within Severe COVID-19
MKs are the mature cells from which platelets are derived.
Recent evidence suggests a direct role for MKs in viral
infections (in part via IFITM3 upregulation) and in systemic
inflammation, highlighting the importance of MKs and their
interactions with other immune cells (57). Two clusters from the
parent Seurat object, 30 and 54, were annotated as MKs (see
Materials and Methods) using previously published MK markers
(Figure 3I). Extravasation to and expansion of MKs among
PBMCs (6) and lungs (58) in severe COVID-19 has been recently
reported. We concurrently observed a dramatic expansion of
MKs within severe samples in the integrated dataset (1,195
healthy cells, 1,153 non-severe cells, and 4,848 severe cells).
DGEA in severe and non-severe disease compared with
healthy subjects identified 434 and 304 DEGs in severe and
non-severe disease, respectively (Supplementary Table S14).
Notably, both severe and non-severe samples upregulated ISGs
including ISG15, IFITM3, and IFI6 and certain immunoglobulins
including IGKC, IGLC2, and IGHA1. In severe disease, however,
uniquely upregulated genes associated with increased mitochondrial
energetics (genes such as COX4I1/5B/6A1/7A2/8A, ISCU,
NDUFA1/A2/B1/B11/B3/UQCR11, SOD1/2, and CFL1), leukocyte
degranulation (such as S100A8/A9, cathepsins including CTSD/W
and SELP), and coagulation (such as FLNA, ITGA2B, ANXA5,
MMRN1, and ANO6), alluding to their role in contributing to the
thromboembolic phenotype of severe COVID-19 (Supplementary
Figure S4G, Supplementary Table S15). Severe samples were also
enriched for genes associated with an increased response to IL-12, a
proinflammatory cytokine. JAK-STAT activation and subsequent
IFN-g generation, after IL-12 stimulation, have been previously
reported in patients with immune thrombocytopenia (59).

Thrombocytopenia has been reported as a prominent feature
of severe COVID-19 (60). Immune thrombocytopenia is
associated with increased platelet demand and additionally
exhibi t emper ipo les i s (61) . We hypothes ized that
thrombocytopenia seen in COVID-19 could be associated with
the observed MK expansion and MK-mediated emperipolesis.
Emperipolesis is a unique phenomenon of cell–cell interaction,
which involves a bidirectional membrane transfer between cells
such as neutrophils and MKs, where neutrophils enter the MK,
fuse their membranes with the MK’s demarcation membrane
system (DMS), and then exit the MKs intact. Two receptor ligand
pairs have been suggested to mediate emperipolesis including
ICAM1/EZR and CD62P/PSGL1 (61). DGEA identified
significant upregulation of SELP(CD62P) in severe (compared
to healthy) (Supplementary Figure S4G). In pathological
conditions such as idiopathic myelofibrosis, characterized by
emperipolesis, CD62P (a granule protein) is increased and
distributed abnormally to the DMS. The abnormal distribution
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of CD62P to the DMS is suggested to likely trap neutrophils on
the DMS via its binding to PSGL-1 expressed on neutrophils.
Notably, PSGL-1 expression was significantly upregulated in
neutrophil subsets, especially LDGs, in severe COVID-19
samples within our study (Figure 3F). Emperipolesis is also a
prominent feature of MKs in GATA1low murine models, which
also exhibit severe thrombocytopenia (62). Consistent with these
observations, samples from severe disease exhibited lower (than
mean) levels of GATA1 expression (Supplementary Figure S4H).
Though much remains to be understood on whether
emperipolesis is the cause or consequence of thrombocytopenia,
current evidence suggests a potential role in the pathogenesis of
COVID-19 (Figure 3J).

2.4 Lymphoid Lineage
2.4.1 Natural Killer Cells
NK cells are a type of lymphocytes that respond rapidly to
eliminate/control a host of pathological insults including tumor
progression, microbes, and viruses. Recent research in COVID-
19 has indicated a robust activation of NK cells, albeit with
impaired cytolytic potential and reduced absolute cell counts,
with increasing severity (9, 63). Moreover, NK cells also show
signs of exhaustion and increased interferon signaling with
increased expression of the inhibitory surface proteins in
moderate and severe patients (13). The changing NK landscape
in COVID-19 has been largely discussed in the context of
CD56dim/CD56bright (NCAM1) NK cells. However, NK cell
populations are increasingly acknowledged to be transcriptionally
heterogeneous (64, 65). We subset the NK cells to better
characterize their heterogeneity and role within severe and non-
severe COVID-19.

2.4.1.1 Characterizing the Heterogeneity of the
Natural Killer Cell Populations Identifies Novel
NK Subsets
The primary UMAP of the integrated dataset indicated a
reduction in the NK cell population in severe compared with
both non-severe COVID-19 and hea l thy sub jec t s
(Supplementary Figure S1D). Reclustering and re-embedding
the subsampled NK cells after processing resulted in 18 clusters
grouped into seven distinct subsets (Figures 4A–C). Subset
annotation has been described in detail within Section 4.8
(Supplementary Figures S5A, B). Majority of the subsets
identified here, including NK3, NK4, NK5, NK7, and NK8,
were CD56low CD16+ and accounted for nearly 82% of the NK
cells identified (Figure 4D). CD56low NK cells represent the
major circulatory subset of human PBMCs (Figure 4E). On the
other hand, two subsets NK6 and NK2 were characterized by
increased expression of CD56. Both the CD56+ subsets expressed
PRF1, PRDM1, and S100A4 (a maturation marker) lower than
mean (Figure 4C). CD56+ cells are less cytotoxic but actively
produce cytokines such as IFNg in response to cytokine-
mediated stimulation with IL-2 and IL-18. Reduction of
CD56+ cells, similar to what is observed here (Figure 4E), has
been implicated in impaired IFN-g production and reduced
cytotoxic activity in certain disease states (66). Particularly
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interesting however was that the transcriptional profiles of NK2
differed significantly from those of the typical CD56bright (NK6)
population. This raised the question if this subset represented an
intermediate stage in the maturation of NK cells or a novel subset
of CD56+ cells with alternate roles. The top cluster markers for
NK2 included genes such as NCAM1(CD56), IL18RAP, SPN
(CD43), MACF1, AHNAK BTN3A1, SPOCK2, SORL1, PARP8,
and ETS1 and functionally enriched for a potent response to IL2
(p.adj < 0.05).
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Subset NK1 (cluster 13) on the other hand exhibited a low
expression of CD16, along with a lack of CD56/CD44 expression
(Supplementary Figure S5C). Based on the increased mean
expression of KLRF1 (Nkp80) and lack of CD56 expression,
NK1 was determined to be a CD56neg CD16low population of NK
cells (67). There was a reduced representation of this subset
within severe (21 cells) and non-severe (64 cells) compared with
healthy cells (1,665 cells from 39 samples). This was particularly
interesting because, in contrast, research on other viral and
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FIGURE 4 | Natural killer cells. (A) UMAP embedding of the natural killer (NK) cells after reclustering the subset from the original Seurat object. The first of the two
embeddings capture the 18 clusters identified. (B) The grouping of the 18 clusters into distinct subsets, NK1–NK7. (C) The dotplot of average expression of the
major markers that were used to classify NK cell subsets including genes such as the lytic granules, such as granzymes (GZMB/K/A), PRF1; inhibitory KIRs; negative
regulators including PFN1 and CST7; transcription factors (TFs) such as PRDM1 and cytoskeletal proteins including ACTB, ARPC3/4. (D) The expression of three
major surface markers that define NK cell maturity including CD56 (NCAM1), CD16 (FCGR3A), and CD44. NK3–5 and NK7–8 represent a CD56low CD16+; NK2 and
NK6 were identified as CD56+. NK1 was identified to represent a unique group of cells that lacked CD56 expression and had low CD16 expression. (E) Cell count
distribution of the NK subsets NK1–7. NK1 (blue box) is the only subset with severe abundance loss within disease, while NK4 (red box) is the only subset that has
increased abundances within disease. (F) DoRothEA TF-target enrichment performed on all cells from the NK1 cluster highlights an increased activity of early TFs
such as SOX9, FOXP1, FOXA2, and NR3C1, suggestive of a more precursor/immature like cell state. (G) DoRothEA analysis on severe and non-severe cells in
subset NK4 highlights the increased activity of STAT1/2 and IRF1/9 in keeping with the increased interferon response seen from NK4. (H) A functional map of the
NK subsets identified within coronavirus disease 2019 (COVID-19), with cluster markers represented within each subset. NK1 (CD56−CD16low) represented a unique
subset of cells, mostly seen in healthy and lost within COVID-19. These cells exhibit reduced NCR expression, subsequently implying a reduced cytotoxic potential
and ability to communicate T and neutrophils. Within the CD16+ subsets, we identified an expanded subset that responded potently to interferon type I (IFN-I). The
cluster markers of this subset were also significantly differentially expressed in severe and non-severe compared with healthy subjects. Red text indicates increased
activity, while green text indicates reduced activity.
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bacterial infections has indicated an expansion of the
“dysfunctional and immature” CD56neg/CD16low NK
population (68). Cluster markers for this set included
significant upregulation of alarmins (S100A8/A9), cytoplasmic
ribosomal proteins, and OXPHOS genes (Supplementary Figure
S5E, Supplementary Table S16). NK1 also showed reduced
expression of cytotoxicity receptors of active and resting NK
cells such as NCR3 (NKp30, which is also involved in
interactions between NK cells and neutrophils) and CD247
(CD3z, a key subunit of natural cytotoxicity receptors
suggestive of reduced cytotoxic potential) (Supplementary
Figure S5F). Regulon analysis for NK1 cells indicated
increased activity of targets of repressive TFs such as FOXP1
[which inhibits JUN/MYC signaling and GZMB and IFNG
production in T cells (69)], NR3C1 (glucocorticoid receptor
involved in inhibiting IFNG production), and early NK cell
TFs such as SOX9, suggestive of a precursor-like, immature
state of cells (Figure 4F). Whether this subset represents a
precursor-like immature population, which is subsequently lost
due to maturation within COVID-19, warrants further research.

2.4.1.2 A NK Cell Subset Responds Potently
to Interferons
The top cluster markers and differential expression analysis
comparing NK4 cells from severe and non-severe patients to
healthy subjects indicated a strong activation of genes associated
with IFN-I response including ISG15, IFI6, MX1, IFIT3, XAF1,
RSAD2, OAS3, and STAT1 (enrichment shown in
Supplementary Figure S5F and Supplementary Table S17).
TF activity analysis indicated a robust regulation by IRF2/IRF9
and STAT1/2 for this cluster of cells, within both severe and non-
severe COVID-19 (Figure 4G). The NK4 subset also showed
higher than mean expression of markers including CX3CR1 and
CD38, previously attributed to terminally differentiated NK cells
(64). NK4 was the only subset to expand within COVID-19
(more prominently in non-severe) (Figure 4B). NK4 cells in
COVID-19 exhibited cytolytic potential with increased
expression of granzymes (GZMB and GZMA) and expressed
CD56 (Supplementary Figure S5G). In addition to a potent
response to IFN-I, DGEA indicated a potent upregulation of
alarmins such as S100A8 and TFs such as PLSCR1 in both severe
and non-severe subjects, similar to what is seen within the
interferon responding clusters of monocytes and LDNs.
Notably, in the context of MCMV viral infection, a novel IFN-
I dependent mechanism has been identified by which NK cells
evade mechanisms of cell death via BCL2 signaling (70). The
observed expansion of this NK4 subset, in COVID-19, could
occur via similar pro-survival mechanisms. We outline the
abovementioned observations for all the NK cell subsets
in Figure 4H.

2.4.2 T Cells
2.4.2.1 Characterizing the CD4/CD8 T-Cell Milieu
Adaptive immunity is crucial for successful viral clearance and
long-term immune memory, particularly T cells. As noted in the
parent Seurat object, CD4T and CD8T subsets did not show very
Frontiers in Immunology | www.frontiersin.org 11
drastic changes between severe, non-severe, and healthy subjects
(Figures 5A, B, Supplementary Figures S1D and S6C). To
further delineate CD4/CD8T subsets, which might show
differential signatures, we subset the CD4T/CD8T populations
and reclustered them into eight distinct subsets as described
within the Materials and Methods (Section 4.8). Abundance
signatures of several CD4/CD8T compartments identified here
indicated a downward shift, albeit not drastic, with increasing
severity (Figure 5B), which is consistent with much of the
published research (5, 7). Specifically, we observed a higher
proportion of CD8T/CD4T effector (Teff) cells in COVID-19
compared with healthy subjects, but lower in severe compared
with non-severe subjects. A higher percentage of activated and
proliferative CD8T effector population has been documented
within less severe infections (12). Likewise, a large proportion
(~36.6%) of the cells identified as naïve CD4T cells were
significantly increased in non-severe disease, compared with
severe disease, consistent with published research (71). In
contrast to the abundance trends of CD4T/8T naïve and
effector cells, we observed a progressive increase in the
abundances of CD4+ Tregs, a low-frequency cell type, across
severity (Figure 5B). Increase in the CD4+ Tregs has been
previously reported through flow cytometry experiments in the
blood of COVID-19 patients (71). Tregs are crucial for regulating
immune homeostasis and autoimmunity, controlling the quality
and magnitude of immune responses in infections by modulating
expression of key factors including FOXP3, CTLA4, and IL2RA
(Supplementary Figure S6B) (72).

Particularly interesting within the clusters identified were two
clusters 16 and 18, which, in addition to CD8 Teff-like signatures
(including expression of granzymes, IFNG, PRF1, and NKG1),
showed expression of CD16. The CD16+CD8T subset showed
significant increases in proportion of cells within both severe and
non-severe COVID-19 compared with healthy cells
(Supplementary Figure S6C). CD16+CD8T cells have been
reported previously in certain viral infections such as hepatitis
(73) and in blood from smokers (74) and are suggested to emerge
as a consequence of differentiation of T cells beyond terminally
differentiated effector states, acquiring CD16 and NK-cell like
functional properties. To further elucidate the functional
relevance of this subset in COVID-19, we examined how the
transcriptomes of this subset differed compared with those of
healthy subjects. DGEA analysis identified 140 DEGs in severe
and 201 DEGs in non-severe disease compared with healthy
subjects (Supplementary Table S18). MSigDB analysis revealed
both sets of DEGs to be significantly enriched for NK/T cell
repertoires, consistent with the earlier characterization of NK-T-
like cells (Supplementary Figure S6D). Functional analyses
revealed that both severe and non-severe disease subsets
exhibit significant response to IFN-I signaling (75) and an
overexpression of alarmins including (S100A8/A9)
(Supplementary Figure S6E). Notably, however, only within
severe disease do we see an upregulation of functions typically
associated with platelet degranulation, homotypic adhesion, and
coagulation including markers such as PPBP, ITGA2B/ITGB3,
PF4, and TREML1. While most of these factors are typically
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associated with myeloid cells, emerging evidence suggests a role
for these markers in modulating CD8T and NK differentiation
and function in health and disease and is worth exploring in the
context of this subsets expressing CD16 and NK-like CD8+

T cells.

2.4.2.2 A Muted Response of T-Cell Subsets
Including Mucosal-Associated Invariant T and
Gamma-Delta T Cells Exists in COVID-19, Likely
Contributed to by Increased Neutrophils and
Oxidative Stress
A notable decrease in cellular abundances of low-frequency T
subsets including MAIT (cluster 15) and gdT (cluster 29) was
seen in COVID-19 samples compared with healthy subjects
(Figures 1B, 5C, and Supplementary Figure S1D). This
change in cellular frequencies was further validated in an
independent cohort (Figure 5D). Each cluster expressed
markers consistent with cell types, MAITs expressed (KLRB1
(CD161), SLC4A10, NCR3, DPP4 (CD26), IL7R, and GZMK)
(76); and gdT cells expressed transcriptional markers such as
Frontiers in Immunology | www.frontiersin.org 12
CD8A, CD8B, CD2, CD5, CD7, TRDC, and TRGV9.
Interestingly, CD26 (DPP4), a suggested target for the SARS-
CoV-2 spike proteins, was also found to be expressed only within
subsets of the lymphoid compartment, especially MAIT (77)
(Supplementary Figure S7A).

MAITs are a class of non-conventional T cells, representing
1%–10% of the circulating T-cell population and preferentially
respond to innate inflammatory signals including IL-12, IFN-g,
and IL-18 with viral infections including COVID-19 (76, 78).
Likewise, gdT cells, which are a class of restricted T cells, are also
activated preferentially by IL-12. Consistently, DGEA for MAIT
and gdT cells identified an increased response to IL-12,
particularly in severe disease (compared with healthy subjects),
with an additional enrichment of genes associated with IL-2
production (more prominent in non-severe disease)
(Supplementary Figures S7B, C) . Despite reduced
abundances, MAIT cells in severe and non-severe disease
showed increased activation [as detected through expression of
CD69, an early activation marker (p.adj < 0.05), consistent with
earlier reports (78)] (Supplementary Figure S7D).
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FIGURE 5 | CD4T/8T, mucosal-associated invariant T (MAIT), and gamma-delta T (gdT) cells. (A) The UMAP highlights the 18 clusters retained after subsetting
CD4T and CD8T cells from parent Seurat object. The right panel shows a side-by-side UMAP of distribution of the various T subtypes (arrived at by grouping cluster
based on expression of key factors as identified; see Supplementary Figure S6B) in severe, non-severe, and healthy donors. (B) A barplot highlighting the
abundance differences for each of the eight subtypes identified here across severe, non-severe, and healthy samples. (C) The UMAP embeddings of only the MAIT
and gdT cells from the original Seurat object. Colors highlight the severities of the cell captured within each cell type. As highlighted also in Figure 1D, gdT cells had
severely reduced abundances within disease. (D) Immunophenotyping revealed similar reductions in MAIT and gdT cell population within an independent patient
cohort of coronavirus disease 2019 (COVID-19) and patients exhibiting varying levels of severity. (E) Violin plots highlight the increased expression of CD3E and a
suppression of CD3z (CD247) within COVID-19, for both gdT and MAIT cells, consistent with expression patterns seen within MAIT and gdT in the presence of
neutrophils. Suppression of CD247 chain further indicates compromised T-cell signaling without change to T-cell viability.
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Under inflammatory conditions, gdT recruits and activates
neutrophils through the release of cytokines and chemokines. In
the presence of H2O2, neutrophils can suppress gdT action (65).
Neutrophils are also thought to suppress MAIT cells in the
presence of H2O2 (66). Increased expression of CD3E and a
suppression of CD3z (CD247) was observed on MAIT and gdT
cells in COVID-19 samples (Figure 5E). These expression
patterns have been previously observed in MAIT and gdT in
the presence of neutrophils. Suppression of CD3z chain further
indicated compromised T-cell signaling without change to T-cell
viability. These observations suggest that the reduced expansion
of these cell types in COVID-19 is likely due to excessive
activation of neutrophils/LDNs and increased oxidative stress.
Whether loss of circulating MAIT and gdT to the airways and
other tissues contributes to the observed reduction and
subsequent turnover merits a more thorough investigation.

2.4.3 B Cells
In the context of acute viral infections such as in COVID-19,
immature B cells mature to naïve B cells and differentiate to
memory cells or antibody-secreting cells (ASCs) upon antigen
activation. Extant omics analyses of immune remodeling in
COVID-19 have shown overall lymphoid dysfunction, with
decreases in multiple cell types, including naïve B cells;
however, PBs were a notable exception and showed expansion
and heterogeneity with increasing disease severity (6, 10, 21). A
flow cytometric study of multiple B-cell subtypes showed overall
decreases in most B-cell subtypes, with increasing disease
severity, except for ASCs (17). Likewise, other previous flow
cytometric analyses report expansion of oligoclonal PBs in severe
COVID-19 (11, 79). To better understand how intracellular
mechanisms, including transcriptional regulation, may
contribute to B-cell dysfunction with increasing disease
severity, we subset B cells as identified in the parent Seurat
object (Figure 1) for further analysis (Supplementary Figure
S8). Of these, we analyzed in greater detail the populations that
had the most marked changes between healthy, non-severe, and
severe COVID-19 subjects: naïve B cells, which reduced with
increasing severity (Supplementary Figure S8), and PBs, which
expanded in severe COVID-19 (Figure 1D).

2.4.3.1 Naïve B Cells Expand Robustly in Non-
Severe Disease
From the initial UMAP (Figure 6A and Supplementary Figure
S8), we identified six groups of naïve B cells (A–F) by
unsupervised hierarchical clustering (see Materials and
Methods) (Figure 6B). Groups A–D comprised predominantly
of healthy and non-severe cells, while in groups E and F, severe
cells outnumbered healthy and non-severe cells. For clarity,
groups A–D will hereafter be referred to as “BNS” (mostly non-
severe), and groups E and F will be “BS” (mostly severe). All the
groups had expression of IGHD and IGHM, consistent with
naïve B cells. Group F has additional expression of IGHA1/2,
perhaps indicating priming for early stages of activation
(Figures 6C). Expression of multiple markers was consistent
with naïve B cells, and the top 15 significantly expressed cluster
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markers for each group of A–F are shown in Supplementary
Figure S8.

Figure 6D summarizes the remodeling of naïve B cells in
COVID-19. Signaling via the canonical B-cell receptor (BCR) is
crucial for B-cell survival, development, and antibody
production. Genes involved in BCR signaling had variable
expression in non-severe and severe groups; for instance,
CD22 and CD79A showed increased expression in BNS groups,
while CD40 and CD79B were increased in BS. Genes
downstream of BCR signaling involved in regulation of
intracellular calcium showed increased expression within BNS.
Several other cell surface markers, including MHC-II
components (CD74 and CD83), TNFRSF13C, and IL2RG,
showed increased expression in BNS relative to BS, while both
groups expressed NF-kB inhibitor genes (NFKBIA/D),
downstream of TNFRSF13C. Taken together, these indicate a
severity-dependent difference in naïve B-cell activation,
downstream intracellular signaling, and antigen presentation.
Although key TFs for early B-cell maturation (such as PAX5,
BACH2, and FOXP1) were expressed in all groups, they were
statistically significantly increased expression in BNS groups. In
addition to subtle severity-dependent variations in maturity and
activation, this could reflect multiple origins for naïve B cells in
secondary lymphoid organs. For example, ZPF36L1, a TF
required for the maintenance of marginal B cells, is increased
BNS (80). By contrast, multiple AP-1 family TFs including JUN,
FOS, and FOSB had increased expression in the BS. Notably,
group B within BNS showed a robust response to interferon
stimulation, with increased expression of TFs such as IRF1, IRF7,
and STAT1, as well as downstream genes including MX1, OAS1,
and IFI6.

We observed a metabolic shift from oxidative phosphorylation
to glycolysis with increasing disease severity, which likely reflects
the primed state (for activation) of these cells. We additionally
observed that BNS had expression of genes protective against
oxidative stress compared with BS including HERPUD1, HIF1A,
and GADD45B (may be protective against genotoxic stress in
lymphocytes) (81), while BS had an increased expression of
ubiquitin–proteasome genes (e.g., PSME1 and UBC).
Differences in stress response could play a role in preparing B
cells in COVID-19 for enhanced proliferation. Pro-proliferation
genes such as MYC and BST2 were increased in Bs groups, likely
suggestive of a state primed for proliferation in severe disease.
Additionally, expression of cells markers related to adhesion and
migration including a reduced expression for CXCR4 and SELL
in BS with an increased expression of CD69 and IER2 could
indicate an increased potential of B cells to differentiate into PBs
(82, 83). Taken together, these could indicate a state of naïve B
cells primed for differentiation, perhaps more readily to the PB
fate, within severe COVID-19.

2.4.3.2 Plasmablast Exhibits Significant
Heterogeneity and Expands Drastically Within
Severe COVID-19
PBs are short-lived, antibody-producing cells that are derived
from antigen-activated memory B cells. We observed
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FIGURE 6 | Naïve B cells and plasmablasts (PBs). (A) UMAP of subsampled and reclustered naïve B cells (see Materials and Methods) with initial clusters 0–6 and
8–10. (B) Hierarchical clustering grouped together clusters with similar proportions of healthy, non-severe, and severe cells. The number of cells in each severity
category is shown in the corresponding bar graphs under the dendrogram. This resulted in six final groups as summarized in the horizontal box underneath the bar
graph: A–F had more healthy and non-severe cells than severe (orange, H, NS > S), and E and F had more severe than healthy, non-severe (red, S > H, NS).
(C) Violin plot showing expression of selected immunoglobulin heavy and light chains in groups A–F. (D) Group-dependent gene expression patterns in several
categories that modulate naïve B-cell function and subsequent activation, including B-cell receptor signaling, calcium handling, MHC-II components, B-cell activation
factor (BAFF) receptor, interferon (IFN) response, metabolism, stress response, priming for proliferation, adhesion, and transcriptional regulation, including AP-1
transcription factor (TFs). Each oval contains the gene name with percent and average expression of that gene across the six groups A–F. Each gene had significant
differential expression (p.adj ≤ 0.05) unless otherwise specified. Genes within dark red colored ovals were expressed more in severe coronavirus disease 2019
(COVID-19); genes within orange ovals were expressed more in non-severe cells; genes in red and orange striped ovals had expression in both severe and non-
severe cells. (E) Six clusters with surface marker expression most characteristic of PBs (CD19−, MS4A1−, CD27+, and CD38+) were retained after subsampling and
reclustering the parent Seurat object (see Supplementary Figures S8F, G). (F) Four PBs subsets (PB1, PB2, PB3, and PB4) were defined from six clusters in (E)
based on expression of the top cluster markers (Figure S8H). (G) Bar graphs show number of cells from non-severe (purple) and severe (pink) coronavirus disease
2019 (COVID-19) patients in each PB subset (1 = PB1, 2 = PB2, 3 = PB3, and 4 = PB4). (H) Cell surface marker expression across four PB subsets (1 = PB1, 2 =
PB2, 3 = PB3, and 4 = PB4) reflects PB population heterogeneity with respect to B-cell receptors, cytokine/chemokine receptors, adhesion molecules, and antigen
presentation. (I) PB subset-dependent expression of immunoglobulin chain genes (1 = PB1, 2 = PB2, 3 = PB3, and 4 = PB4). (J) Subset-dependent expression of
core TFs that regulate PB commitment and several downstream targets, including genes involved in mediating endoplasmic reticulum (ER) stress, proteasome
function, microtubules, and IFN response. Each oval contains the gene name with percent and average expression of that gene across the four PB subsets (1 =
PB1, 2 = PB2, 3 = PB3, and 4 = PB4). Superscript denotes that the gene had significant differential expression (p.adj ≤ 0.05) in that subset relative to the other subsets.
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considerable expansion and increased heterogeneity of the PB
cell population with increasing disease severity (Figure 1D).
Previous flow cytometric analyses have reported expansion of
oligoclonal PBs, notable even in the context of overall lymphoid
cell dysfunction, in severe COVID-19 (11, 79). While extant
omics analyses of immune dysfunction in COVID-19 have
shown PB expansion and heterogeneity (6, 10, 21), the
intracellular mechanisms that may contribute to cell
dysfunction have not been explored in detail. To this extent,
we subsampled and reclustered the PBs from the parent Seurat
object resulting in 10 clusters, which were subsequently grouped
into four major subsets (described in Section 4.8) (Figures 6E–G
and Supplementary Figure S8).

Subset-dependent expression of cell surface markers,
including BCR components, cytokine/chemokine receptors,
and HLA genes, reflected putative heterogeneity in cell growth,
homing potential, and maturity (Figure 6H). Genes involved in
promoting PB survival and growth TNFRSF17, BST2, and
CD79B had increased expression in PB1, the dominant
signature in non-severe patients. Chemokine and cytokine
receptors, likewise, had varied expression across subsets
including CCR10, ICAM2, and IFN-g in PB1; CCR2, IFN-a,
and IL-6 receptor components in PB2; and CXCR4 and IL2RG in
PB4. Increased expression of CCR10 in PB1 (more prevalent in
non-severe disease) may be indicative of cells that home to
mucosal surfaces (84), while CCR2- and CXCR4-positive cells
in PB2/4 (more prevalent in severe disease) may be indicative of
cells that home primarily to the bone marrow (85).
Immunoglobulin chain expression was also subset-dependent,
with IGHA1more highly expressed in PB1, while PB2 had robust
expression of the IGHG chains (Figure 6I). Finally, surface
marker expression, together with TF expression (Figure 6J),
suggested varying maturation across PB subsets, with increased
expression of IRF4, PRDM1, and XBP1 in PB2/4 indicating
increased maturity (86).

We next investigated the subset-dependent expression of key
TFs and several of their targets that regulate PB commitment. All
subsets expressed the core TFs involved in PB maturation—IRF4,
PRDM1, XBP1, and POU2AF1—albeit with differential
expression between the subsets: POU2AF1 was significantly
expressed in PB4, while IRF4 and XBP1 expression was
significantly increased in PB2. Concomitant with XBP1
upregulation in PB2, its downstream targets related to
endoplasmic reticulum (ER) stress response, including genes
involved in the unfolded protein response such as ATF4, were
also significantly upregulated relative to the other subsets (87).
TFs JUN and FOS, though expressed in all subsets, were
significantly upregulated in PB1. JUN targets involved in
proteasome function were expressed in PB1 and significantly
expressed in PB3. Together with the ER stress response, protein
degradation pathways support increased immunoglobulin
production in PBs. The differing significance of expression for
JUN/FOS and their targets across PB1 and PB3, respectively, may
reflect negative autoregulation of JUN and FOS within each
group. We also noted active proliferation, especially in PB3
(more salient in severe samples) with significantly increased
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expression of MKI67, EZH2, and CDK1. JUN targets involved
in cell cycle regulation (such as SRSF2 and NASP) and
microtubule-related genes (such as TUBB) were significantly
upregulated in PB3 and may also support increased PB
proliferation. Finally, we observed a heterogeneous response to
IFN-I stimulation across PB subsets. IRF1/2 and STAT1/3 were
expressed in groups PB1 and PB2, respectively (albeit p.adj >
0.05). ISGs also had a subset-dependent expression with ISG15/
20 significantly upregulated in PB1, and while MX1 and OAS2
were significantly upregulated in PB2. Taken together, our
analyses indicated a more heterogeneous PB response, which
may reflect more varied maturity and functional status, in severe
compared with non-severe COVID-19 patients (Figure 6J).
Further, while all subsets responded to IFN-I, PBs from severe
COVID-19 patients were characterized by robust proliferation
and ER stress response, which may support increased
immunoglobulin production.
3 DISCUSSION

Current research utilizing high-throughput data from either
limited cohorts or focused analyses of specific biological
systems have generated valuable insights into the pathogenesis
of COVID-19. Complementary to these reported observations, in
this study, we present system level mechanistic insights into the
pathogenesis of COVID-19, by integrating scRNAseq data from
four sizable cohorts in both severe and non-severe COVID-19.
Integration allowed for higher granularity in identifying and
characterizing transcriptomic and cellular heterogeneity of
immune response within COVID-19.

Modulation of innate immune cells manifested in several
ways, distinguishing the responses between severe and non-
severe COVID-19 (Figure 7). Notably, the systemic and robust
upregulation of gene signatures in response to IFN-I occurred
across multiple cells within both myeloid and lymphoid lineages
in both severe and non-severe disease as detected via consensus
gene signatures (Figure 1) and expression of IFN-I receptors
IFNAR1/2 (Supplementary Figure S9). Differing reports exist
on the activation of a robust IFN-I response in COVID-19 within
the PBMCs (88), while there is significant interferon response in
lung epithelial cells (2). We observed that specific subsets that
expanded significantly in COVID-19 exhibited a more potent
response to IFN-I including the NK4 subset within NK cells,
CM1 within CMs, LDGs within LDNs, CD16+CD8T subset
within CD4T/8T, naïve B cells, and PBs. However, this
response, specifically in CM1 and LDGs, was more muted in
severe compared with non-severe disease. TF factor analysis
within these subsets revealed several master regulators, which
likely contribute to the observed dysregulation within severe and
non-severe disease. Overall, while we cannot comment on the
kinetics of IFN-I response, a robust response does exist in
COVID-19 albeit muted in severe disease, compared with
healthy subjects (12). Increased expression of S100A8/A9
(alarmins) was seen arising from the abovementioned
expanded subsets (such as CM1, LDGs, and CD16+CD8T) in
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FIGURE 7 | Transcriptomic and cellular heterogeneity of immune response within coronavirus disease 2019 (COVID-19). This figure encapsulates the main results
identified within our manuscript. Rapid expansion of specific monocytic subsets, megakaryocyte, plasmablasts, and low-density neutrophils, along with reduction in
cellular frequencies of mucosal-associated invariant T (MAIT), gamma-delta T (gdT), and natural killer cells, is seen within COVID-19, particularly severe disease. The
observed reduction of myeloid dendritic cells could be a consequence of emergency monopoiesis, which results in the drastic expansion of suppressive subsets such as
CM1 monocytes in severe disease. We observe an increased activation of interferon type I (IFN-I) response, interferon-stimulated genes (ISGs), and alarmins arising from
both lymphoid and myeloid cells. However, low-density granulocytes (LDGs) and CM1 show a more muted response to IFN-I in severe disease, compared with non-
severe disease. The increased oxidative stress along with alarmins likely contributes to the suppression of T cells particularly MAIT and gdT. Neutrophils/LDNs have
an increased tendency to spontaneously produce neutrophil extracellular traps (NETs), which has been observed in COVID-19 and suggested to contribute to the
coagulopathy in COVID-19. Additionally, both monocytes and LDNs presented transcriptional signatures associated with aggregation, especially in severe COVID-19.
The increase in MKs in circulation and likely emperipolesis within COVID-19 adds to the mounting evidence on the potent link between thromboembolic events
mediated by platelets and their precursors and neutrophils/LDNs. A potential link between immune thrombocytopenia observed in patients and the expansion of
MKs/emperipolesis, increased aggregation potential of various immune cell types, and generation of autoantibodies warrant further investigations especially within
severe COVID-19 patients. The accompanying bottom panel highlights all differences observed in our manuscript between severe and non-severe disease.
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severe disease. Alarmins have diverse roles and contribute
extensively to neutrophil recruitment and degranulation and
are increasingly acknowledged as crucial markers for COVID-
19 infection (89). The increased oxidative stress arising from
LDNs as seen in our analysis [and likely other granulocytes (90)],
along with expression of alarmins, could significantly contribute
to T-cell suppression including CD4T, CD8T, MAIT, and gdT,
especially in severe disease.

Severe inflammation has been suggested to induce a state of
emergency myelopoiesis, particularly monopoiesis and
granulopoiesis (28). We evidenced a drastic expansion of
distinct subsets of MDSC (like) cells arising likely due to
emergency myelopoiesis such as CM1 within CMs and PMN-
MDSCs (through neutrophil progenitor-like cells) within the
LDN subsets, especially in severe patients. In certain bacterial
infections, experiments have revealed that infection-induced
emergency monopoiesis occurs at the expense of DCs,
particularly mDC development, and can be sustained for weeks
after pathogen clearance (91). It is therefore possible that the
extent of emergency monopoiesis seen in severe COVID-19
(over non-severe COVID-19) contributes to the significant loss
of mDCs (p < 0.01, Supplementary Figure S1D). This loss of
abundance taken together with their transcriptionally
dysfunctional state in severe disease warrants further
investigations of mDCs in the context of SARS-CoV-2 infections.

Nearly 35% of severe COVID-19 patients experience
thromboembolic events at multiple sites including the
microvasculature, brain, and lung, which can cause organ
failure in these patients. Though the precise mechanisms are
unclear, several functional links have been proposed, including
an interaction between the plasminogen, complement, and
platelet-activating systems in severe disease (2). Both
neutrophils and LDNs have an increased tendency to
spontaneously produce neutrophil extracellular traps (NETs),
which has been observed in COVID-19 and suggested to
contribute to coagulopathy in COVID-19 (92, 93). We
identified that both monocytes and LDNs presented
transcriptional signatures associated with aggregation as well as
homotypic adhesion in severe COVID-19. LDGs and CD14+

monocytes express PTAFR, which indicates PAF activation (a
phospholipid crucial for driving platelet aggregation). LDGs also
express SELPLG (PSGL-1), a glycoprotein counter-receptor for
the cell adhesion molecules P-, E-, and L-selectin, which are
required for tethering of leukocytes to activated platelets or
endothelia expressing selectins. MKs were found to express the
ligand SELP, suggesting interactions between MKs and LDNs,
and an active role for MKs in the pathogenesis of severe COVID-
19. Our earlier observations on the likelihood of emperipolesis
within COVID-19 adds to the mounting evidence for the potent
link between thromboembolic events mediated by platelets
(aggregation) and neutrophils/LDNs (2, 92). Current research
provides evidence for the role of MK cytoplasm and a-granules
as soluble mediators with potential to impact neutrophil
migration, behavior, and survival in vivo and in vitro (61). It is
hard to say whether the expansion of MK in severe disease is a
cause or effect of increased neutrophil/LDN mobilization and the
Frontiers in Immunology | www.frontiersin.org 17
observed thrombocytopenia. Circulating LDN levels have been
reported to correlate with disease severity, contributing to
enhanced cytokine production and systemic increases d-dimer,
IL-6, and TNF-a levels, in humans with COVID-19 (93, 94).
Ratio of circulating gdT to LDN cells has been suggested to
correlate with COVID-19 severity and serves as an early marker
of severe disease (94). Neutrophils are known to mediate
inhibition of NK development, function, and homeostasis (95)
while also being influenced by MAIT population levels, for a
controlled immune response (76, 96), suggestive of similar roles
for LDNs. Unlike other viral infections, we observed no
significant changes to majority of the CD4T/CD8T milieu;
however, there is evidence for functional exhaustion. Even
though there is no significant remodeling of active B cells,
naïve B cells are poised for differentiation, and PBs downstream
of the B cell maturation spectrum expand drastically within
severe COVID-19, in contrast to other respiratory infections.

In summary, our analyses provided novel functional insights
into both systemic and cell type-specific changes that contribute
significantly to the pathogenicity of COVID-19 in severe and
non-severe patients, as shown in Figure 7. Our analysis of the
differential interferon response within immune cell subsets in
severe and non-severe COVID-19 allowed for mechanistic
insights that help explain prior work. We further highlighted
that LDN responses could play a crucial role in COVID-19
pathogenesis and in distinguishing severe from non-severe
responses. Particularly, they can serve as a crucial nexus
between various myeloid and lymphoid cells affecting their
interaction dynamics and contributing extensively to a
proinflammatory and pro-thrombotic phenotype seen in severe
COVID-19.

3.1 Study Limitations
We acknowledge several limitations of the current study
including limited control over patient cohort selection and
initial sample processing techniques due to the use of
published data. Factors such as definition of disease severity,
sampling time after symptom onset, variability in patient
treatment conditions, comorbidities, and sex could all affect
clinical presentation and subsequent transcriptomic landscape.
As our proposed mechanistic framework is based on integrated
analysis of scRNAseq-derived transcriptomic signatures from the
PBMCs and assessed based on the current understanding of
immune cells, future experiments in an independent cohort are
required for targeted insights and further validation.
4 MATERIALS AND METHODS

In our current study, we integrated publicly available scRNAseq
data derived from PBMCs of COVID-19 (and healthy) patients.
The four original publications included Wilk et al. (10), Lee et al.
(4), Arunachalam et al. (20), and Schulte-Schrepping et al. (5)
(Supplementary Table S1). We utilized Seurat for all scRNAseq
processes indicated in this study.
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4.1 Single-Cell RNA Sequencing Data
Acquisition and Integration
For data from the PA and Lee studies, where the CellRanger
outputs were available, count matrices were constructed using
Read10X function, and a Seurat object was subsequently generated
using Seurat v3.2 (97). We excluded flu samples from the Lee
study prior to Seurat object generation. Likewise, a Seurat object
was generated from the Wilk study as indicated in the original
publication and its Supplementary Material. However, at the time
of data download for our current analysis (September 20, 2020),
raw count files were as yet unavailable for download from Schulte-
Schrepping et al. (EGAS00001004571). Subsequently, we
downloaded processed Seurat objects from fastgenomics.org
(files seurat_COVID19_PBMC_cohort1_10x_jonas_FG_2020-
08-15.rds and seurat_COVID19_PBMC_jonas_FG_2020-07-
23.rds), as indicated in the original manuscript. We extracted
the “counts” slot within the Seurat objects and utilized them for
downstream integration. Given that the metadata for each study
captured varying amounts of information (see Supplementary
Table S2), we restructured the metadata columns to facilitate
downstream integration; specifically, we generated four new
columns, “orig.ident”, which captures the donor information
from each study. Multiple samples from the same donor were
aggregated for the purposes of this analysis: “Infection_status”
(levels: Covid, Healthy) captures the condition of cells/samples,
“Severity” (levels: Severe, Non-severe and Healthy) captures the
severity of diseases among COVID-19 patients, and “Study”
captures the dataset name (Wilk, Lee, SS_C1, SS_C2, and PA).
All moderate, mild, and asymptomatic (from Lee et al, see
Supplementary Table S2) donors across studies were
reannotated to “Non-severe,” while all “ventilated” donors were
annotated to “Severe” (from the Wilk study, Supplementary
Table S2), for the sake of consistency. Filtering of the data was
performed at cell and gene levels, to obtain reduced datasets,
which were then used for downstream integration (see Data
Filtering). Only the 14,063 common features across all five
datasets were considered for all downstream analyses. Notably,
some genes of interest such as IFNB1 are absent from 14,063
features and subsequently absent within our analysis here.

4.2 Data Filtering
For each of the individual datasets identified above, we
performed cell-level filtering by excluding cells based on the
following quality criteria: more than 25% mitochondrial reads,
more than 25% hemoglobin genes (heme reads), less than 250
expressed genes or more 2 std. deviations from the mean, less
than 500 detected transcripts, and a complexity (log10 genes/
UMI) of less than 80%. Additionally, we performed gene-level
filtering by excluding genes that were expressed in less than 10
cells. To facilitate downstream integration, we only utilized the
14,063 features/genes common across all datasets for further
analysis. Each sample cell contribution after filtering is captured
within S2-meta (Supplementary Material).

4.3 Data Integration
Each filtered dataset was log normalized prior to integration. The
original gene counts for each cell were normalized by total UMI
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counts, multiplied by 10,000 (TP10K), and then log transformed
by log10(TP10k + 1). A total of 2,000 most variable features were
detected within each dataset using the vst method implemented in
Seurat. Subsequently, the five normalized datasets were integrated
using the IntegrateData option of Seurat v3.2, on 2000 gene
anchors identified via FindIntegrationAnchors (ndims = 30).
The final integrated dataset considered for this analysis
contained 14,063 features across a total of 375,438 cells from
111 donors (33 severe, 28 non-severe, and 50 healthy subjects,
contributing a total of 116,234, 118,023, and 141,181 cells
respectively) (Figure 1A, Supplementary Table S3).
4.4 Data Scaling and Dimensionality
Reduction
Data scaling and dimensionality reduction (nPCs = 30) were
performed on the integrated dataset. Linear regression was
performed to remove unwanted variation due to %
mitochondrial or heme reads. Optimal dimensions for
clustering was identified using “ElbowPlot” function as 24.
Subsequently, for two-dimensional data visualization, we
performed UMAP based on the first 24 dimensions of the
integrated dataset, with the cells clustered using the Louvain
algorithm. Given the very large number of cells (~300K), we set
the resolution at 2.5 to get meaningful clusters by using the
“FindClusters” function.
4.5 Establishing the Cellular Cluster
Identity of the Integrated Dataset
Cluster identity of the integrated Seurat object was established and
confirmed using a threefold strategy. We first ran SingleR, an
automatic cluster annotation tool that compares the transcriptome
of each single cell to reference datasets to determine cellular
identity. We utilized a combination of SingleR’s inbuilt
references including DatabaseImmuneCellExpressionData,
MonacoImmuneData, and NovershternHeamtopoieticData to
improve its performance and domain knowledge on established
markers of cell types. We additionally identified “cluster markers,”
which were defined as DEGs, which were either more or less
expressed within a chosen subset of cells/clusters compared with
all other subsets/clusters within the Seurat object. This test was
performed using “FindAllMarkers” function in Seurat with
Wilcoxon rank sum test. Genes with >0.25 log-fold changes, at
least 25% expressed in tested groups, and Bonferroni-corrected p-
values <0.05 were regarded as cluster markers. The final cluster
annotations were determined and verified based on the expression
of cluster markers, legacy knowledge, and SingleR annotations. In
the situations where multiple clusters were grouped, cluster
markers were recomputed using the same methods, at the level
of subsets.

4.6 Myeloid and Lymphoid Cell-Type
Grouping
To discern the trends in cell-type changes and between cell-type
interactions, we grouped the mononuclear cell types by origin:
myeloid (MKs, basophils, mDCs, CD14+ CMs, CD16+ non-CMs
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(NCM), intermediate monocytes (ITM), and LDNs) and
lymphoid (CD4+ and CD8+ T-cell subsets, MAIT cells,
gamma-delta T(gdT), PBs, B cells, and NK cells). As per the
most recent lympho-myeloid model of hematopoiesis (38), the
DC phenotype exists on a spectrum from lymphoid (with
plasmacytoid DCs most resembling lymphoid cells) to myelo-
monocytic (with mDCs most resembling myeloid/monocytic
cells). We subsequently annotate the plasmacytoid DCs as
belonging to the lymphoid lineage (Figure 1E).

4.7 Subsampling
The original parent Seurat object was subsampled, for specific
cellular compartments (e.g., PBs, LDN, monocytes, and NK cells)
to increase cluster annotation granularity. That is, we divided the
parent Seurat object into individual Seurat objects comprising
cells from each compartment of interest. The integrated space
within these subsampled cells was reclustered similar to the
processing of the parent Seurat object/primary UMAP.
Resolution for each subsampled space was chosen between 0.8
and 1.2. The resolution chosen for a cell type is directly indicated
within the results. The cluster identities of the clusters identified
within the subsampled spaces (minor clusters) were established
using the same strategy as for the parent Seurat object. Some
clusters were renamed based on cluster markers identified from
SingleR annotation.

4.8 Establishing Cellular Heterogeneity of
Subsampled Immune Cells
4.8.1 Monocytes
Subsampling and reclustering the original 22 monocyte clusters
(CD14+, CD16+, and ITM) resulted in a total of 19 clusters within
the subsampled space, which was further grouped into 11 distinct
monocytic subsets, as follows. Based on the expression of markers
CD16, CD14, TNFRFA1, and TNFRFB2, clusters 3 and 13 were
grouped into NCM (Figure 2B), while cluster 11 was identified as
ITM based on the expression of markers CD14, CD16, HLA-DR,
and TNFRFB2, and other known ITM gene markers including
MARCO, APOBEC3A, MARCKSL1, and GBP4. ITMs showed
significant enrichment (p.adj < 0.05) for members of the
complement activation/signaling (C1QA, C1QB, C3AR1,
C5AR1, and SERPINA1) and IFN-I response (Supplementary
Table S5). Cluster 18 (expressing CD33 and ITGAM as cluster
markers (p.adj < 0.05)) was annotated as CD33+ mMDSCs (27).
mMDSCs were markedly absent within healthy samples. Both
ITM and mMDSC had the highest cell abundances within severe
disease (Figure 2C, Supplementary Table S8, Supplementary
Figure S3A). Abundance signatures for mMDSCs were verified
within an independent patient cohort and are consistent with our
observations (Supplementary Figure S3B).

The remaining 15 clusters were divided into eight subsets of
annotated CD14+ CM via SingleR annotation (Figure 2D).
Several of the CM subsets were reminiscent of subtypes
explored in previous publications and are not explored in
detail within this manuscript including CM2 (cluster 4, MHC-
II high), CM5 (clusters 1 and 12), and CM6 (cluster 5) (5, 6, 10).
These subsets in addition to NCM had reduced abundances
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within COVID-19. Subset CM3 (clusters 7, 16, and 17) was
found to have reduced expression of HLA-DR CD14, alarmins,
and/or SELL and increased expression of tetraspanins (e.g.,
CD63 and CD53). The remaining CM subsets are described
and analyzed within the main manuscript.

4.8.2 Low-Density Neutrophils
Subsampling and reclustering “LDNs” from the parent Seurat
object resulted in nine clusters (Figure 3, Supplementary Figure
S4) grouped into three distinct subsets based on the expression
patterns of established markers and cluster markers. Clusters 0,
1, 2, and 3 were identified as LDGs based on the mixed
expression of activated mature neutrophil markers including
CD11a/b/ITGAL/ITGAM, CD55, CD16, CD10/MME, and
SELL and immature markers including CD16high/low and
CD10low (33). Clusters 4, 6, and 8 were identified as PMN-
MDSCs, based on the significant expression (p.adj < 0.05) of
several known markers including ITGAM, LCN2, CAMP,
MMP8, ARG1, S100A8, and S100A9 (37, 38) and were
subsequently grouped together (Figure 3E). OLR1 (LOX1), a
recently validated PMN-MDSC marker, was exclusively
increased within this subset (p.adj < 0.05) (38) (Figures 3E, F).
Clusters 5 and 7 expressed FUT4 (CD15), CD63, PRTN3, MPO,
and ELANE reminiscent of a “proneutrophil” state (5).

4.8.3 Natural Killer Cells
Subsetting and reclustering NK cells from the primary UMAP
resulted in 23 distinct clusters (Supplementary Figure S5A).
Three clusters (clusters 4, 6, and 19) showed significant
enrichment of CD3 (CD3D/G) suggestive of an NKT
(invariant NK-T) like population. Because most NK cells
express CD7+, one CD7− cluster (cluster 16) was excluded
from further analysis (Supplementary Figure S5B) (64, 65).
Reclustering and re-embedding of the Seurat object after
processing from the original Seurat object resulted in 18
clusters (Figure 4A), grouped into seven distinct subsets based
on previously published NK markers and considered for further
analysis (Figures 4B, C, and Supplementary Figure S5C). NK4
(cluster 8), NK5 (cluster 14), and NK8 (clusters 2, 9, and 12) were
identified as CD56low subsets. Subsets NK3 (clusters 4–7, 10–11,
and 17) and NK7 (clusters 0 and 1) largely lacked expression of
CD56 (CD56neg) (Supplementary Figure S5D). Specifically,
NK5, NK7, and NK8 represented activated/mature NK clusters
based on the expression of cytotoxic markers including perforin
(PRF1), granzymes (GZMA, GZMB, and GZMK), and
remodeling markers including ACTB, ARPC3/4, CFL1, and
CST7. NK3 showed an increased expression of inhibitory
receptors including KIR2DL1/3, KIR3DL1/L2, KLRC2, IL32,
and CD3E and cytolytic molecules including GZMH and CST7
and lower levels of FCER1G, in line with a profile of adaptive NK
cells within increased cytotoxic potential (Supplementary Table
S16). Two subsets NK6 (cluster 3, ~6.9% of total NK cells) and
NK2 (clusters 16 and 15, ~6.5% of total NK cells) were
characterized by increased expression of CD56. NK6 expressed
surface proteins commonly attributed to CD56bright population
including CD44, SELL, and GZMK chemokines XCL1, XCL2,
DUSP1, FOS, JUND, IL7R, and IL2RB (64).
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4.8.4 T Cells
Subsampling and reclustering the original 19 CD4/CD8T (and
naïve) clusters comprising 128,589 cells resulted in a total of 22
clusters within the subsampled space. Using the commonly used
subtyping markers, we observed four clusters (clusters 5, 19, 20,
and 21) to be non-T specific (with a small population of CD3+ T
cells) and were removed. Additionally, we observed that cluster 5
was majorly contributed by healthy samples, from only SS_C1,
and was subsequently eliminated. The remaining 18 clusters
(119,683 cells) were further grouped into eight distinct subsets
(Figures 5A, B) using automatic annotation and verified based
on the expression of commonly used T subtyping markers
(Supplementary Figures S6A, B) (98). Specifically, based on
the expression of naïve markers CCR7, SELL, and TCF7, seven
CD4+ clusters (clusters 1, 4, 7, 11, 12, 14, and 15) were grouped
into the naïve CD4T subset, while a single CD8+ cluster (cluster
10) was identified as the naïve CD8 T-cell subset. Likewise, based
on the expression of granzymes (GZMA/B), PRF1, and NKG7,
clusters 2, 3, and 9 were identified to be terminally differentiated
effector (Teff) CD8T cells, while CD4+ cluster 3 was identified as
Teff CD4T. Clusters 6 and 13 were grouped into Treg CD4T
subset based on the expression of CTLA4, FOXP3, IL2R, and
ICOS (Supplementary Figure S6B). Consistent with SingleR
annotation, cluster 0 was identified as TFH (GATA3+), and
cluster 17 was identified as memory T cells (Tmem, CD27+,
IL7R+, CD28+, and FAS/CD95+). Studies have broadly identified
increased exhaustion with increasing severity in the effector T-
cell subset of COVID-19 patients (14). Recent research has
additionally demonstrated a presence of clonally distinct
hybrid memory T-cell subpopulation with an exhausted
phenotype (GZMK+ and TOX+ with markers of exhaustion
including PDCD1, MAF, and NFATC2), which is in contrast
to the classical understanding that memory and exhausted T cells
arise from segregated pathways (99). The CD8+ Tmem
population identified in our study exhibits signatures
consistent with this clonally distinct population, indicative of
the transition of a subset of exhausted T cells to a memory stage
in both severe and non-severe COVID-19 (cells in healthy = 361,
non-severe = 656, and severe = 622).

4.8.5 B Cells
We extracted the B-cell subsets (B lymphoblasts, naïve B cells, and
non-switched memory B cells) from the original parent Seurat
object (Supplementary Figure S8A) and identified the most
significant remodeling occurring only within the naïve cell
compartment. Subsampling and reclustering of naïve B cells
resulted in 11 initial clusters (Supplementary Figure 8B). Out
of the 11 initial clusters, we excluded two (clusters 6 and 7), as
their most significantly upregulated cluster markers indicated
potential erythroid and myeloid lineage cells and were not
entirely consistent with naïve B cells. Of the remaining nine
clusters (Figure 6A), we verified expression of surface markers
consistent for naïve B cells (Supplementary Figures S8C, D). We
further grouped these clusters into groups A–F, based on gross
gene expression (via hierarchical clustering of scaled average gene
expression values expressed in greater than 60% of all cells) in each
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cluster. In multiple instances, this unsupervised clustering method
grouped together clusters that comprised similar proportions of
healthy, non-severe, and severe cells (Figure 6B). In groups A
(clusters 2 and 9) and B (clusters 5 and 8), non-severe cell numbers
were much greater than in both healthy and severe cells. In group
C (cluster 1), non-severe cells still dominate the cluster, but are
followed by severe and then healthy cells. In group D (clusters 0
and 4), healthy and non-severe cells outnumber severe cells.
Finally, in groups E (cluster 3) and F (cluster 10), severe cells
are greater than non-severe and healthy cells.

Subsampling and reclustering PBs from the original parent
object resulted in 10 clusters (Supplementary Figure S8F), of
which six showed surface marker expression most characteristic
of PBs (CD19−, MS4A1−, CD27+, and CD38+) and were retained
for further analysis (Supplementary Figure S8G) (Figures 6E–
G). The six clusters were grouped into four subsets PB1 (clusters
0 and 2), PB2 (clusters 3 and 6), PB3 (cluster 1), and PB4
(cluster 5) based on expression patterns among the top 60 cluster
markers. For clarity, the expression of the top 20 genes from each
cluster is shown in Supplementary Figure S8H. The clusters
comprising subsets PB1, PB2, PB3, and PB4 and the number of
healthy, non-severe, and severe cells in each subset are detailed in
Supplementary Figure S8I. Since PBs from healthy patients
comprised only about 5% of all PBs, we considered cells only
from severe and non-severe patients in our analysis. In addition
to an expanded PB population relative to non-severe patients, the
PB population in severe patients was also more heterogeneous:
no single subset dominated the PB response in severe disease, as
multiple subsets were expanded; by contrast, subset PB1
dominated the PB response in non-severe disease.
4.9 Differential Gene Expression Analysis,
Enrichment Analysis, and Visualization
Dotplots used within this manuscript were all generated using
the “DotPlot” function of Seurat. The average expression
presented within each dotplot is the scaled/standardized
expression values as defined by Seurat. DGEA was performed
with respect to either healthy or non-severe samples, depending
on the context of analysis, using the “FindMarker” function
within Seurat. The thresholds for calling DEGs were as discussed
above. Heatmaps of the DEGs highlighting the fold changes
across conditions of interest were performed using “pheatmap”
library in R/BioC. Gene Ontology (GO) enrichment on the DEGs
identified was performed using ClusterProfiler v.3.10.1 (100) or
Enrichr (101). The top 10–15 categories of GO were utilized for
visualization throughout the manuscript and Supplementary
Material. Cluster profiler was also utilized for visualization
of enrichment.

4.10 Transcription Factor Activity
Characterization and Transcription Factor-
Binding Enrichment
To characterize the transcriptional regulation of the altered genes
programs within the subset, we queried TF activity via
DoRothEA (Discriminate Regulon Expression Analysis) (102),
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which utilizes the viper activity inference algorithm against a
curated list of TFs and its target expression levels to predict TF
activity (regulon). DoRothEA regulons have been generated from
various sources and evidence types, and we subsequently
included sets with “A” or “B” confidence ratings. We visualized
the top 20 genes ranked by DoRothEA for visualization. We also
utilized ChEA3 (103) to rank TFs. In contrast to DoRothEA,
which utilizes the entire expression matrix to derive putative TFs
involved, ChEA3 predicts TF enrichment based on the overlap
between given lists of DEGs or genes of interest, and TF targets
assembled from a compendium of resource. ChEA3 utilizes a
Fisher’s exact test, with a background size of 20,000, to compare
the input gene set to the TF target-gene sets to establish
significance. We utilized the top 10 highly ranked TFs defined
via the “TopRank” metric for further visualization.
4.11 Independent Patient Cohort and
Immunophenotyping of Myeloid-Derived
Suppressor Cells, Mucosal-Associated
Invariant T Cells, and Gamma-Delta
T Cells
Human Subjects: Blood samples from healthy subjects were
enrolled and tested under Plexision IRB-approved protocol
6774. COVID-19 patients were enrolled under IRB-approved
protocol #1551551 from Edinburg, TX. Patients with COVID-19
infection are categorized into three groups, COVID-19 patients
who required no hospitalization (Mild), those who required
hospitalization with no mechanical ventilation (Hospitalized),
and those who were hospitalized and required ventilation for
oxygen requirements (Severe). Patient cohort demographics and
severity details are presented within Supplementary Table S19.

To provide independent validation of expansion of certain
immune cell populations in severe and non-severe COVID-19
and healthy controls, we performed flow cytometric analyses on
PBMCs from the above independent patient cohort. Cells from
PBMCs were labeled with fluorochrome-labeled antibodies to
characterize mMDSC and PMN-MDSC subsets. The respective
phenotypes were CD14+HLA-DR− and CD14-CD15+CD11b+.
MAIT cells were gated based on CD3+ TCRgd-TCRVa7.2+

CD161+ cells, and gdT cells were identified based on CD3+

TCRgd+ cells. Antibodies from BioLegend (San Diego, CA) and
BD Biosciences (San Jose, CA) were utilized.

4.12 RNA-Binding Proteins
The current knowledgebase of all RBPs was downloaded from
RBPBase (104) containing 4,257 RBPs within humans. Of these,
Frontiers in Immunology | www.frontiersin.org 21
we considered only those RBPs that are present in the top 25% of
the hits_Hs (>6), bringing down the list to 1,031 high-confidence
RBPs. Consensus genes that overlapped with this list are
provided in Supplementary Figure S2C.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by IRB-approved protocol #6774 and IRB-approved
protocol #1551551. The patients/participants provided their
written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

Conceptualization: KM and SS. Methodology: KM and SS.
Investigation: KM and PN (transcriptomics) and CA and RS
(immunophenotyping) . Visual izat ion: KM and PN
(transcriptomics) and CA and RS (immunophenotyping).
Independent patient cohort acquisition: SR, JA, and MB-G.
Funding acquisition: SS. Supervision: SS. Writing—original
draft: KM. Writing—review and editing: KM, PN, CA, RS, and
SS. All authors contributed to the article and approved the
submitted version.
FUNDING

National Institutes of Health grant R01 LM012595 (SS); National
Institutes of Health grant U19 AI090023 (SS); National Institutes
of Health grant R01 HL108735 (SS); National Institutes of Health
grant OT2 1 OD030544 (SS); and Joan and Irwin Jacobs
Endowment (SS).
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.738073/
full#supplementary-material
REFERENCES
1. Lavine JS, Bjornstad ON, Antia R. Immunological Characteristics

Govern the Transition of COVID-19 to Endemicity. Science (2021) 371
(6530):741–5.

2. Mukund K, Mathee K, Subramaniam S. Plasmin Cascade Mediates
Thrombotic Events in SARS-CoV-2 Infection via Complement and
Platelet-Activating Systems. IEEE Open J Eng Med Biol (2020) 1:220–7.
doi: 10.1109/OJEMB.2020.3014798
3. Blanco-Melo D, Nilsson-Payant B, Liu WC, Uhl S, Hoagland D, Møller R,
et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of
COVID-19. Cell (2020) 181(5):1036–45. doi: 10.1016/j.cell.2020.04.026

4. Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, et al .
Immunophenotyping of COVID-19 and Influenza Highlights the Role of
Type I Interferons in Development of Severe COVID-19. Sci Immunol
(2020) 5(49):eabd1554. doi: 10.1126/sciimmunol.abd1554

5. Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S,
Zhang B, et al. Severe COVID-19 Is Marked by a Dysregulated
October 2021 | Volume 12 | Article 738073

https://www.frontiersin.org/articles/10.3389/fimmu.2021.738073/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.738073/full#supplementary-material
https://doi.org/10.1109/OJEMB.2020.3014798
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1126/sciimmunol.abd1554
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mukund et al. Immune Landscape of COVID-19
Myeloid Cell Compartment. Cell (2020) 182:1419–40. doi: 10.1016/
j.cell.2020.08.001

6. Bernardes JP, Mishra N, Tran F, Bahmer T, Best L, Blase JI, et al.
Longi tudina l Mul t i -Omics Analyses Ident i fy Responses of
Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe
COVID-19. Immunity (2020) 53:1296–314. doi: 10.1016/j.immuni.
2020.11.017

7. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, et al.
Deep Immune Profiling of COVID-19 Patients Reveals Distinct
Immunotypes With Therapeutic Implications. Science (2020) 369(6508):
eabc8511.

8. Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, et al. Comorbidities and Multi-
Organ Injuries in the Treatment of COVID-19. Lancet (2020) 395:e52. doi:
10.1016/S0140-6736(20)30558-4

9. Osman M, Faridi RM, Sligl W, Shabani-Rad M-T, Dharmani-Khan P,
Parker A, et al. Impaired Natural Killer Cell Counts and Cytolytic Activity
in Patients With Severe COVID-19. Blood Adv (2020) 4:5035–9. doi:
10.1182/bloodadvances.2020002650

10. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martıńez-Colón GJ, McKechnie JL,
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