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Detailed knowledge of the diverse immunoglobulin germline genes is critical for the study
of humoral immunity. Hundreds of alleles have been discovered by analyzing antibody
repertoire sequencing (Rep-seq or Ig-seq) data via multiple novel allele detection tools
(NADTs). However, the performance of these NADTs through antibody sequences with
intrinsic somatic hypermutations (SHMs) is unclear. Here, we developed a tool to simulate
repertoires by integrating the full spectrum features of an antibody repertoire such as
germline gene usage, junctional modification, position-specific SHM and clonal expansion
based on 2152 high-quality datasets. We then systematically evaluated these NADTs
using both simulated and genuine Ig-seq datasets. Finally, we applied these NADTs to
687 Ig-seq datasets and identified 43 novel allele candidates (NACs) using defined criteria.
Twenty-five alleles were validated through findings of other sources. In addition to the
NACs detected, our simulation tool, the results of our comparison, and the streamline of
this process may benefit further humoral immunity studies via Ig-seq.

Keywords: tools benchmarking, novel allele, antibody repertoire, high-throughput sequencing, Ig-seq
INTRODUCTION

Genetic variations of antibody germline genes play a pivotal role inhumoral immunity. For instance, the
allele variants of IGHV1-69 greatly impact the ability to develop broadly neutralizing antibodies
(bNAbs) against influenza virus (1), andmodulate IGHV germline gene utilization (2). In addition, the
polymorphism in IGHV4-61 is associated with a risk in rheumatic heart disease (3). In fundamental
research, accurately assigning germline genes to antibody sequences is also critical. It affects the analysis
of clonotype, somatic hypermutation (SHM), and the maturation pathway of antibody clones.
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Therefore, germlinealleles are essential for delineating theontogeny
and evolutionof antibody responses specific to antigens or vaccines.
Despite this need, a comprehensive collection of novel alleles has
not yet been achieved (4).

The advent of antibody repertoire sequencing (Rep-seq or Ig-
seq) technology allows the acquisition of millions of antibody
sequences and these unprecedented data facilitate the discovery of
novel alleles through tools with specific aims (i.e. novel allele
detection tools, NADTs) (5–9). As antibody sequences undergo
extensive SHMs along with B cell proliferation once activated by an
antigen, novel allele detection for antibody genes are more
challenging than traditional mutation detection in conventional
genes where only base errors caused by PCR and high-throughput
sequencing (HTS) need to be considered (6). To distinguish SHMs
and base errors from real polymorphisms, NADTs use distinct
algorithms and are supposed to be effective in typical scenarios.

Algorithm wise, TIgGER (6), LymAnalyzer (8), and Partis (7)
employ a SNP-based approach. Novel alleles are predicted by
identifying SNPs in the reference germlines. For example,
TIgGER and Partis employ mutation accumulation plots to
identify SNPs. Therefore, the major challenge for these NADTs
is to distinguish SNPs from SHMs. In contrast, IgDiscover (5)
annotates the input sequences with an initial germline database
to form clusters and subsequently predicts novel alleles based on
consensus building within clusters. This sequence-based
approach circumvents the SNP set determination procedure
encountered by the SNP-based approach and can easily output
the novel germline sequences regardless of the distances to their
nearest counterparts. Nevertheless, it heavily relies on repertoire
types and is suggested to work efficiently only on naïve
repertoires featured by a substantial fraction of unmutated
sequences. IMPre (9) uses a seed-based approach. It starts with
a seed sequence and extends the sequence in both directions if
defined requirements are met. It is worth mentioning that both
Frontiers in Immunology | www.frontiersin.org 2
the sequence-based approach and the seed-based extension
approach can identify novel alleles that have insertions and
deletions compared to the known germlines.

Despite these algorithm differences, it remains unclear how
NADTs above compete with each other in practice. A previous
study presented a comparison among 3 NADTs (i.e. IgDiscover,
TIgGER and Partis) (7), but the study was not comprehensive as to
both thenumberof includedNADTsand thekindof challenges that
need to be overcome in novel allele detection. To evaluate the five
NADTs TIgGER, LymAnalyzer, Partis, IgDiscover and IMPre
objectively, we used a repertoire simulation tool that incorporates
the full spectrum of repertoire features extrapolated from 2152
datasets, including germline gene usage, junctional modification,
position-specific SHM and clonal expansion. We then
systematically evaluated these NADTs using both the simulated
datasets and paired genuine bulk and single-cell repertoire
sequencing datasets. We identified 43 novel allele candidates
(NACs) from 683 datasets using the criterion set based on the
comparison result. This systematic evaluation, together with the
NACswepresent here,mayaid futurenovel allele identificationand
thus achieve a better interpretation of adaptive immune receptor
repertoire sequencing (AIRR-seq) dataset.
RESULTS

An Overview of 5 NADTs and the
Study Design
To perform solid and comprehensive comparison for currently
available NADTs, we employed TIgGER (6), IMPre (9),
IgDiscover (5), LymAnalyzer (8) and Partis (7). Their basic
information is summarized in Table 1. As these five NADTs
were developed using various programming languages, their
installations are subject to various dependencies. With respect
TABLE 1 | The basic information for 5 NADTs.

NADTs Year # Citation* Programming
language(s)

Supported
receptor
type(s)

Supported
chain
type(s)

Supported
gene
type(s)

Nonhuman
species

supported

Comparison
with other

tools

in silico
Benchmark

Algorithm Authors

TIgGER 2015 104 R BCR IGH, IGK,
IGL

V Yes No Yes Mutation
accumulation
models

Gadala-
Maria
et al. (6)

IMPre 2016 20 C, Perl BCR, TCR IGH, IGK,
IGL, TRB,
TRA

V, J Yes No Yes Seed_Clust Zhang
et al. (9)

IgDiscover 2016 81 Python BCR IGH, IGK,
IGL

V, D, J Yes No No Windowed
cluster
analysis,
Linkage
cluster
analysis

Corcoran
et al. (5)

LymAnalyzer 2016 41 Java BCR, TCR IGH, IGK,
IGL, TRB,
TRA

V,J Yes No No Mismatch
quality control

Yu et al.
(8)

Partis 2019 12 C, C++, Perl,
Python

BCR IGH, IGK,
IGL

V Yes Yes Yes Mutation
accumulation
models

Ralph
et al. (7)
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to their applications, IMPre and LymAnalyzer work on both T
cell receptor (TCR) and B cell receptor (BCR) while the other
three only work on BCR. All NADTs support both heavy chain
(IGH) and light chain (IGK and IGL) of BCR, while IMPre and
LymAnalyzer also support TRB and TRA. TIgGER and Partis
only support V genes, IMPre and LymAnalyzer support V and J
genes, while IgDiscover supports V, D, and J genes. Except
IgDiscover and LymAnalyzer, all other NADTs underwent in
silico benchmark during development. Partis developers
compared their NADT with others, but no systematic third-
party comparison has been performed among them. Therefore, a
comprehensive and systematic comparison would benefit the
field for novel allele detection using antibody repertoire datasets.

When we compared the supportive features of these NADTs,
we found IMPre to be the most versatile and user-friendly NADT
before considering its performance for novel allele detection
(Supplementary Table 1). To gain more insights into these
NADTs, we evaluated their performance with both simulated
and real-world Ig-seq datasets (Figure 1). The benchmark result
was then summarized and translated into knowledge-based
filtration criteria used to obtain credible NACs from collected
bulk sequencing dataset.

A Flexible Immune Repertoire Sequencing
Dataset Simulation Tool and the
Benchmark Dataset
Generating in silico Ig-seq datasets is a challenging task. An ideal
Ig-seq simulating tool should reflect the preferential gene usage,
Frontiers in Immunology | www.frontiersin.org 3
junctional nucleotide insertion and deletion, phylogenetic clonal
structure, various allele ratio, and the base errors intrinsic to PCR
amplification and next-generation sequencing (NGS). Although
several repertoire simulation tools exist (7, 10–13), none of them
incorporate the full features of Ig-seq dataset mentioned above.
Therefore, we built IMPlAntS (Integrated and Modular Pipeline
for Antibody Repertoire Simulation) and it enables both one-
stop repertoire simulation and modular calls for adaption to
customized pipelines.

Briefly, IMPlAntS consists of three consecutive steps, i)
generation of independent V(D)J rearrangements; ii) generation
of SHM with phylogenetic structure within clones; and iii)
generation of NGS reads incorporating base errors (Figure 2).
These steps can be implemented individually or collectively using
the corresponding scripts.

In the first step, a series of key parameters can be specified in
the configuration files. These parameters include V(D)J gene
usage, allele ratio, the distribution of insertion and deletion
length, and the percentage of productive rearrangements. In
the second step, we generated SHMs in rearranged sequences in a
way similar to that reported by Yermanos et al. (13) to create the
phylogenetic sequences as in the real repertoire. The resultant
repertoire with SHMs comes from several iterations of
introducing SHMs to the selected sequences based on the
positional mutability and substitutability models. These two
models, together with the parameters involved in the first step,
derive from our previous large-scale study (14). Finally, we
employed a popular NGS simulation tool, ART, to produce
FIGURE 1 | Schematic overview of the study design. In this study, both in silico simulated and genuine Ig-seq dataset were employed as benchmark datasets that
serve as the input of all five NADTs independently. The performances of these NADTs were then summarized and integrated, and translated into filtration criteria
capable of facilitating the evaluation of NACs. Among all NACs reported based on the collected bulk sequencing dataset, we retained only those credible NACs
passing the defined filtration criteria.
October 2021 | Volume 12 | Article 739179
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FIGURE 2 | IMPlAnts, an Integrated and Modular Pipeline for Antibody Repertoire Simulation. IMPlAnts consists of three consecutive steps: i) individual rearrangement
simulation; ii) SHM and clonal expansion simulation; and iii) next generation sequencing simulation. In step i and ii, V(D)J gene usage, junctional modification and position-
specific SHM were learned from a previous large-scale study encompassing 2152 high-quality Ig-seq datasets. After SHMs were simulated, the power law was used to
simulate clonal size distribution. Finally, a NGS read simulator, ART, was exploited to produce sequencing reads (Illumina MiSeq, PE250).
Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7391794
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NGS reads (15). More details for IMPlAnts can be found in
Materials and Methods section.

With this pipeline, we generated four datasets: DEXPR,
DSNP, DALLELE, and DSHM (Table 2). Noteworthy is that
only DSHM was generated with all three steps mentioned above.
In contrast, the other three datasets were generated with only the
first and the final step as they contain no SHMs. Each of the four
datasets was comprised of 20 repertoires, except for DSHM
(n=10). The constituent repertoires within each dataset
contained variation only in the studied variable. Except for
DSHM, each dataset contained four groups (two groups for
DSHM). While each group is represented by five repertoire
replicates and has a distinct level as to the studied variables.
Other variables were set identically among groups within each
dataset and to a level theoretically most favorable to novel allele
detection. For each repertoire, we generated 1 million reads to
avoid the read number limitation mentioned in the IgDiscover
manual (at least 750,000 was recommended). The only exception
was with DALLELE, in which repertoires in different groups had
varying numbers of reads to make the novel alleles represented
by the same number of reads. Lastly, we artificially created
“novel” alleles by random selection of the positions and SNPs
in germline sequences. The resultant “novel” alleles together with
known ones then served as the initial germline database for
NADTs’ benchmarking (Materials and Methods).

Evaluation of the 5 NADTs Using In Silico
Simulated Benchmark Dataset
To compare the sensitivity and specificity of the 5 NADTs in
detecting novel alleles (allele level) (LymAnalyzer was excluded
as it reported only SNPs) as well as SNPs (SNP level) (Materials
and Methods), we used our in silico simulated datasets (Table 3).
As expected, lower gene or allele expression and more SNPs or
SHMs hampered both sensitivities and specificities for at least
one NADT in the detection of novel alleles and SNPs in general
(Table 3, Figure 3). We found TIgGER to work well with respect
to both sensitivities and specificities with DEXPR and DSNP,
although it did not identify alleles in DALLELE (Table 3). IMPre,
though exhibiting lower sensitivities and specificities, identified
novel alleles in the datasets with all four variables. IgDiscover
manifested very good specificities although it identified fewer
alleles than TIgGER. The performance of Partis was less optimal
in DSNP than that of TIgGER but excelled in DALLELE and
higher SHM datasets. As LymAnalyzer only reports SNPs, it was
excluded from allele level comparisons. However, it also showed
Frontiers in Immunology | www.frontiersin.org 5
high sensitivities in all situations in SNP level although the
sensitivities were less ideal. The performance of other NADTs
was similar in SNP level to that of the allele level.

Taken together, TIgGER, IgDiscover, and Partis showed
comparably high specificities and therefore the alleles identified
were more reliable. IMPre and LymAnalyzer provided more
allele candidates, but none of the NADTs performed well in all
situations. However, each of these datasets was simulated with
only one variable with a particular quantity to evaluate the effect
of these quantitative measures on the performance of NADTs
whereas real-world repertoires always consist of combinations of
all variables in multiple quantitative measures.

Evaluation of 5 NADTs Using a
Combination of Single-Cell and Bulk
Sequencing Dataset
An ideal situation to test NADTs is to genotype all the V alleles in a
genome and then compare them with NADTs’ predictions.
However, given the high similarities of V alleles and other
interspersed tandem sequences among them, sequencing this
peculiar region of the genome alone is a challenging task (16).
Therefore,we took an alternative approachbyacquiring germlineV
allele sequences from single-cell repertoire sequencing of naïve B
cells (scRep-seq) and then conducted novel allele identification on
the bulk Ig-seq datasets from the same donor. The naïve state of
antibody sequences and the super-high depth of the scRep-seq data
ensured the accuracy of acquired germline sequences. Thus, this
evaluation represents the real-world situation.

Three healthy donors were included in real-world dataset
benchmark. Briefly, we isolated naïve B cells from the peripheral
blood of these 3 donors with specific cell surface markers. Then
sequencing libraries were constructed according to the protocols
of Chromium Single Cell Human BCR Amplification Kit (10X
Genomics) and sequenced on an Illumina platform (Materials
and Methods). Each single cell sequencing sample contains
around 85 million to 91 million paired end reads. With the
single naïve B cell sequencing dataset, we identified 4 unique
NACs from 3 donors using a customized pipeline (Table 4,
Materials and Methods). All identified NACs are minor alleles of
the involved genes, with expression ratios to the major ones
ranging from 0.19 to 0.89. Moreover, each of them only harbors
one SNP compared to their nearest known alleles.

We then applied NADTs to the bulk sequencing datasets and
compared their novel allele predictions. TIgGER identified three
and IgDiscover identified one out of the four NACs (Table 4)
TABLE 2 | Characterization of four simulated datasets.

Dataset Studied variable # Repertoires # Reads (million) Gene expression Minor allele frequency # SNPs SHM frequency

DEXPR gene expression 20 (5, 5, 5, 5) 1, 1, 1, 1 ~5%, ~1%, ~0.1%, ~0.01% – 1 0
DALLELE minor allele frequency 20 (5, 5, 5, 5) 0.1, 0.16, 0.5, 1 ~5% 50%, 30%, 10%, 5% 1 0
DSNP # SNPs 20 (5, 5, 5, 5) 1, 1, 1, 1 ~5% – 1, 3, 5, 7 0
DSHM SHM 10 (5, 5) 1, 1 ~5% – 1 0, ~6%
October 2021
 | Volume 12
Each of the first three datasets above consists of 20 simulated repertoires, corresponding to four groups with equal sample size (n=5) varying from each other with respect to the studied
variable. While DSHM contains 10 repertoires from two groups with equal size (n=5). Besides, repertoires from DEXPR, DSNP and DSHM do not contain allelic diversity and thus do not
apply to the ‘minor allele frequency’ column. Comma-separated percentages or numbers in the last four columns describe the features of simulated novel alleles in repertoires of different
groups within a certain dataset (see also Results).
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while IMPre and Partis missed all of them. Although
LymAnalyzer identified two positive SNPs from two NACs, it
also falsely predicted 14 and 6 SNPs in these two alleles,
respectively. In addition, we found two possible novel germline
Frontiers in Immunology | www.frontiersin.org 6
sequences that harbor a considerable number of mismatches
with their nearest known germline sequences (Supplementary
Table 2). Notably, the novel germline sequence nearest to
IGHV1-NL1*01 was identified in 2 of 3 enrolled donors.
FIGURE 3 | Heatmap of double-tailed p-value of paired t-test between different subgroups with regard to sensitivity and specificity for different tools in four
simulated datasets. Each row and column in the heatmap represents a subgroup. P-values below 0.05 are shown in red and p-values above 0.05 in blue.
October 2021 | Volume 12 | Article 739179
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Because of the limited number of bona fide novel alleles (4
NACs in Table 4 were deemed as bona fide novel alleles here),
this evaluation was less comprehensive. We thus exploited the
genuine Ig-seq dataset (donor1 and donor3) in another way. As
many germline sequences were known through the single naïve B
cell sequencing dataset, we artificially generated “novel” alleles as
those in the simulated dataset mentioned above and evaluated
these NADTs in the same way (Materials and Methods).
However, because there were not enough genes expressing at
around 0.01%, we did not generate novel alleles at this level.
Moreover, the allele ratio is hard to precisely infer even with the
single naïve B cell sequencing dataset and was thus left
unstudied. We denoted the genuine dataset with different
initial databases as GD-EXPR, GD-SNP, and GD-SHM.

The genuine dataset-based benchmark result exhibited a
similar performance spectrum as that based on the simulated
dataset (Table 5). These similarities included, i) each of the three
studied factors was found to be influential for at least one NADT
for novel allele detection (Supplementary Figure 1), ii) TIgGER
and IgDiscover were superior to IMPre and Partis in both
sensitivity and specificity for detecting novel alleles with
Frontiers in Immunology | www.frontiersin.org 7
multiple SNPs (i. e. 3, 5, and 7) (Supplementary Figure 2), iii)
the SNP-level performance spectrum in general resembled that
of allele level, iv) IMPre and Partis presented higher sensitivity
and specificity for identifying SNPs in DSNP than for alleles, and
v) LymAnalyzer remained the most sensitive but least specific
NADT in identifying SNPs.

However, several variations were also remarkable and they
included, i) for genuine datasets, TIgGER and IgDiscover
performed better in identifying novel alleles expressed at a low
level (i. e.~0.1%) than for simulateddataset; bothwere thus superior
to IMPre and Partis, ii) although Partis remained excellent in
overcoming SHM noise, it was outperformed by IgDiscover
(Supplementary Figure 2), which exhibited a surprisingly high
sensitivity of0.80 andspecificityof1.00atbothSNPandallele levels,
iii) IgDiscover manifested significantly higher sensitivities and
specificities than TIgGER in three datasets, and iv) LymAnzlyzer
displayed low and negligible specificities.

To seek the underlying reasons accounting for these
discrepancies, we assessed the output of these NADTs as well
as the properties of each input dataset. We found that the inferior
performance of IgDiscover and TIgGER on DEXPR in the
TABLE 4 | NACs identified based on single naïve B cell sequencing dataset from 3 donors.

Nearest known allelea Known allele # Supportive contigsb Length (bp) Start End SNP locic Individual

IGHV7-4-1*02 IGHV7-4-1*02 44 (136, 0.32) 296 1 296 G92A Donor1
IGHV3-30*18T IGHV3-30*18 126 (492, 0.26) 296 1 296 C72G Donor2
IGHV3-7*03T IGHV3-7*03 96 (108, 0.89) 296 1 296 G46A Donor3
IGHV3-53*04T,G IGHV3-53*01 24 (126, 0.19) 293 1 293 T261C
O
ctober 2021
 | Volume 12 | Arti
a, NACs identified by TIgGER using bulk sequencing of IgM sequences are marked with “T” while IgDiscover with “G”. b, The numbers in the parentheses denote the number of contigs
supportive of its known germline variant in the second column and the ratio of the two germline variants. c, The indexes in SNP loci are 1-based. IGHV7-4-1*02_G92A is not included in the
collected germline sequences (see Supplementary Table 8).
TABLE 3 | Sensitivity and specificity of novel allele detection for 5 NADTs based on four simulated datasets.

Type Measurement Tool Dataset

DEXPR DALLELE DSNP DSHM

~5% ~1% ~0.1% ~0.01% 50% 30% 10% 5% 1 3 5 7 0% 6%

Allele level Sensitivity TIgGER 1.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.96 1.00 0.96 1.00 0.00
IMPre 0.28 0.92 0.44 0.00 0.52 0.56 0.40 0.52 0.40 0.44 0.16 0.28 0.20 0.52
IgDiscover 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.68 0.88 0.64 0.80 0.00
LymAnalyzer – – – – – – – – – – – – – –

Partis 1.00 1.00 0.32 0.00 0.48 0.20 0.20 0.20 1.00 0.28 0.04 0.00 1.00 0.92
Specificity TIgGER 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.96 1.00 0.75 1.00 0.00

IMPre 0.17 0.44 0.24 0.00 0.63 0.70 0.33 0.28 0.25 0.30 0.09 0.21 0.13 0.56
IgDiscover 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.97 1.00 0.00
LymAnalyzer – – – – – – – – – – – – – –

Partis 1.00 1.00 0.80 0.00 0.82 0.90 0.90 1.00 0.97 0.30 0.05 0.00 1.00 0.67
SNP level Sensitivity TIgGER 1.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.99 1.00 0.99 1.00 0.00

IMPre 0.80 0.92 0.44 0.00 0.60 0.56 0.40 0.52 0.76 0.73 0.74 0.67 0.76 0.56
IgDiscover 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.68 0.88 0.64 0.80 0.00
LymAnalyzer 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Partis 1.00 1.00 0.32 0.00 0.48 0.20 0.20 0.20 1.00 0.44 0.30 0.04 1.00 0.92

Specificity TIgGER 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.70 1.00 0.00
IMPre 0.23 0.31 0.15 0.00 0.40 0.39 0.16 0.17 0.31 0.59 0.64 0.75 0.25 0.45
IgDiscover 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.94 1.00 0.00
LymAnalyzer 0.09 0.09 0.09 0.00 0.11 0.10 0.09 0.08 0.09 0.23 0.34 0.31 0.09 0.00
Partis 1.00 1.00 0.80 0.00 0.78 0.85 0.85 1.00 0.97 0.78 0.68 0.10 1.00 0.39
cle 73
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simulated dataset was caused by low sequence identities to the
germline (Supplementary Figure 3), which was caused by
sequencing errors simulated by ART, the NGS simulator.
Similarly, the failure in DSHM for IgDiscover could also be
attributed to the paucity of unmutated sequences as a
consequence of the simulation of SHMs and NGS errors
(Supplementary Figure 4). In contrast, the success in GD-
SHM for IgDiscover indicated that a number of unmutated
sequences also exist in IgG dataset. We therefore determined
the frequency of such sequences for each simulated novel allele
and found that it ranged from 0.07% to 1.11%, with a median of
0.31% (Supplementary Figure 4), which agrees with reported
values of previous studies (17, 18). Interestingly, TIgGER failed to
detect any novel alleles from both simulated and genuine datasets
containing SHMs as its algorithm is expected to be more robust
to datasets with SHMs. Our in-depth analyses showed that
TIgGER failed to identify novel alleles for DSHM and GD-
SHM for different reasons. For DSHM, the simulated SHMs
created an overly-diversified repertoire, in which plural
sequences for each novel allele were too rare to pass the
threshold min_seqs. Whereas in GD-SHM, the diversity of
sequences perfectly matching novel alleles failed to meet the
default threshold j_max. In addition, we noted a remarkable
difference in the diversity filtration criterion between TIgGER
and IgDiscover: TIgGER employs a quantitative filtration (j_max)
whereas IgDiscovers uses a qualitative filtration (CDR3_exact).
When considering only the diversity criterion, TIgGER is stricter
than IgDiscover, and this explains the compromised performance
of TIgGER. Finally, the lower specificity of LymAnalyzer in the
genuine dataset may result from the non-independent mutation
events in a genuine dataset that tends to be interpreted as SNPs
according to its algorithm.
Frontiers in Immunology | www.frontiersin.org 8
Together, we concluded that i) TIgGER and IgDiscover
outperform all other NADTs considering both sensitivity and
specificity in most situations, ii) Partis is characterized by
remarkable robustness in overcoming the challenge imposed
by SHMs, iii) IMPre is outstanding in detecting minor alleles,
and iv) LymAnalyzer is sensitive at the cost of specificity.

Forty-Three NACs Are Identified From a
Total Number of 687 Ig-Seq Datasets
With the knowledge obtained above, we designed a scheme to
identify reliable NACs using 4 NADTs (excluding LymAnalyzer)
from bulk Ig-seq dataset. As intrinsic features (i.e. expression
level, allele ratio, and number of SNPs to the nearest allele) of
novel alleles were unknown, we took into account the overall
performance of each NADT summarized above and gave more
credit to TIgGER and IgDiscover.We classified all Ig-seq datasets
into two groups with regard to the SHM richness according to
the isotypes (Materials and Methods). For IgM datasets, NACs
found by at least 2 NADTs with at least one being either TIgGER
or IgDiscover were retained. For datasets in which SHMs were
expected to be enriched, only NACs called by two out of three
NADTs, namely TIgGER, IgDiscover and Partis, were retained.

We then explored the efficiency of this scheme in identifying
NACs from a total number of 424 Ig-seq datasets either
generated in-house or from the public resource (Materials and
Methods). The selected datasets stemmed from 382 donors and
were all obtained from RNA samples amplified with RACE
(rapid amplification of cDNA ends) protocols. Detailed
metadata for these datasets are outlined in Supplementary
Table 3. According to the dataset classification criteria
(Materials and Methods), we obtained 336 (79.2%) SHM-rich
datasets (enriched for IgG sequences) and 88 (20.8%) SHM-
TABLE 5 | Sensitivity and specificity of novel allele detection for 5 NADTs based on genuine Ig-seq dataset.

Type Measurement Tool Dataset

GD-EXPR GD-SNP GD-SHM

~5% ~1% ~0.1% 1 3 5 7 IgM IgG

Allele level Sensitivity TIgGER 0.80 0.60 0.20 0.80 0.76 0.80 0.60 0.80 0.00
IMPre 0.40 0.64 0.04 0.40 0.36 0.08 0.40 0.40 0.00
IgDiscover 1.00 1.00 0.40 1.00 1.00 1.00 0.84 1.00 0.80
LymAnalyzer – – – – – – – – –

Partis 0.56 0.48 0.00 0.60 0.00 0.00 0.00 0.60 0.32
Specificity TIgGER 0.57 0.75 0.14 0.57 0.41 0.52 0.31 0.57 0.00

IMPre 0.27 0.33 0.03 0.28 0.21 0.04 0.23 0.27 0.00
IgDiscover 1.00 1.00 0.33 1.00 0.63 0.81 0.70 1.00 1.00
LymAnalyzer – – – – – – – – –

Partis 0.17 0.12 0.00 0.18 0.00 0.00 0.00 0.17 0.43
SNP level Sensitivity TIgGER 0.80 0.60 0.40 0.80 0.79 0.80 0.63 0.80 0.00

IMPre 0.40 0.76 0.04 0.48 0.71 0.18 0.73 0.40 0.00
IgDiscover 1.00 1.00 0.60 1.00 1.00 1.00 0.84 1.00 0.80
LymAnalyzer 1.00 1.00 0.72 1.00 1.00 1.00 1.00 1.00 0.96
Partis 0.56 0.48 0.00 0.60 0.17 0.11 0.07 0.60 0.32

Specificity TIgGER 0.57 0.75 0.18 0.57 0.49 0.67 0.53 0.57 0.00
IMPre 0.07 0.03 0.00 0.02 0.10 0.02 0.12 0.05 0.00
IgDiscover 1.00 1.00 0.43 1.00 0.60 0.86 0.79 1.00 1.00
LymAnalyzer 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00
Partis 0.08 0.08 0.00 0.09 0.08 0.11 0.07 0.08 0.34
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sparse datasets (enriched for IgM sequences) (Figure 4A).
Despite the lower fraction in overall datasets, IgM datasets
contain more reads than IgG datasets (Figure 4B). Applying
the selected 4 NADTs to these datasets, we found clear
differences between the four NADTs in both the number of
samples identified with NACs and the number of unique NACs
(Table 6). IMPre discerned NACs for 71.0% of the datasets,
whereas the other three NADTs found NACs for only 16.3% to
18.2% datasets. Moreover, the other three NADTs reported
NACs for a sharply lower (over 10-fold) percentage of SHM-
rich datasets than SHM-sparse datasets, which was likely due to
more SHMs and low number of input reads that had reduced the
confidence for these NADTs to make novel calls. In contrast,
IMPre reported NACs for a large fraction of IgG datasets (63.4%)
and also more NACs overall for individual samples (Table 6 and
Figure 4C), which likely reflects its higher sensitivity to those
underrepresented sequences (Table 3). However, the genuine
sensitivity and specificity for the NADTs were elusive through
these bulk sequencing datasets, for which we have no access to
the genotype information.

Applying this scheme to 424 Ig-seq datasets, we identified 23
and 2 reliable NACs from SHM-sparse and SHM-rich group,
respectively (Supplementary Table 4). One NAC, IGHV3-
33*01_G72C, was identified in both groups. Three of the 24
unique NACs were found to harbor more than one SNPs to their
corresponding nearest alleles, while eleven were found in more
than one donor (Figure 5). The most frequent NAC was found in
29 donors. Notably, 17 of the 24 NACs can also be identified
from public databases or independent reports in the literature
Frontiers in Immunology | www.frontiersin.org 9
(Materials and Methods) (Supplementary Table 4), which
demonstrated the high efficiency of our scheme. To enlarge the
knowledge database of NACs, we also included 263 multiplex
datasets we collected in a previous study into our analysis (14).
These latter datasets were derived from 71 donors and consisted of
186 SHM-rich datasets and 77 SHM-sparse datasets. Considering
the degenerate primers designed against framework region 1 (FR1)
ofV genes, we consideredonly the sequence downstreamofFR1 for
each NAC for these multiplex datasets. Applying the same scheme
to these datasets as toRACEdatasets, we identified in total 22NACs
(Supplementary Table 5) and found that 21 of them were from
SHM-sparse datasets. Eleven of the 22 NACs were cross-validated
in previous public or published resources. Combining the twoNAC
sets, we identified 43 uniqueNACsequences froma total number of
687 Ig-seq datasets (3 NACs were found in both RACE and
multiplex dataset).

We then characterized these 43 NACs and found that all NACs
derive from core V genes we defined in a previous study according
to their prevalence in antibody repertoires (14) (Figure 6A). This
result further suggested that gene usage is critical in novel allele
identification through Ig-seq dataset. Furthermore, the number of
NACs did not correlate with the number of known alleles for a
typical gene (Pearson correlation coefficient: 0.43) (Figure 6B).
However, IGHV1-69, the gene with the second largest known
polymorphisms in IMGT, was found with up to 10 additional
NACs. Since germline V gene polymorphisms have been
implicated in immune response capability (1–3), these NACs
will facilitate the elucidation of the role of germline variants in
disease susceptibility. Finally, we classified all identified SNPs
A

B

C

FIGURE 4 | Quantitative characterization of Ig-seq datasets and NACs identified by 4 NADTs. (A) Composition of IgM (SHM-sparse) and IgG (SHM-enriched)
datasets. (B) Density of Ig-seq datasets with different number of reads. (C). Correlation between the number of NACs for each dataset and the number of reads.
Note that only dataset reported with NACs by a certain tool is included.
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(n=75) into two categories, replacement (R) SNPs and silent (S)
SNPs, according to the variation of encoded amino acids. Overall,
the R/S ratio for these SNPs was around 2 (1.88) (Figure 6C).
Nevertheless, the R/S ratio was larger for complementarity-
determining region (CDR) SNPs (2.78) than framework region
(FR) SNPs (1.41), which indicated a varied selection pressure
between FRs and CDRs.
DISCUSSION

In this study, we comprehensively compared 5 NADTs with an
emphasis on their performance in different scenarios.We identified
43 credible NACs through the filtration criteria informed by our
Frontiers in Immunology | www.frontiersin.org 10
benchmark results. We found that these NADTs possess a varied
array of functionalities and distinct algorithms implemented in
different languages (Table 1 and Supplementary Table 1). By
exploiting a combination of in silico simulated and genuine Ig-seq
datasets, we provided scenario-specific performance spectrums for
these NADTs. As summarized in the Results section, both TIgGER
and IgDiscover hit a greater balance between sensitivity and
specificity in most scenarios than the other NADTs. In contrast,
LymAnalyzer reported the greatest number of polymorphisms
among NADTs, achieving the highest sensitivity in all scenarios,
however, at a great cost of specificity. Partis and IMPre were
superior in overcoming challenges brought by SHMs and scarcity
of minor alleles, respectively.

Counterintuitively, in our study IgDiscover rather than
TIgGER exhibited higher efficiency in detecting novel alleles
TABLE 6 | Quantitative summary of NACs identified from Ig-seq datasets by 4 NADTs.

NADTs # Datasets (IgG) # Datasets (IgM) # Unique novels (IgG) # Unique novels (IgM) # Datasets (total) # Unique novels (total)

TIgGER 1 (0.3) 68 (77.3) 6 (0.8) 57 (4.8) 69 (16.3) 57 (4.8)
IMPre 213 (63.4) 88 (100.0) 740 (96.1) 1033 (86.5) 301 (71.0) 1033 (86.5)
IgDiscover 15 (4.5) 62 (70.5) 16 (2.1) 50 (4.2) 77 (18.2) 50 (4.2)
Partis 4 (1.2) 65 (73.9) 12 (1.6) 101 (8.5) 69 (16.3) 101 (8.5)
Total 215 (64.0) 88 (100.0) 770 1194 303 (71.5) 1194
October 2021 | Vo
The number in each parentheses indicates the corresponding percentage (%) of each item. For columns indicating number of datasets, the associated percentages were calculated based
on the total number of datasets (or of a specific type, see Figure 4A).
FIGURE 5 | Twenty-four NACs identified from 424 Ig-seq datasets amplified using RACE protocol. The top bar graph shows the number of supportive samples and
donors. The bottom scatter plot shows the set of tools identifying a typical NAC. Numbers in the x-axis labels are 1-based positions of SNPs (refer also to
Supplementary Table 4).
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from SHM noise in GD-SHM. After careful examination, we
identified the difference in candidate novel allele filtration
between them. The quantitative filtration employed by TIgGER
by default is mathematically stricter than the qualitative filtration
used by IgDiscover. Combining the fact that a non-negligible
fraction of unmutated sequences present also in IgG repertoires
(Supplementary Figure 4), IgDiscover outperformed TIgGER
even in SHM-enriched scenarios. However, ample sequencing
depth is a prerequisite, because it favors the presence of enough
unmutated sequence needed by IgDiscover to detect novel alleles.
This is also true for all other NADTs because gene expression
level was confirmed to be a general limitation for all NADTs in
both simulated and genuine Ig-seq dataset (Tables 3 and 5).

Although theunexpectedobservation abovewasnotobtainedby
Ralph et al. (7), they provided evidence that TIgGER can be
completely compromised in handling with dataset of typically
high SHM, which was possibly due to either the rarity of plurality
sequence or the unqualified diversity of unmutated sequences. To
maintain the originality of each NADT, we did not alter the
suggested parameters and the results here may thus not represent
the optimal performance for them. It is very likely that one can
obtain greatly improved result when some key parameters are fine-
tuned, a strategy that has been employed byMikocziova et al. (19).
Frontiers in Immunology | www.frontiersin.org 11
Despite the compromised sensitivity for TIgGER on particular
datasets in this study, we agree with Ralph et al. that IgDiscover
and TIgGER are more specific in novel allele detection than other
NADTs, amajor consideration of assigningmoreweight to them in
the filtration scheme.We also noted some differences to Ralph et al.
Thenumber of SNPsbywhich anovel allele departs from its nearest
known allele (within a range from 1 to 3) are shown to exert
negligible influence on Partis’s performance. However, our result
revealed remarkableperformancevariance indetectingnovel alleles
separated from their nearest counterparts by SNPs of different
number (i. e. 1 vs 3). This variance is probably caused by an error-
prone procedure that Partis tries tomanage – “comparing multiple
hypotheses” (through which a complete set of individual SNPs
contributing to a novel allele is determined). Noteworthy is that the
step of initial removal of less-likely alleles in some cases can worsen
the detection task for Partis because it can remove those less-likely
but bona fide novel alleles that appears to harbor more than
one SNPs.

Given all these findings, we suggest future studies to exploit
strengths of different NADTs and present NACs based on the
consensus of more than one NADTs whenever genomic
validation is unavailable, since none of the NADTs excels in
all scenarios.
A

B

C

FIGURE 6 | Characterization of 43 unique NACs identified from Ig-seq datasets. (A) Overlap between genes identified with NACs and 52 core genes defined in a
previous study (Yang et al., 2021). (B) Correlation between the number of NACs and the number of known alleles (from IMGT/GENE-DB) for a typical gene. The
Pearson correlation coefficient is 0.43. Note only 48 of 52 core genes were included in the germline reference sequences. (C) Comparisons of R/S (Replacement/
Silent) ratio of SNPs in the framework regions (FRs), complementarity-determining regions (CDRs) and both kinds of regions (all). Numbers at the top of the doughnut
chart denote R/S ratios.
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It shouldbenoted thatweconsideredonlyasinglevariableata time.
However, in real-world scenarios, a mixture of challenges represented
by these studied variables coexists and thus further complicate novel
allele detection tasks. Moreover, we left polymorphisms of nucleotide
insertion and deletion (INDEL) unaddressed because the algorithms
employed by some NADTs are intrinsically incapable of capturing
them (Supplementary Table 1). Nevertheless, INDEL can’t be
neglected, especially in species whose germline sets are far from
complete. In such cases, IgDiscover and IMPre are the only choices
currently. Finally, this study only focused on evaluation of NADTs’
performance based on antibody heavy chain repertoire datasets. Their
efficiencywith light chain andTCRrepertoire datasetsmayvarydue to
differences inherent to these sequences (e. g. absence of SHM for
TCR sequences).

Despite these limitations, our study based on a composite
benchmark dataset provides insights into the performance of
different NADTs and thus can guide bioinformaticians and
immunologists in tool selection in future novel allele detection
through these NADTs. Together with the flexible simulation tool
and the NACs identified, our study may serve as a valuable
reference and resource for immunoglobulin loci germline
diversity researches as well as Ig-seq-based studies.
MATERIALS AND METHODS

Samples From Human Subjects
A total of 28 samples from peripheral blood, tumor and normal
tissues, and bonemarrowwere collected.Of these, 7 peripheral blood
samples were derived from healthy individuals (without recent
infection events), 6 peripheral blood samples were from hepatitis B
virus-infectedpatients, 1bonemarrowsampleand2peripheral blood
samples were from graft-versus-host disease (GvHD) patients, 4
peripheral blood samples, 1 normal intestine sample and 2
intestine tumor samples were from colorectal cancer (CRC)
patients, 2 peripheral blood samples were from individuals
involved in traffic accidents, and 3 peripheral blood samples were
from patients with adolescent idiopathic scoliosis, sore throat, and
chronic pharyngitis, respectively. Peripheral bloodmononuclear cells
(PBMCs) and bone marrow mononuclear cells were isolated using
Ficoll (TBD Science) density-gradient centrifugation. The tissues
were cut into small pieces and grind with liquid nitrogen. These
experiments were handled under the guidelines of the Ethics
Committee of Southern Medical University. For human naïve B
cells isolation, PBMCs were counted and washed with DPBS
supplemented with 1% bovine serum albumin (BSA), and then
were stained with a cocktail of fluorescent conjugated antibodies,
including ECD-CD19 (Beckman Coulter, A07770), FITC-IgD
(Beckman Coulter, B30652), APC-CD27 (BD Bioscience, 561400),
and 7-AAD (BD Bioscience, 559925). Human naïve B cells (CD19+
IgD+CD27-7-AAD-) were sorted using a cell sorter (MoFlo XDP,
Beckman Coulter) and collected for single-cell V(D)J sequencing.

Library Preparation and High-
Throughput Sequencing
RNA purification was carried out using the RNeasy Mini Kit
(Qiagen, 74106) according to the manufacturer’s instructions.
Frontiers in Immunology | www.frontiersin.org 12
Total RNA was used as a template to synthesize cDNA with a
SMARTer RACE (Rapid Amplification of cDNA Ends) cDNA
Amplification Kit (Clontech, 634928) according to the
manufacturer’s protocol. Heavy chain variable regions were
amplified using 1 ml of RT reaction product and 10 pmol of
each primer in a 50 ml total reaction volume (KAPA HiFi
HotStart ReadyMix, Roche) using the following thermal
cycling program: 95°C for 3 min; 30 cycles of 98°C for 20 s,
60°C for 15 s, and 72°C for 15 s; 72°C for 5 min. PCR products
were purified using the Nucleospin Gel & PCR Clean-up kit
(Macherey-Nagel, 704609.25) and subjected to library
preparation using VAHTS Universal DNA Library Prep Kit
(Vazyme, ND607-01). Libraries were quantified by capillary
electrophoresis (Bio-Fragment analyzer, Bioptic). After
quantification, libraries were pooled and sequenced on an
Illumina platform (MiSeq PE300). All primers are listed in
Supplementary Table 6.

10X Genomics Single Cell Processing and
Next Generation Sequencing
The concentration of the single cell suspension was counted and
adjusted to 1000 cells/ml. The single cell suspensions were loaded
onto the Chromium Controller microfluidics device (10X
Genomics) and processed using Chromium Next GEM Single
Cell 5’ Kits v2 according to manufacturer’s protocol. The
remaining procedures, including library construction, were
performed according to the protocols of the Chromium Single
Cell Human BCR Amplification Kit (10X Genomics). Following
library construction, the BCR libraries were sequenced on an
Illumina platform (NovaSeq 6000) using 2×150bp kit.

Integrated and Modular Pipeline for
Antibody Repertoire Simulation
IMPlAntS (Integrated and Modular Pipeline for Antibody
Repertoire Simulation) was developed to as much as possible
mimic real-world antibody repertoires and meet the
requirements (i.e. minor allele frequency control and NGS data
simulation) in this study.

Asmentioned inResults, IMPlAntS consists of three consecutive
steps, i) generation of independent V(D)J rearrangements; ii)
generation of BCRs with SHMs of proper phylogenetic structure
within clones; and iii) generation of NGS reads incorporating base
errors (Figure 2). These steps can be implemented individually or
collectively using the corresponding scripts hosted on github
(https://github.com/Xiujia-Yang/IMPlAntS).

In the first step, a customizable number of independent
rearranged sequences are in silico simulated by considering two
major features of the real-world rearrangement repertoire:
preferential gene usage and junctional nucleotide modification (P
and N nucleotide insertions and deletions). To investigate the
influence of allelic diversity on novel allele identification, we
equipped IMPlAntS with the ability to simulate alleles of a certain
gene with varied ratios (only two alleles are supported), which can
be customized by modifying the gene usage configuration file.
Moreover, IMPlAntS also allows simulation of nonproductive
rearrangements and their percentages in antibody repertoire can
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be specified by users for specific aims. Notably, the four simulated
datasets in this study include only productive rearrangements.

The second step can be further divided into two stages:
generation of clonally related sequences with proper
phylogenetic structure and various numbers for each sequence.
Clonally related sequences are created by a certain number of
iterations (to mimic the affinity maturation of real-world
antibody sequence) where SHMs are induced for randomly
selected sequences across the variable region based on the
positional mutability and substitution models similar to
Yermanos et al. (13). In each iteration, a fraction of sequences
in the current sequence pool are randomly selected for SHM
simulation and new sequences with simulated SHMs will be
added into the current sequence pool that will be subjected to
random selection in the next iteration. Independent rearranged
sequences serve as the input in the first iteration. Because the
positional mutability model stores mutation probabilities for
different positions observed in end repertoires (repertoires
containing sequences have already undergone multiple rounds
of maturations), a parameter named ‘—mut_ability_fold’ (less
than 1) is introduced here to prevent the generation of hyper-
mutated sequences after a number of iterations. Iterations above
produce nonredundant clonally related sequences. Then selective
sequences will be populated according to the power law (20) to
mimic the clonal expansion of B cells with a various number of
replicates. The key parameters in this step, including the number
of iterations, the maximum number of sequences, the alpha value
of the power law, and the largest size of sequences, are
customizable. ART is employed in the last step to produce
NGS data with Illumina MiSeq system settings.

For the above steps, parameters of gene usage, junctional
modification, positional mutability and substitution models, were
obtained fromapopulation-level antibody repertoire study (14) and
are set as defaults of IMPlAntS. Gene usage is calculated as the
percentage of clones (sets of sequences sharing the same V and J
gene and CDR3 nucleotide sequence) in a repertoire recombined
from a certain gene. In this study, V, D and J gene usages are taken
from normalized medians of gene usages from 2152 antibody
repertoires of 582 donors. Junctional modification parameters
consist of 10 entities (i.e. V3D, V3P, N1, D5D, D5P, D3D, D3P,
N2, J5D and J5P (D, deleted nucleotide; P, palindromic nucleotide;
N, nontemplated nucleotide), as demonstrated also in Figure 2).
The probabilities of modification lengths for each of these entities
are derived from the observation of a combination of 2152 antibody
repertoires of 582 donors. The positional mutability and
substitution models were obtained from IgG repertoires of PBMC
from353 healthy donors. All parameters above can be found on the
github and are set as defaults by IMPlAntS. Supplementary
Figure 5 and Supplementary Figure 3B show the approximation
of the real-world repertoire for repertoires in the four simulated
datasets in this study.

Customization of Reference Sequences
With Artificially ‘Novel’ V Alleles
In this study, the germline reference sequences for V, D, and J
genes were obtained from IMGT GENE-DB and provided as
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Supplementary Table 7. The artificially “novel” alleles for V
genes were created for both simulated dataset and real Ig-seq
dataset. Only germline reference sequences used in the
simulation were extracted to serve as the initial reference
sequences for the simulated dataset. The set of alleles subject to
the artificial SNP generation for each dataset was selected
according to the criteria defined as Table 2. We randomly
created SNPs in the sequence of selected alleles. These artificial
SNPs were set to locate in the first 280 bp of V genes at the 5’
ends to avoid the possible failure in novel allele detection caused
by junctional modification. A pitfall here is that there exists a
possibility that the rearranged sequences fail to be best aligned
against the artificially novel sequences, and this brings challenges
in the evaluation of novel allele identification for NADTs.
Therefore, we performed pairwise alignment between
customized reference sequences and the germline sequences
contained in each dataset and removed those unaltered allele
sequences that were found to be more similar to the germline
sequences than the “novel” allele sequences. The novel alleles
identified by NADTs were in fact the real-world germline
sequences, while “novel” is just a concept relative to the altered
germline reference sequences.

Pipeline and Parameters Employed
by 5 NADTs
The pair-end simulated dataset and bulk sequencing dataset were
firstly assembled using PEAR (v0.9.6). The successfully
assembled sequences were then taken as the input for
IgDiscover and LymAnalyzer. As TIgGER can only accept a
formatted database of well-annotated sequences as input, we
further annotated and formatted the assembled sequences with
IgBLAST (v2.8.0+) and Change-O toolkits (v0.4.4), respectively
(IgBLAST was selected for its excellent performance (20) and
easy output format conversion through Change-O toolkits). For
IMPre and Partis, the input assembled sequences were corrected
in a forward orientation at first. The script employed by IMPre
(‘IMPre.pl’) was modified to enable germline reference
customization. The revised script, ‘IMPre_revised.pl’, can be
found on the github (https://github.com/Xiujia-Yang/
IMPlAntS). All parameters used by the five NADTs were set in
default or as suggested. We provided the detailed commandline
parameters as below,

• TIgGER (v0.4.0):

>findNovelAlleles(SampleDb, GermlineIGHV, nproc=4)

• IMPre (v1.1.0):

>perl IMPre_revised.pl –i *.fasta –n sample_name –o
output_directory –v_min_e 1 –j_min_e 1 –vm 50 –jm 60 –
v_seed 200 –vn 300 –jf_ave 2 –known_v customized_v_reference
–known_j customized_j_reference

• IgDiscover (v0.12.3):

>igdiscover init –db customized_database –single-reads *.fastq
sample_name

>cd $sample && igdiscover run

• LymAnalyzer (v1.2.2):
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SCHEME 1 | Schematic diagram of true positive and false positive in novel allele detection. The top sequence in bold represents the genuine novel sequence while
the bottom sequences represent the partial/full-length sequences discovered by NADTs. The nucleotides marked in green represent the genuine SNPs while those in
red are mismatches with the genuine novel sequence either in SNP loci or non-SNP loci. An identified sequence is accepted as a true positive only when it covers all
the genuine SNPs and contains no mismatch with the genuine novel sequence in all other loci.
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>java -jar –Xmx8g LymAnalyzer_cmd_1.2.2.jar *.fastq
result_folder IGH hs sample_name Yes No 5 reference_directory

• Partis (v0.16.0):

>/partis/bin/partis cache-parameters –infname *.fasta –
parameter-dir parameter_directory –n-procs 16
Sensitivity and Specificity Calculation
Sensitivity is defined as the proportion of true positives that are
correctly identified among all true positives, whereas specificity is
defined as the proportion of true positives among all the
identified positives. For individual SNPs (SNP level), a hit is
considered as a true positive only when its nearest allele (same as
the allele selected for artificial SNP generation), loci and
nucleotide variant are correct at the same time. For individual
sequences (allele level), a hit is considered a true positive only
when it covers all the genuine SNPs and contains no mismatches
with the genuine novel sequence in all other reported loci. A
schematic diagram is provided here to demonstrate the cases of
true positive and false positive in identifying individual
sequences for novel alleles (Scheme 1).

Germline V Allele Identification Through
Single Naïve B Cell Sequencing Dataset
CellRanger (v3.1.0)was exploited topreprocess the rawsinglenaïveB
cell sequencing dataset. Contig assembly, annotation, and clonotype
analysiswereperformedusing “cellranger vdj”with theCell RangerV
(D)J compatible reference (refdata-cellranger-vdj-GRCh38-alts-
ensembl-3.1.0). Then the assembled contig sequences
(“all_contig.fasta”) of the two replicates for each donor were pooled
and then annotated using IgBLAST (v2.8.0+) with the germline
references obtained from IMGT/GENE-DB (refer to above).
Afterwards, the V segment (or allele) sequence was extracted from
each annotated sequence and then eachuniqueV segment sequences
was counted. It is worthmentioning here that those short V segment
sequences were merged into the longer ones provided they are with
the sameV allele annotation as the longer ones and were included in
them. The counts for the shortV segment sequences were also added
to the longer ones.We discarded those with a length less than 290 bp
or with a count less than 10 and determined the most frequent V
segment sequence for each gene as the most confidential germline
sequence for a gene. Apart from that, we also retained the second
most frequent V segment sequence for a gene provided that its
abundancewasat leastone tenthof thatof themost frequentone (21).
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Ig-Seq Dataset Classification Criteria
All enrolled Ig-seq datasets (i.e. 424 RACE datasets and 263
multiplex datasets mentioned in the Results section) were analyzed
using MiXCR (v3.0.7) per the method in our previous study (14).
After clonotype assembly, a constant gene will be assigned for each
clone if antibody sequences from this clone cover constant region.
The isotype (i.e. IgM, IgD, IgG, IgA, and IgE) was extracted for each
clone and the clone-level isotype frequency was calculated for each
dataset. IgM and IgD are deemed as SHM-sparse isotypes while IgG,
IgA and IgE are deemed as SHM-enrich isotypes (22). Datasets will
be classified as IgM datasets if they contain more SHM-sparse
isotypes than SHM-enrich isotypes, otherwise IgG datasets.
Constant genes were required to be assigned for more than a half
number of clones in each dataset. All 687 Ig-seq datasets we enrolled
in this study met this requirement.

V Allele Sequences From Public
Databases and Independent Reports
To double-check NACs we identified through NADTs, we collected
antibody heavy chain V allele sequences from five public databases
(IMGT/GENE-DB, http://www.imgt.org/genedb/; IgPdb, https://
cgi.cse.unsw.edu.au/~ihmmune/IgPdb/information.php; VBASE2
(23), http://www.vbase2.org/; Lym1K (24), http://maths.nuigalway.
ie/biocluster/database/; OGRDB (4), https://ogrdb.airr-community.
org/) and nine independent reports (5, 6, 19, 25–30) and compared
them with identified NACs. Before the sequence comparison,
degenerate bases or N nucleotides in collected allele sequences
were substituted with ‘A’, ‘C’, ‘G’, or ‘T’, accordingly. NACs
whose sequences were identical to any of the sequences from a
source were considered cross-validated NACs. As the set of V allele
sequences used as germline reference to identify novel alleles is not
as complete as those in the later release of IMGT/GENE-DB, several
NAC sequences were included in the later release of IMGT/GENE-
DB and thus were also cross-validated in it. All collected V allele
sequences are outlined in Supplementary Table 8.
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an edited script (IMPre_revised.pl), has been deposited on the
github (https://github.com/Xiujia-Yang/IMPlAntS).
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