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Tuberculosis (TB) remains one of the leading causes of death worldwide due to a single
infectious disease agent. BCG, the only licensed vaccine against TB, offers limited
protection against pulmonary disease in children and adults. TB vaccine research has
recently been reinvigorated by new data suggesting alternative administration of BCG
induces protection and a subunit/adjuvant vaccine that provides close to 50% protection.
These results demonstrate the need for generating adjuvants in order to develop the next
generation of TB vaccines. However, development of TB-targeted adjuvants is lacking. To
help meet this need, NIAID convened a workshop in 2020 titled “Advancing Vaccine
Adjuvants for Mycobacterium tuberculosis Therapeutics”. In this review, we present the
four areas identified in the workshop as necessary for advancing TB adjuvants:
1) correlates of protective immunity, 2) targeting specific immune cells, 3) immune
evasion mechanisms, and 4) animal models. We will discuss each of these four areas in
detail and summarize what is known and what we can advance on in order to help develop
more efficacious TB vaccines.
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INTRODUCTION

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), an infectious disease
that led to the death of 1.4 million individuals in 2019 (1). The current licensed vaccine against TB, a
live attenuated strain of Mycobacterium bovis known as Bacillus Calmette-Guérin (BCG), is able to
provide protection against disseminated forms of disease but is ineffective at providing protection
org October 2021 | Volume 12 | Article 7401171
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against pulmonary TB in children and adults. Therefore, in order
to lessen TB burden worldwide, a more efficacious vaccine and
improved vaccine delivery strategies are urgently needed.

The development of more robust TB vaccines has unique
requirements that have made progress challenging. Vaccines
traditionally provide durable protection by prophylactically
inducing neutralizing antibodies that can serve as a first line of
defense against pathogens (2). Although numerous pathogens
require antibodies for protection, this is less clear in the case of
TB. While research on the role of antibodies in TB is ongoing and
is of interest due to new data (3), no evidence has yet to suggest
that neutralizing antibodies are required for protection against
Mtb. Therefore, TB vaccine research has focused on identifying
antigens and delivery strategies that maximize the generation of
T cell responses. In particular, research has shown that CD4+ T
cells are a critical component of protective immunity. Mouse
studies, however, have demonstrated that T cells are not
recruited to the lungs until weeks after infection is established
(4). Mtb is able to suppress T cell recruitment and responses by
utilizing several immune evasion mechanisms (IEM) to impede
antigen-presenting cell (APC) function, thereby dampening
adaptive responses. Researchers have attempted to bypass the
delayed T cell response by targeting specific APCs such as
dendritic cells (DCs), but there is limited evidence that this can
preclude the immunosuppressive effects of Mtb upon challenge
(5, 6).

Despite these challenges, recent developments have
reinvigorated interest in TB vaccine research. A study in
humans found that BCG revaccinated adults have increased
protection compared to control groups (7). Moreover, while
BCG is administered through the intradermal route, a recent
study found that administering BCG intravenously can induce
robust T cell responses and afford non-human primates (NHPs)
protection against Mtb challenge (8, 9). Recent clinical trials of
novel vaccine candidates have also yielded promising results. The
Phase IIB clinical trial results of the M72/AS01E subunit
adjuvanted vaccine demonstrated 49.7% protection against
Mtb (10). M72 is a recombinant fusion protein consisting of
antigens Mtb32A and Mtb39A and AS01E is an adjuvant that
combines monophosphoryl lipid (MPL) with QS-21 (a purified
saponin fraction). The AS01 adjuvant system success extends to
other infectious disease vaccines as it is used in the FDA
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approved shingles vaccine “SHINGRIX” and is currently in
clinical development for use in malaria (11). These successes
set an important threshold for the clinical development of future
TB vaccines.

To develop effective antigen-specific T cell responses, host
immunity requires non-specific innate cell activation. In the case
of a subunit vaccine, priming is accomplished with adjuvants.
Modern adjuvants prime host immunity through binding of
receptors that recognize pathogen-associated and damage-
associated molecular patterns, such as toll like receptors (TLRs),
C-type lectin receptors (CLRs), and NOD like receptor (NLRs) on
the surface of APCs. Adjuvants are able to activate these receptors
and induce downstream signaling pathways such as NFkB
signaling, which in turn enables the activation of adaptive
immune responses. Given the expense and time-consuming
nature of vaccine development, adjuvant compounds and
formulations that have been shown to be safe and effective are
often repurposed for testing novel vaccine candidates. The
majority of current TB vaccine candidates contain adjuvants
(Table 1). However, a TB-specific adjuvant that is able to induce
strong immune responses in the lung but minimize corresponding
tissue damage is required. Adjuvanted vaccines delivered directly
to the upper or lower respiratory tract may have increased efficacy
compared with parenterally administration against respiratory
pathogens, such as Mtb. Therefore, development of new
adjuvants with defined modes of action will be necessary in
order to generate improved vaccination strategies that can
provide protective immunity to TB.

To address the needs of TB vaccine development and lack of
TB-targeted adjuvants, the National Institute of Allergy and
Infectious Diseases (NIAID) held a workshop in July 2020
titled “Advancing Vaccine Adjuvants for Mycobacterium
tuberculosis Therapeutics.” This workshop brought together
vaccine and adjuvant developers from industry and academia
and researchers in fields beyond TB. It is here that we identified
research in four areas that will be essential for development of
optimal adjuvants for TB vaccines: 1) correlates of protective
immunity, 2) targeting specific immune cells, 3) immune evasion
mechanisms, and 4) animal models. In this review article, we
discuss these four areas in detail and highlight priority areas
which the broader TB research community can address in order
to develop efficacious adjuvants and vaccination strategies.
TABLE 1 | Adjuvants Used in Recent TB Vaccine Candidates.

Adjuvant/Vaccine Antigen Adjuvant target Immune response Ref

IC31 H56, H1 TLR-9, endocytosis Th1 (12–14)
AS01E M72 TLR-4, lysosomal disruption B, Th1, Th2, NK, CTL, DC (10, 15–20)
GLA-SE ID93 TLR-4 Th1 (21–25)
BCG Whole cell Trained innate immunity, Th1 (8, 26–31)
MVA85A Ag85A Th1 (32)
CAF01 H1 Mincle Th1, Th17 (33–36)
Advax-CpG CysVac2 TLR-9 Th17 (33, 37, 38)
Lipokel TLR-2 DC (39)
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Table lists of adjuvant-containing TB vaccine candidates that have recently been tested clinically in humans and pre-clinically in animal models. Known adjuvant targets are presented
though other mechanisms of action may also be employed. Abbreviations: AS01, adjuvant system; GLA-SE, Glucopyranosyl Lipid A-stable oil-in-water nano-emulsion; BCG, Bacillus
Calmette-Guérin; MVA85A, Modified vaccinia Ankara expressing antigen 85A; CAF, Cationic Adjuvant Formulation; TLR, toll-like receptor, Th, T-helper cell; NK, natural killer cell; CTL,
cytotoxic T lymphocyte; DC, dendritic cell.
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CORRELATES OF PROTECTIVE
IMMUNITY

Polarisation of CD4+ T Cells
Targeting specific immune cells through passive or active vaccine
modalities requires understanding the basic mechanisms of
pro tec t ive immuni ty to Mtb . A l though thorough
understanding of protective immunity to Mtb remains
incomplete, research has shown that conventional T cells
(particularly CD4+ T-helper [Th] cells) play a vital role in
protection (40). Early mouse studies and clinical data
demonstrated that functional Th1 CD4+ T cells are crucial for
protection against Mtb (41–45). Th1 immunity is characterised
by the secretion of IFN-g, which aids in microbial clearance by
enhancing processes such phagocytosis and secretion of reactive
oxygen species in macrophages (46). While these responses have
long been a major focus of TB vaccine design, studies have shown
that there is a requirement for broader immunity as Th1
responses alone are insufficient for protection (47). The
MVA85A vaccine trial in humans demonstrated that despite
robust induction of ‘multifunctional’ CD4+ T cells (producing
IFN-g, TNF and IL-2 cytokines), these immune responses did not
translate to additional protection from TB compared to placebo
vaccination (32). Some studies even found that excessive Th1
polarisation may hinder effective memory responses by
producing terminally differentiated T cells that are unable to
effectively migrate into the lung parenchyma during Mtb
infection (48, 49). More recent studies demonstrated that IL-17
and Th17 responses, in addition to Th1 responses, are necessary
for protective immunity to Mtb (50, 51). Th17 cells have the
capacity to differentiate into resident memory T cells while IL-
17A is a key cytokine required for protection in several pre-
clinical models of candidate TB vaccines (33, 34, 37). Th17 cells
can also secrete additional cytokines that direct recruitment of
neutrophils and IFN-g-producing protective memory CD4+ Th1
cells during Mtb infection (52, 53). Other studies have also found
that CCR6+CXCR3+ Th1/Th17 cells responses were present in
latently-infected individuals (compared to active infection) and
were important for protection in an NHP model of TB (54, 55).
But while Th17 responses are beneficial, excessive Th17 responses
are detrimental to the host (56, 57). Therefore, adjuvants for TB
vaccines should strive to induce early and balanced Th1/Th17 as
these are more likely to be necessary for protection.

Other Lymphocytes
While there is evidence that CD8+ T cells contribute to
protection against Mtb, their role remains debated due to
variable findings and inherent differences in human and NHP
immune function compared to mice. CD8+ T cells can produce
cytokines such as TNF, IFN-g and IL-2 and produce cytolytic
granzymes, a feature not shared by CD4+ T cells. Of these key
cytolytic granzymes is granulysin, which is expressed in human
but not murine CD8+ T cells, and is capable of direct
mycobacterial killing (58). CD8+ depletion studies in animal
models, however, agree on the role of these T cells in protection.
In NHPs, CD8+ depletion reduces the protective efficacy of BCG
Frontiers in Immunology | www.frontiersin.org 3
vaccination and infection-induced immunity (59). CD8+

knockout mice are also unable to contain Mtb infection,
particularly at extended timepoints, suggesting a role for CD8+

T cells in protection during chronic stages of infection (60).
Similarly, the function of B cells and humoral immunity in

protection against TB has become of particular interest as
broader immune parameters are investigated (61). Recent
studies indicate the presence of antibodies in humans that are
protective against Mtb infection (3, 62). The use of alternative
vaccination routes, such as mucosal or intravenous, lead to the
generation of pulmonary IgA and antibody-producing lymphoid
follicles (iBALT), which has been associated with reduced
bacterial burden (8, 26, 33, 37). The generation of inducible
lymphoid structures is crucial as they can harbour cells such as
CXCR5+ CD4+ T cells which were found to correlate with a
better prognosis of TB disease (63, 64).

While not previously a focus of TB vaccine candidates, CD8+

T cells and B cells are often measured as a readout of adjuvant
function and may be the contributing factors to vaccine-induced
protective immunity (6). The mechanism of the AS01 adjuvant,
as determined by pre-clinical animal studies, is thought to be due
in part to early IFN-g production by NK and CD8+ T cells (15).
In humans, however, a review of TB vaccine candidates tested in
the clinic revealed that CD8+ T cell responses were relatively
poor when compared to CD4+ T cells responses (65). Until
vaccine efficacy studies in humans become more available, the
contributions of B and CD8+ T cells cannot be discounted and
should be considered in adjuvant development.

Lung-Localised Immunity
Research has suggested that generating immune responses at the
site of infection is crucial for protective immunity. As Mtb is
spread via the aerosol route, it can use lung-specific cell types to
its advantage. The microfold cells found in the nasal associated
lymphoid tissue (NALT) and iBALT have been identified as the
entry site of the bacterium and granulomas can serve as a niche
for the persistence of Mtb (66–68). The need for lung-localized
immunity is supported by the fact that local immune cells can
respond quickly to infection. The generation of T resident
memory (TRM) cells is a correlate of protection against Mtb
and is an active target in mucosal vaccination strategies (33, 37,
69). Mucosal adoptive transfer of TRM cells from BCG-
vaccinated mice into naïve mice revealed that both CD8+ and
CD4+ TRM subsets could afford partial protection against Mtb
infection (26). Furthermore, both CD4+ and CD8+ human TRM

cells have been characterised as capable of limiting intracellular
Mtb survival ex vivo (70). A recent study using human samples
also found that the frequency of Mtb-specific TRM-like cells that
produce IL-17 in the lungs negatively correlated with IL-1ß levels
in the blood, suggesting an important role for controlling Mtb
growth (71). Additionally, mucosal vaccination could help
activate other resident cells, such as gd-T cells and mucosal-
associated invariant T cells (MAIT), that also produce IL-17A
(53). While the generation of lung-localized immunity appears to
be a significant correlate of protection against Mtb, the challenge
remains to validate the safety and efficacy of novel
October 2021 | Volume 12 | Article 740117
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administration methods that generate lung-local immune
memory in clinical trials.

Other Correlates of Protection
Interest in trained immunity as a potential correlate of protection
has been driven by the hypothesis that it may be responsible for
some of the protective characteristics of BCG. This is supported
by studies demonstrating that BCG is able to provide protection
against multiple respiratory diseases in addition to TB (27), and
the observation that some individuals are capable of early
clearance of Mtb without requiring an adaptive immune
response (72). While there are multiple vaccine candidates that
have been reported to be capable of stimulating systemic innate
immune responses, there is emphasis on the generation of lung-
resident trained immunity which has been observed after
pulmonary and intravenous vaccine administration (6, 28).

Certain cytokines, in addition to those secreted by T cells, also
play critical roles in protection. In particular, IL-23 expression
was found to be essential for IL-17A-mediated responses against
Mtb. Upon aerosol infection with Mtb, naïve murine lungs
showed increased expression of IL-17A, which was ablated in
the absence of IL-23 (73). IL-23, and to a lesser extent IL-17A
and IL-22, is able to lead to CXCL13 production and generation
of lymphoid follicles (63). Other studies reported that
unvaccinated IL-23-deficient mice are still able to control
mycobacterial growth in a fashion similar to wild type animals
after exposure to Mtb and BCG as local IFN-g responses are able
to compensate for the loss of IL-17A (73–75). IL-23 plays a
compensatory role in the absence of IL-12p70, a key Th1
polarising factor, as the addition of IL-23 can also enhance
protective immunity against Mtb in the absence of a functional
Th1 immune response (73, 76). Thus, there is evidence that IL-23
plays a significant role in protective responses which will be
important for vaccine-induced immunity.

Clinical Studies
Insights from clinical trials can help address the knowledge gaps
of efficacious TB vaccine design by helping identify correlates of
protection. A small number of TB vaccines are currently
undergoing clinical trials, including three vaccines that
incorporate adjuvants. The most advanced of these TB
vaccines is the M72/AS01E construct. The MPL components of
the adjuvant, a derivative of the lipopolysaccharide from
Salmonella minnesota, is commonly used in adjuvant
formulations due to its ability to engage TLR4, activate NF-kB,
and induce pro-inflammatory cytokines (16, 17). QS-21 can
cause lysosomal disruption and consequent Syk activation, as
well as NLRP3 inflammasome activation, which is thought to
enhance cross-presentation with CD8+ T cells and promote
inflammatory cytokine production (18, 19). Preclinical studies
suggest that the Th1 polarising effects of AS01 are the result of
MPL and QS-21 synergy. At early timepoints post-vaccination, it
was observed that subcapsular sinus macrophages (SSM) in the
draining lymph nodes promoted early IFN-g production by
resident NK cells and CD8+ T cells in a process mediated by
IL-18 (15). In humans, the peripheral immune response has been
examined by analysing blood RNA expression and antigen-
Frontiers in Immunology | www.frontiersin.org 4
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(77). PBMC restimulation showed that the vaccine induced
CD4+ T cells and multifunctional T cells after stimulation,
though IL-17A was not detected. RNA analysis identified the
upregulation of blood transcription modules associated with IFN
signalling, innate activation including TLR and inflammatory
signalling, as well as modules related to various chemotactic and
cell adhesion processes.

The cationic peptide adjuvant IC31 is a component of two TB
vaccine candidates undergoing clinical trials, H4:IC31 and H56:
IC31 (7, 12). In a Phase IIB trial, which tested the efficacy of
H4:1C31 and BCG revaccination, H4:IC31 did not demonstrate
significant protection (30.5% efficacy) against either initial or
sustained Mtb infection (7). However, BCG revaccination led to
a 45.4% reduction in sustained infection (7). IC31 is made up of
the antimicrobial peptide KLKL5KLK (KLK) combined with
ODN1a, a TLR9 binding single stranded oligodeoxynucleotide
(ODN) that activates the MyD88 pathway (13). The cationic
peptide component is also an immunostimulant, hypothesised to
enhance intracellular TLR access of ODN1a via stimulating
endocytosis (14). H56:IC31 induces antigen-specific IgG
responses and Th1 cytokine expressing CD4+ T cells (12). Low-
dose vaccine administration induced more polyfunctional
memory T cells than high dose vaccination, an observation in
line with pre-clinical studies that identified lower antigen dose as
conducive to more protective immune responses (78).

Comparative analysis of human immune responses to six TB
vaccine candidates observed that a shared feature of the systemic
immune responses induced by TB vaccine candidates was the
enhanced production of IFN-g expressing CD4+ T cells, with
M72/AS01E inducing the greatest response (65). Furthermore,
little to no IL-17A expression was induced by the candidate
vaccines. This study did not include analysis of CAF01, a cationic
liposomal formulation consisting of DDA liposomes and the
Mincle agonist trehalose-6,6-dibehenate (TDB), which is known
to initiate a Th17 response when administered parenterally in
mice (79). Vaccination of humans with H1-CAF01, however,
induced strong antigen-specific Th1 responses while IL-17
responses were low and were not significantly increased (35).
This may reflect a requirement to examine mucosal immune
responses in humans to better reflect vaccine immunogenicity, as
was performed with the CTH522/CAF01 chlamydia vaccine
candidate (80). Overall, there was a lack of diversity in T cell
responses generated by the different TB vaccine candidates,
reinforcing the argument for a requirement to develop and test
more novel adjuvants that induce distinct immune responses.

Adjuvating Strategies for Inducing CD4+

T Cells
Differential receptor activation, with adjuvants, have been
demonstrated to be important for dictating specific T cell
responses. Th1 differentiation via TLR activation and
downstream IL-12 secretion is believed to play a primary role
in the protective efficacy of TLR4-targeting adjuvants such as
AS01 (15). Similarly, the major driver of immunogenicity of the
vaccine candidate ID93 + GLA-SE vaccine is the synthetic TLR4
agonist, GLA; its delivery in a squalene emulsion is also necessary
October 2021 | Volume 12 | Article 740117
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for adjuvanticity (21). The Th1 polarising properties of GLA-SE
is MyD88- and TRIF- dependent, and type I and II IFN
expression is also critical for the adjuvant mode of action (21,
22). Furthermore, IL-18 and Caspase1/11 expression is required
for T cell activation by GLA-SE, but not the NLRP3
inflammasome (23). In humans, ID93 + GLA-SE vaccination
results in the generation of multi-cytokine producing T cells
(TNF, IFN-g and IL-2), with little IL-17A detected, and IgG1 and
IgG3 antibody production (24, 25). Thus, both MPL adjuvant (in
AS01) and GLA (in a squalene emulsion) have demonstrated the
ability to enhance T cell immunity to Mtb in combination with
different antigens , mainly through TLR4-mediated
Th1 polarisation.

Some adjuvants are innately capable of stimulating Th17
polarisation, often by activating non-TLR pattern recognition
receptors such as Mincle (81). It is known that some TLR4 and
TLR7/8 agonists can induce IL-23 expression, and Mincle-
activating adjuvants such as TDB, used in the cationic
liposome formulation CAF01, can also shift the balance
towards IL-17A producing T cells (36). It is thought that TDB,
a derivative of the mycobacterial cord factor (TDM), is the major
contributor to the Th17 polarisation in this vaccine formulation.
Mincle activation, as well as MyD88 and the inflammasome
component ASC, have all been identified as a requisite for the
Th17 generating characteristics of TDB (79, 82, 83). Thus, there
are novel adjuvant strategies focused on generating synthetic
aryl-trehalose derivatives that afford the best Th1 and Th17
polarisation (84, 85). Similarly, it has been observed that
adjuvants such as cyclic dinucleotides and chitosan that
activate the cGAS-STING (cyclic GMP-AMP synthase-
stimulator of interferon genes) pathway also stimulate Th1 and
Th17 responses (86–88). As mentioned above, mucosal delivery is
another effective strategy for the generation of Th17 responses,
with many vaccines displaying enhanced Th17 polarisation upon
mucosal vaccination that was not observed with parenteral
administration. Evaluation of these new Th17-inducing
adjuvants alone and in combination with other established
adjuvant systems in relevant animal models is a critical next
step in the advancement of improved vaccination strategies
for Mtb.

In summary, data supports the development of adjuvants and
vaccines that elicit both local (tissue resident) and systemic
antigen-specific Th1 and Th17 cells as these responses have
been demonstrated to be critical for protection. However,
research should continue to elucidate correlates of protection
to identify new pathways that can be targeted by adjuvants to
induce protective immunity against Mtb.
TARGETING SPECIFIC IMMUNE CELLS

Active or passive targeting of specific immune cells through
vaccination is an important step in the development of a safe and
effective vaccine for TB. Mtb is primarily transmitted via
inhalation and establishes infection in the lung through
phagocytic uptake of the baci l l i by tissue-resident
Frontiers in Immunology | www.frontiersin.org 5
macrophages. The initial recognition and immune activation
by innate immune subsets sets the stage for either clearance or
persistent containment within a granuloma or active disease
through suppression of the immune system (89). Cells involved
in lung-specific innate and adaptive immune responses are
important frontline targets for Mtb vaccination approaches.
The majority of Mtb vaccines are delivered via the
intramuscular (such as M72/AS01E) or intradermal (BCG)
route, creating additional challenges in the recruitment of
tissue resident memory cells to the site of initial infection.
Targeting vaccines to specific cell types could help to overcome
some of the shortfalls of current vaccine approaches while
improving both safety and efficacy. Several groups have worked
to overcome these challenges through targeting specific immune
cells via passive (adjuvants, delivery systems) or active (mucosal
vaccination, prime-pull, receptor targeting) immunization
strategies with great success in pre-clinical and early clinical
investigations. Coordination of the innate and adaptive immune
response is important for resolution of Mtb infection and
targeting of specific immune cells that orchestrate this response
at the site of infection is critical in the development of an
effective vaccine.

The context in which antigens are presented to the immune
system controls the immunological outcome of antigenic exposure
(90). The innate immune system uses pathogen recognition
receptors (PRRs) to decode the nature of the antigen (e.g., viral,
bacterial, fungal) and to translate this into an appropriate adaptive
immune response. Central to the idea of cell-targeting is activation
of the innate immune response by pathogen associated molecular
patterns (PAMPs) and the specific cellular targets they encounter
are crucial for early control of infection and for the subsequent
development of protective long-term adaptive immunity. The use
of passive and active cell targeting strategies opens the door
towards the rational design of vaccines for Mtb that could lead
to more durable and protective mediated immune responses.

Cell Targeting via PRR Expression and
Adjuvant Use
To drive the desired adaptive immune response, the innate
immune response must be properly activated to provide the
correct signals for differentiation of antigen-specific T and B
cells. Different adjuvants activate specific cell types as a result of
differential PRR expression. The directed, rational use of
adjuvants is therefore one way in which specific innate
immune cells can be targeted in the context of Mtb
vaccination. Many adjuvants being explored pre-clinically or in
early clinical trials for Mtb vaccines target and activate DCs. In
the context of Mtb, several studies have shown that directly
targeting DCs can lead to protective immune responses during
infection (5, 91–93). As previously discussed, MPL of AS01
activates TLR4 (15). DCs express high levels of TLR4 and are
highly responsive to MPL, driving downstream antigen-specific
T cell differentiation (11, 20). Both myeloid DCs (mDCs) from
blood and monocyte-derived DCs (moDCs) express TLR4 and
are able to upregulate co-stimulatory markers and secrete Th1
polarising cytokines (in particular IL-12p70) after TLR4
October 2021 | Volume 12 | Article 740117
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stimulation (94). DCs also express high levels of TLR2 (94).
Adjuvants that engage TLR2 on DCs have the potential to
augment early production of pro-inflammatory cytokines such
as IL-6, IL-1b, TNF-a and IL-12 that are necessary for generating
balanced Mtb-specific Th1/Th17 responses (95, 96). This is
demonstrated by studies using Lipokel, an adjuvant which
stimulates TLR2 through binding of the ligand Pam2Cys. A
protein-Lipokel vaccine conjugate was able to reduce Mtb CFU
in the lungs of mice and increase the frequency of DCs in lymph
nodes following vaccination (39). PRR-targeting adjuvants,
including some TLR agonists, can also preferentially target and
activate monocytes and macrophages in addition to DCs.
Monocytes and macrophages are specialized phagocytic cells
that are capable of interacting with and activating antigen-
specific T cells (97). TLR2, TLR4, and TLR8 are highly
expressed on monocytes (98). In addition to activating DCs,
AS01E was also able to activate SSM innate immune cells (15).
The ability of AS01E to target both DCs and monocytes/
macrophages concurrently may contribute to success as an
adjuvant in vaccine strategies for a variety of pathogens,
including Mtb. Additionally, non-TLR PRR agonists, such as
Mincle or Dectin-1 ligands, preferentially target monocytes and
macrophages due to their high Mincle expression (99). CAF01
has demonstrated efficacy as an Mtb vaccine adjuvant in pre-
clinical mouse models and induces a strong Th17 polarised
immune response in mice (36). Interestingly, when used as an
adjuvant in human clinical trials, CAF01 elicited an antigen-
specific Th1 response instead of a Th17 response (35). TDB, the
main component of CAF01 believed to be responsible for Th17
polarisation, does not appear to be a particularly potent human
Mincle agonist relative to its potency in mice, therefore it is
possible that more potent human Mincle agonists may be
required to elicit antigen-specific Th17 immunity (84). Given
the complex nature of various PRRs and their cellular targets in
natural Mtb infection and resolution, it is likely that a
combination adjuvant and delivery system approach (similar to
AS01) and innovative antigen design may be necessary to
improve vaccine efficacy. Promising approaches include
combining CLR/TLR adjuvants (presented at this workshop)
and other novel antigen and adjuvant combination approaches,
such as CysVac2/AdvaxCpG, have shown promise in pre-clinical
models (38).

Cell Targeting via Mucosal Administration
Most vaccines are injected into muscle although BCG is given as
an intradermal injection. However, mucosal immune subsets
that have the ability to quickly transport antigen to stimulate an
immune response may be important targets for mucosal Mtb
vaccines (66, 100). TRM can be induced by mucosal vaccine
administration (9, 26, 101, 102). Following mucosal vaccine
administration or natural infection, lung resident T cells
acquire a polyfunctional phenotype and are more likely to
reside in the airway lumen and lungs, where they can rapidly
respond to Mtb (40, 103–106). These lung-resident T cells are
not typically generated as a result of parenteral vaccination, and
it seems likely that mucosal or lung-resident innate cells are
crucial for the development and differentiation of Mtb-specific
Frontiers in Immunology | www.frontiersin.org 6
lung-resident T cells. These important innate immune effector
cells can be uniquely targeted via intranasal and/or
intrapulmonary vaccination. Several groups have explored a
“prime-pull” strategy which takes advantage of both parenteral
vaccine (prime) and mucosal vaccine boost (pull) to direct
antigen-specific TRM to the lungs (107, 108).

There are a small number of mucosal vaccines currently in
clinical use and all but one (FluMist, intranasal) are delivered
orally (109, 110). However, there are many preclinical adjuvants
that have been tested for either intranasal or intrapulmonary
administration, with a particular bias towards intranasal
administration due to improved safety profile compared to
intrapulmonary administration and lower requirement for
specialised equipment (111, 112). Particulate adjuvants such as
carbohydrate or PLGA have also been used extensively for
mucosal vaccination, often chosen for their mucoadhesive
properties (113). Naturally-derived carbohydrate particles such
as delta inulin (Advax), chitosan, and Bacillus subtilis spores have
all been utilised as mucosal adjuvants in TB vaccine candidates,
all producing a Th1/Th17 phenotype alongside increased
pulmonary IgA (37, 114–116). CAF01 has been tested
intranasally and has also been spray-dried for intrapulmonary
administration (107). Th17 immunity is often achieved via mode
of administration, as it has been observed across multiple vaccine
platforms that mucosal vaccination, particularly intranasal,
favours Th17 differentiation (117, 118). Many adjuvants have
the capacity to be Th1 or Th2 polarising when administered
parenterally but promote Th17 differentiation when delivered
mucosally (37, 119, 120). Some TB vaccines, such as BCG or the
CysVac2/Advax candidate, have been observed to be more
protective after intranasal or intrapulmonary administration, a
quality attributed to local IL-17 production and the
establishment of TRM (37, 119). This was observed when the
clinical candidate vaccine ID93 + GLA-SE was administered
through a different route; parenteral administration induces a
Th1 responses but intranasal administration induces a Th17
responses (121).

Receptor-Mediated Active Cell Targeting
DCs and macrophages are a primary focus of vaccine design due
to their role as APCs and critical function in orchestrating long-
term cell-mediated immunity. The tissue heterogeneity in both
DC and macrophage populations creates challenges for both
passive and active targeting of the various systemic and tissue-
specific APC subsets. Active targeting to specific APC subsets
through endocytic receptors is a promising approach to improve
vaccine efficacy and reduce unintended effects (122). Such
receptors include DEC-205, Clec9A, Clec12A, and DC-SIGN,
among others (122–126). Early work demonstrating active
targeting by DEC-205, a cell surface receptor involved in the
uptake of dying cells and cross-presentation of antigens, led to
the evaluation of an anti-DEC-205-Ag85B vaccine conjugate for
Mtb (125). While strong Ag85B-specific humoral immunity was
noted following vaccination, cell-mediated immunity was
lacking without BCG priming of vaccinated mice and the
vaccine failed to improve protection from Mtb challenge (125).
A similar approach was used to target DC-SIGN; anti-DC-SIGN
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antibodies conjugated to Ag85B were used to vaccinate an
hSIGN transgenic mouse (human DC-SIGN under control of
the murine CD11c promotor) in combination with various
adjuvants. This innovative vaccine design induced strong
antigen-specific CD4+ T cell responses. However, similar to the
DEC-205 approach, enhanced protection from Mtb challenge
was not achieved (126). Improved humoral and/or cell-mediated
immunity to Ag85B was measured using both endocytic receptor
APC targeting strategies demonstrating proof-of-concept for
improving immunity using this approach. Additional research
efforts are required to identify the appropriate combination of
antigen(s), targeting mechanisms, and adjuvants to drive durable
immunity and protection in Mtb animal challenge models.

Targeting Cell Specific Responses
Through Trained Immunity
In the previous section, we briefly discussed the potential of
trained immunity to serve as a correlate of protection. The
contribution of trained immunity to vaccine-mediated
protection against Mtb is currently being investigated (127,
128). PRR agonists, among other factors, can drive functional
and epigenetic reprogramming in innate immune cells in order to
increase Th-polarising cytokines and phagocytic and cytotoxic
killing capacity. BCG, when administered intravenously, provides
both short and long-term protection from subsequent Mtb
challenge in NHPs (8, 28–31). A recently discovered mechanism
of protection by intravenous BCG is the generation of trained
immunity in hematopoietic stem cells (HSCs). Following
intravenous administration, BCG is able to enter the bone
marrow (BM) where it can be detected for up to 7 months after
vaccination in mice (which is not observed in subcutaneous
vaccination) (28). Once in the BM, BCG promotes myelopoiesis
and induces trainedmonocytes andmacrophages (28). These BM
monocytes have a particular transcriptional and epigenetic
program, allowing them to differentiate into trained lung
macrophages and mount a rapid protective response against
Mtb challenge (28). A similar trained immunity effect on HSCs
was found through the use of b-glucan, a Dectin-1 agonist,
administered via intraperitoneal injection (129). Subsequent work
showed that mice with b-glucan-induced trained HSC-derived
monocytes and macrophages were significantly better protected
from Mtb challenge (130). Therefore, targeting trained immunity
through vaccination will require unique adjuvants capable of
eliciting trained lung resident macrophages either locally or
through HSC-derived cells. Data suggests this may be
accomplished through the use of live-attenuated vaccines with
endogenous adjuvants (e.g., BCG) or exogenous adjuvants in
combination with a subunit vaccine (e.g., b-glucan or other CLR
agonist). Additionally, it may be possible to elicit trained immunity
specifically in lung macrophages and DCs viamucosal vaccination
routes (131).

In summary, using adjuvants that activate PRR and other key
receptors on innate immune cells and are administered through
the mucosal route hold the most promise in inducing adaptive
immune responses. Additionally, being able to generate
adjuvants that activate processes such as trained immunity
could be beneficial for inducing protective immunity to TB.
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IMMUNE EVASION MECHANISMS

An important reason for the poor efficacy of natural immunity to
Mtb or BCG vaccine-induced immunity is immune evasion
mechanisms that lead to ineffective crosstalk between innate
and adaptive immunity (95, 132). By identifying critical Mtb
factors that prevent optimal innate immune responses and
elucidating the molecular basis for how host pathways are
subverted by Mtb, we can engineer vaccines that target specific
pathogen and host pathways to improve the immunogenicity
and efficacy.

Mtb has evolved multiple strategies to evade innate immunity
and impede T cell responses. By impairing DC functions (i.e., co-
stimulation, cytokine production and antigen presentation) during
early stages of infection in the lung, Mtb induces delayed and
suboptimal antigen-specific T cell responses that fail to eradicate
infection or provide lasting protection (4, 133–136). Vaccine
strategies need to augment the induction of additional Mtb-
specific T cell subsets, such as Th17 cells, that will work in
concert with Th1 responses to enhance protective immunity
(137). Mtb also inhibits macrophage microbicidal functions and
dampens production of early proinflammatory cytokines and
chemokines critical for shaping the nature and magnitude of T
cell subsets that home to the site of infection (95, 138–140).
Moreover, emerging evidence that myeloid-derived suppressor
cells (MDSC) (141) and/or neutrophils (142) suppress T cell
responses to Mtb infection suggests that targeting these cell
types may improve vaccine-induced immunity.

Several Mtb genes have been implicated in evading DC and
macrophage responses and, when deleted in BCG or Mtb, show
enhanced vaccine-induced protection against TB in animal
models. Thus, removing immune evasion genes shared by Mtb
and BCG is an important approach for improving live attenuated
vaccination strategies. The following studies are examples of
applying knowledge gained from mechanistic studies of Mtb
immune evasion genes and the host pathways that they modulate
towards designing better vaccines for TB.

Inhibition of apoptosis as an immune evasion strategy is
exemplified by the nuoG gene in Mtb, which encodes a subunit of
NADH dehydrogenase and inhibits macrophage apoptosis (143,
144). Infection of mice with MtbDnuoG led to an increase in
apoptosis along with earlier activation of T cells compared to
WT, suggesting that nuoG dampens the ability of innate cells to
initiate T cell responses (145). Moreover, deleting nuoG in
BCGDureC::hly, a recombinant vaccine strain that is more
protective than BCG in animal models, led to increased
apoptosis following vaccination and significantly lowered
bacterial burdens in Mtb-challenged mice (146). Deletion of
Mtb sigH, which regulates multiple stress-induced proteins in
Mtb, also led to increased apoptosis and chemokine responses in
infected macrophages relative to wild type (147, 148). Mucosal
vaccination with MtbDsigH in NHPs resulted in increased
survival and reduced lung pathology following challenge
compared to BCG, with higher central and effector memory T
cells in the lung (9).

Cell surface proteins are well positioned to modulate innate
immune functions. The Mtb serine protease Hip1 is present in
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the cell wall of Mtb and dampens macrophage and DC functions
via proteolytically cleaving its substrate, Mtb GroEL2 (138, 149).
Hip1 inhibits TLR2 and inflammasome-dependent macrophage
proinflammatory responses, impairs CD40-mediated
costimulatory responses in DCs, and restricts Th17 polarisation
during infection (91, 136, 138). Both an Mtb hip1 mutant and
BCGDhip1 strain augmented CD40 expression on DCs,
enhanced macrophage and DC functions and led to higher
lung Th17 responses (150). In a mucosal DC vaccination
model, BCGDhip1 induced immune responses that significantly
reduced Mtb burden following challenge (150). These studies
suggest that impeding CD40-CD40L interactions allows Mtb to
induce suboptimal immunity, and that adjuvants that augment
CD40 during vaccination are likely to improve efficacy. Another
cell surface protein implicated in dampening innate immunity is
LprG, a lipoprotein that binds to TLR2 on macrophages and has
been implicated in inhibiting MHC class II antigen presentation
and phagosome/lysosome fusion (151–153). Deleting lprG in
BCG led to higher levels of pro-inflammatory cytokines, lower
bacterial burdens and higher Th17 responses following
vaccination compared to BCG in murine models (154).

Many Mtb secreted proteins have also been implicated in
evading host immune responses. SapM is secreted extracellularly
via the SecA2 pathway and is involved in preventing phagosome
maturation in macrophages (155, 156). Vaccination of mice with
BCGDsapM increased protection following challenge and led to
increased activation and recruitment of DCs (157, 158).
Together, these studies illustrate that deleting immune evasion
genes in the context of live attenuated vaccine strains can
significantly improve efficacy and suggest that sequential
deletion of multiple immune evasion genes in a single vaccine
strain is likely to lead to synergistic effects that improve
vaccine efficacy.

Studies focused on innate immune pathways modulated by
Mtb may also provide key insights into strategies for enhancing
innate immunity during vaccination. Adjuvants that trigger and
engage specific DC responses during Mtb infection may be of
particular interest as a way to combat Mtb induced delays in DC
activation and suppression of antigen presentation to CD4+ T
cells. Approaches to enhancing Th17 responses include adjuvants
that engage CD40 on DCs (91) and MPL/chitosan formulations
that induce Th17 polarising cytokines in DCs (114). Ligands that
stimulate TLR7 and TLR9 on DCs have also been shown to
upregulate MHCII and reduce anti-inflammatory IL-10
responses following BCG vaccination (159). Other receptors to
target include inflammasome components and other cytosolic
recognition receptors known to play a role in protective
immunity to Mtb infection (160). Developing adjuvants that
target additional immune evasion pathways in DCs, such as
autophagy, can enhance antigen presentation (93). Targeting
costimulatory and coinhibitory molecules on DCs has the
potential to be beneficial in improving the immunogenicity of
candidate vaccine by fine-tuning the pro- and anti-inflammatory
pathways necessary for optimal immunity (91, 161–163).
Additionally, adjuvants that limit early induction of IL-10 and
T-regulatory cell expansion may be effective given the role of
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these responses in dampening immune responses during
infection (164–166). Finally, we need a deeper understanding
of the suppressive functions of neutrophils and MDSCs in order
to develop strategies that target these cell types using adjuvant-
like approaches or by targeted depletion.

In summary, studies on Mtb immune evasion mechanisms
have given us valuable insights, not only on how Mtb
manipulates host immunity, but have also identified pathogen
and host targets for designing live attenuated vaccine strains and
novel vaccine adjuvants that enhance vaccine efficacy.
ANIMAL MODELS

TB is a complex disease and no specific animal model perfectly
mimics or recapitulates Mtb infection in humans. However,
harnessing the strength of different animal models available
will prove useful in developing and testing new adjuvants for TB.

NHPs have played a significant role in TB research and have
been increasingly used for vaccine and adjuvant development.
The strength of this NHP model lies in its ability to recapitulate
disease similar to that in humans. NHPs can develop a latent
version of Mtb infection, produce granulomatous lesions, and be
used as a model to study HIV/TB co-infection. The use of
primates has provided key insights such as the enhanced
protective effect of intravenous BCG vaccination and the safety
and efficacy of trial TB vaccines includingM72/AS01E and ID93 +
GLA-SE (8, 167). Different routes of vaccination can be tested in
NHPs, as the intravenous BCG study also included comparisons
to intradermal, aerosol, and intradermal & aerosol routes of
administration (8). NHPs have been used to test different
vaccination strategies such as the prime-boost approach in
which macaques are primed with BCG and then boosted with
experimental vaccines and adjuvants 3-4 months after priming
(168, 169). Additionally, NHP studies on protective vaccines can
help inform immune correlates of protection, such as the study
which observed protection using pulmonary-delivered BCG and
the intravenous BCG study (8, 51). Given their similarity to
humans, the NHP model is best equipped to study the priority
areas outlined in this review. However, due to the prohibitive
costs and challenges of working with primates (along with
limited number of animals available for research), the use of
small animal models should continue to be used to perform
initial pre-clinical studies of potential adjuvants.

Historically, small animal models (mice and guinea pigs) have
been used by developers to test adjuvant suitability for inducing
protective immunity under rigorous in vivo conditions. The
mouse model represents an excellent screen for first time in
vivo assessment of a test vaccine. Using mice affords greater
feasibility in testing of different variables such as the effect of
different doses, alternative routes of inoculation and different
inoculation times post-vaccination in a relatively short time
frame. Additionally, the ability to use knockout and transgenic
mice provides an additional level of interrogation for vaccine
formulations and a better understanding of mechanisms
involved in inducing protective immune responses (37). For
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instance, a recent analysis of the effect of intranasal vaccination
using ODN as a molecular adjuvant showed that immunity could
be achieved in a type I interferon-dependent manner (170).
Another study demonstrated that intranasal vaccination was
the best route for inducing protective immunity compared to
intraperitoneal, subcutaneous, or intragastric routes (170). The
cost of mouse models also allows for long-term immune profiling
in vaccination studies. Extended timepoints have been previously
been used to identify improved protective efficacy of subunit
vaccine candidates compared to BCG (171). New approaches are
also being used that allow mouse models to better mimic the
heterogenous immune responses observed in humans. The
diversity outbred (DO) mice, where initial breeding is done
with inbred and wild-caught strains, have been developed with
a level of genetic diversity similar to humans and NHPs. In a
BCG vaccine study with DO mice, a diverse response was
observed in which some vaccinated mice were protected and
others were highly susceptible to Mtb challenge (172). Another
attempt to improve the mouse model is the recent development
of the ultra-low dose model. Infecting with 1-2 CFU of Mtb via
aerosol, instead of the conventional ~100 CFU dose, causes mice
to produce a heterogenous immune response and granulomatous
structure in the lung similar to humans (173). The use of these
and other mouse models will therefore continue to be important
for testing novel adjuvants and vaccination strategies against TB.

Guinea pigs serve as an additional model and is traditionally
employed after a vaccine formulation has demonstrated success
in mice. Guinea pigs were originally used in TB research to
understand disease pathogenesis due to their susceptibility to
Mtb infection as well as their use in distinguishing “mammalian”
bacilli from “avian type” bacilli due to their resistance to the
latter (174). Subsequent studies by Smith and colleagues (175,
176) demonstrated that aerosol infection of guinea pigs with
virulent Mtb resulted in pulmonary pathology similar to that
observed in humans as well as a lethal course of disease (177).
This model therefore allow researchers to test the ability of a
vaccine formulation to limit disease, reduce Mtb burden, and
prolong survival. The success of the guinea pig to identify vaccine
candidates that have the potential to succeed in humans was
demonstrated by a study which found the M72 vaccine candidate
was able to boost BCG responses in the model (178). The long-
term guinea pig model was used until recently to determine the
efficacy of a vaccine as a low dose aerosol infection with virulent
Mtb able to induce progressive pulmonary and extra-pulmonary
disease similar to acute TB in humans (179). Vaccination with
BCG resulted in the significant reduction of pathology and
prolonged survival in guinea pigs, therefore validating the use
of this model to test vaccines that can be efficacious in humans.
Guinea pigs can therefore provide valuable insight into the ability
o f d i ff e r en t f o rmu l a t i on s t o s i gn ifi c an t l y l im i t
disease progression.

Together, the use of both mouse and guinea pig models of TB
have contributed to a better understanding of adjuvant
mechanisms in vaccines. The NIH/NIAID TB Vaccine testing
program (180) has used both the C57BL/6 short-term mouse
model and the Hartley guinea pig as a short- and long-term
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model to test vaccines and novel adjuvants. Both models have
similar experimental strategies; animals are vaccinated with the
test vaccine formulation, rested, and then infection is established
by aerosol challenge with a low dose of Mtb (approximately 100
CFU for the mouse and 10 CFU for the guinea pig). The
transition of testing adjuvants from the mouse to the guinea
pig model has resulted in down selection of candidate vaccines
under the NIH testing contracts and few have been able to reach
the clinical testing stage. Of note has been the M72/AS01E
vaccine, which demonstrated activity in the mouse and guinea
pig models (178). Using both models also reconcile differences
observed experimentally. Recent investigations with ODN
adjuvants have highlighted these discrepancies; when the same
formulation and inoculation route were used in both models, the
adjuvant proved less effective in guinea pigs. These results have
been observed with other adjuvants and emphasize the need to
test vaccines in both the mouse and guinea pig models While
adjuvanted subunit vaccines have in general been less effective at
limiting disease in the guinea pig model, it is not clear whether
this is a limitation of the model or whether guinea pigs are
selecting out formulations that may perform poorly in clinical
trials. Unfortunately, there are only a small number of
adjuvanted vaccines currently in clinical trials, some of which
have been successfully tested in the guinea pig model (181, 182).
An increased understanding of immune mechanisms in the
guinea pig would be useful to determine if adjuvants were
providing the appropriate signals to generate protective
immunity. With the limited number of immunological tools
available for the guinea pig to perform in-depth analyses
(compared to mice), it is difficult to determine why such
differences occur. Developing novel reagents for the guinea pig
is an area that must be supported to achieve a better
understanding of immunological responses to infection and
vaccination. Additionally, a systematic analysis of cell
phenotypes, expression of PRRs and other innate immune
factors will be required to determine why adjuvants have
provided limited protective immunity in the guinea pig model.
This will help strengthen the use of this model for use in adjuvant
studies for TB.

In summary, while NHP models more closely mimic human
disease, small animal models provide feasability in testing
vaccine adjuvants in a pre-clinical setting. With the rapid
increase in the development of new molecular adjuvants, the
mouse and guinea pig models provide the capacity to test them
rigorously in an infectious disease setting. Harnessing the
strength of all three of these animal models will therefore be
crucial for developing new and improved adjuvants for
TB vaccines.
CONCLUSION

Recent advances in vaccine development, including an
adjuvanted TB vaccine providing nearly 50% protection and
observations on improving BCG, have reinvigorated the field. As
our understanding of the complex interplay between Mtb and
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the host immune system is improved, new strategies for adjuvant
development may be employed to further boost efficacy and
develop a protective vaccine against TB.

In this review, we have highlighted four areas of importance
for researchers in the TB field to address in order to generate
more efficacious adjuvants and vaccination strategies. Defining
correlates of protection is necessary to dictate which pathways
should be targeted in order to induce protective immune
responses. Similarly, learning how to target cells that are
responsible for inducing those protective immune responses
serves as a direct access to immune responses that are often
dampened during infection. This is critical as Mtb is able to
encode immune evasion proteins that serve to actively impede
key immune cell subsets. Further characterizing these proteins
give us direct insight into pathways that can be activated to
overcome pathogen inhibition. Additionally, having appropriate
animal models is necessary to test whether adjuvants and
vaccines can be beneficial to humans while at the same time
serving as a tool to further study infection and disease. While
research into these topics can contribute directly to the
generation of new adjuvants and vaccines, current adjuvants
and vaccines are instructive in determining the requirements for
protective immunity to TB. While intravenous delivery of BCG
in humans is controversial, the study in NHPs (8) served as a
model for identifying correlates of protection that can be targeted
through safer, more practical means. Similarly, the M72/AS01E
vaccine study (10) demonstrated the benefit of adjuvants in TB
vaccine strategies and contributed potential insights into
mechanisms of protection. Cross-talk between basic TB science
research and TB translational research should be encouraged as
each of these inform the other. Additionally, insights from within
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the field are able to inform other fields that require generation of
similar immune responses for their own models of protection.
Therefore, advancing research in these four areas identified at the
workshop has the potential to improve immunology in general
while working to reduce TB burden worldwide.
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