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Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and
apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes.
Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde
dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as
4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at
E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator,
attenuates the formation of 4-HNE protein adducts and ROS in several disease models.
We hypothesized that ALDH2 can protect against heat stress-induced vascular
inflammation and the accumulation of ROS and toxic aldehydes. Homozygous
ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were
used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were
used for the in vitro experiment. The mice were directly subjected to whole-body heating
(WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered
intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein
levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology.
ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced
4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the
heat stress-induced activation of inflammatory pathways, senescence and apoptosis in
HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly
elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly
decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here,
we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced
org October 2021 | Volume 12 | Article 7405621
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ROS production and vascular inflammation and preserving the viability of ECs. The
activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.
Keywords: heatstroke, heat stress, aldehyde dehydrogenase 2 (ALDH2), Alda-1, acute lung injury (ALI), reactive
oxygen species (ROS)
HIGHLIGHTS

•Mice carrying the human ALDH2*2 variant were susceptible to
whole-body heating-induced acute lung injury.

• Silencing ALDH2 induced 4-HNE and ROS accumulation in
endothelial cells subjected to heat stress.

• Alda-1 attenuated the heat stress-induced activation of
inflammatory pathways, senescence and apoptosis in vitro.

• Activation of ALDH2 by Alda-1 attenuated whole-body
heating-induced acute lung injury in vivo.
INTRODUCTION

Heat-related illness (HRI) affects a large number of people and is
an increasing cause of health issues, as climate change results in
elevated global temperatures (1, 2). The heatstroke (HS) -related
inflammatory response is akin to the systemic inflammatory
response syndrome and lead to a rapid deterioration in clinical
status, resulting in disseminated intravascular coagulation, acute
lung injury (ALI), multiorgan failure syndrome (MODS) and
death (3, 4). Heat stress induces several inflammatory and
apoptotic pathways and increases the production of reactive
oxygen species (ROS) and endogenous reactive aldehydes (5–
9). As an inducible transcription factor, nuclear factor-kappa B
(NF-kB) can be activated by ROS, cytokines, and endotoxin and
is associated with the pathophysiological changes associated with
heat stress and strenuous exercise (10–12). Endothelial cells
(ECs) play an essential role in maintaining the stability of
microvascular permeability. Heat stress induces cellular
senescence, apoptosis and pyroptosis in a variety of cell types,
and endothelial activation/dysfunction with hyperpermeability
play crucial roles in HS-induced ALI (13–17). The accumulation
of toxic aldehydes and oxidative stress and upregulation of the
NF-kB signaling pathway have been found in the hippocampus
and lung tissues of rats subjected to HS (18, 19). Scavenging ROS
significantly inhibited HS-induced necroptosis, suggesting that
preventing necroptosis could alleviate HS-induced small
intestinal tissue injury and cell death (20).

Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an
enzyme that detoxifies aldehydes by converting toxic exogenous
and endogenous aldehydes such as 4-hydroxy-2-nonenal (4-HNE)
protein adducts and lipoperoxides such as malondialdehyde
(MDA) to form nontoxic carboxylic acids. Although ALDH2 was
initially known for its crucial role in ethanolmetabolism in the liver,
it has since been implicated in a variety of diseases, such as
cardiovascular diseases (CVDs), diabetes, neurologic dysfunctions
org 2
and ischemia reperfusion injury (IRI), in several organs (21–25).
Endogenous aldehydic products, such as 4-HNE andMDA, can be
formed by lipid peroxidation of mitochondrial and plasma
membranes under oxidative stress conditions (26, 27). ALDH2
deficiency is known to increase oxidative stress due to an imbalance
in antioxidant defense and ROS generation (8, 28). A single point
mutation in ALDH2 at E487K, which is known as ALDH2*2,
intrinsically lowers ALDH2 activity in approximately 40% of East
Asian individuals. The ALDH2 activator Alda-1 binds to ALDH2
and restores ALDH2 activity by acting as a structural chaperone
(29). Previous studies indicated that Alda-1 attenuated the
formation of 4-HNE protein adducts and inactivated the NF-kB
pathway in severaldiseasemodels (30–34).PretreatmentwithAlda-
1 had been shown to have beneficial effects on hyperoxia and
acrolein induced ALI through preserving the endothelial barrier
and mitochondrial dysfunction (35–37).

While ALDH2 protects against oxidative damage through the
oxidation of toxic aldehydes, few studies have investigated the
role of ALDH2 in the pathogenesis of HS. We hypothesized that
ALDH2 can protect against heat stress-induced vascular
inflammation and ROS and the accumulation of toxic
aldehydes. We further tested whether the ALDH2 activator
Alda-1 could be an adjunctive therapy for HS-induced ALI.
MATERIALS AND METHODS

Cell Culture and Reagents
Human umbilical vein endothelial cells (HUVECs) were
obtained from Cell Applications (San Diego, CA, USA) and
Taiwan Medical Cell and Bioresource Collection and Research
Center (BCRC, Taiwan). Cells at passages 3-5 were used for the
experiments with ALDH2-silencing RNA (siALDH2, Santa
Cruz, sc-60147) and Alda-1 (Adooq Bioscience, A15805, 20
mM in DMSO as stock solution, 1:1,000 dilution (20mM) for
the in vitro experiments). According to previous published
literatures and our own experiences (24–26, 38), we believe
that DMSO in such concentration would not exert obvious
toxic or protective effects on endothelial cells. HUVECs were
cultured in M200 medium supplemented with endothelial
growth factor (Gibco, Medium 200 and LSGS) and maintained
in a humidified atmosphere at 37°C and 5% CO2. The control
cells were maintained in an incubator at 37°C. For heat stress
induction, cells were subjected to 42°C for 2 h and then at 37°C
overnight, as previously described (11, 15).

Immunoblotting
Protein lysates from the cells and lung tissues were subjected to
SDS-PAGE followed by electroblotting onto PVDF membranes.
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The membranes were probed with monoclonal antibodies
against ALDH2 (Abcam, ab108306), cytochrome c (Santa
Cruz, sc-7159), caspase 3 (CST, #9662), 4-HNE (Abcam,
ab46545), p-p38 (CST, #9215), p38 (CST, #9212), p-p65 (CST,
#3033), p65 (CST, #3034), NOX1 (GeneTex, GTX103888),
NOX4 (GeneTex, GTX121929) and GAPDH (Santa Cruz, sc-
32233). Bands were visualized by chemiluminescence detection
reagents, and densitometric analysis was conducted with imaging
processing software (Multi Gauge, Fujifilm). These data are
expressed as the fold changes relative to the controls.

Determination of ALDH2 Activity
ALDH2 activity was measured using an ALDH2 activity assay kit
according to the manufacturer’s protocol (Abcam, ab115348,
Cambridge, UK). In brief, the activity was estimated by
measuring the conversion of oxidized nicotinamide adenine
dinucleotide (NAD+) to reduced nicotinamide adenine
dinucleotide (NADH) at an absorbance of 450 nm every 5
minutes for 2 hours period in the lung tissues and every 30
minutes for a 6 hours period (39).

Measurement of ROS
ROS measurement was performed according to the
manufacturer’s recommendations (OxiSelecte in vitro ROS/
reactive nitrogen species (RNS) assay kit, Green Fluorescence;
Catalog #STA-347, Cell Biolabs, Inc., San Diego, CA, USA). This
in vitro assay measured total ROS/RNS free radical activity.
Unknown ROS or RNS samples or standards were added to
the wells with a catalyst that helps accelerate the oxidative
reaction. Samples were measured fluorometrically against
hydrogen peroxide. The free radical content in the samples was
determined by comparison with a hydrogen peroxide standard
curve. In brief, the cell lysates were stained with 2’,7’-
dichlorofluorescein diacetate (DCFH-DA), which is oxidized
by ROS to form fluorescent 2’,7’-dichlorofluorescein and were
measured at an excitation wavelength of 488 nm and an emission
wavelength of 535 nm. In addition, the dihydroethidium (DHE)
method was also used to detect superoxide production at an
excitation wavelength of 518 nm and an emission wavelength of
606 nm. The samples were loaded onto black 96-well plates and
incubated for 30 min at 37°C, and the relative fluorescence units
(RFUs) were determined by a fluorescence microplate reader
(BMG Labtech, Ortenberg, Germany).

ALDH2*2 Gene-Targeted Knock-In Mice
Knock-in mice on a C57BL/6J background with an inactivating
point mutation in ALDH2 (ALDH2*2) were generated by
homologous recombination, as previously described (34).
There were no significant phenotypic changes in ALDH2*2 KI
mice. Homozygous ALDH2*2 KI mice were used for
the experiments.

Murine Model of Whole-Body
Hyperthermia
C57BL/6J mice and homozygous ALDH2*2 KI mice with a
C57BL/6J background were used for the animal experiments.
The mice were directly exposed to whole-body heating (WBH) at
Frontiers in Immunology | www.frontiersin.org 3
42°C for 1 h at 80% relative humidity using a temperature-
controlled environmental chamber from room temperature and
then returned to room temperature for 6-hour recovery period.
Rectal temperature was measured using a copper-constantan
thermocouple probe inserted into the rectum and connected to
a thermometer. After the 1-h heating period, the mice were
returned to their home cages and given food and water ad
libitum (40). These mice were treated with either vehicle
control (20% DMSO and 20% PEG 400 in 100ml PBS) or Alda-
1 [16 mg/kg in 100 ml in PBS with 20% DMSO and 20% PEG 400
(Sigma, 06855)] intraperitoneally 30 minutes prior to WBH as
previously described with some modification (34, 41). Previous
literatures had showed that there were no obvious toxic or
protective effects of this DMSO preparation on animal
experiments (34, 42). Mice were considered adequately
anesthetized when no attempt to withdraw the limb after
pressure was observed. At the end of the study, the mice were
euthanized by exsanguination under anesthesia. Bronchioalveolar
lavage fluid (BALF) was collected at the end of the experiment by
slowly irrigating the right lung with two separate 0.7-ml aliquots
of PBS, of which 1.2 ml could be retrieved consistently. To avoid
overdistention, the pressure should be kept less than 20 mmH2O.
All experimental protocols and procedures were approved by the
Institutional Animal Care Committee of the National Defense
Medical Center (Taipei, Taiwan) (43).

Assessment of ALI
Lungs were collected after the mice were sacrificed following
WBH. The wet weights of the organs were measured, and their
dry weights were determined after the tissues were fully dried in
an oven at 105°C. The water content was calculated as a
percentage according to the following formula: 100×(wet
weight-dry weight)/wet weight. One BALF aliquot was used
immediately to measure the total cell counts. Erythrocytes were
lysed using erythrocyte lysis buffer (Sigma, 1814389001), and the
BALF was centrifuged at 400 g for 5 min and the supernatant was
discarded. The pelleted cells were resuspended in 1.0 ml of PBS
for the total leukocyte count by using a hemocytometer as
previously described (44). The protein concentration in the
supernatant was determined using bicinchoninic acid (BCA)
method (Pierce, Rockford, IL, USA).

Histology and Immunohistochemistry
Lung injury was evaluated by histological analysis as described
previously. In brief, lung tissue was fixed in 10% formalin
solution for 24 h and stained with hematoxylin and eosin
(H&E). Lung injury was scored based on (1) the infiltration or
accumulation of neutrophils in the airspace or vessel wall and on
(2) the thickness of the alveolar wall. These two observations
were scored from 0 (normal) to 5 (most severe injury or greatest
thickness, respectively) (45).

Cell Viability
Cell proliferation was analyzed by the MTT assay (Sigma,
#11465007001) in accordance with the manufacturer’s
protocols. Briefly, 5,000 cells/well were grown in 96-well plates,
exposed to heat stress at 42°C for 2 h and recovered at 37°C
October 2021 | Volume 12 | Article 740562
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overnight. Then, the cells were incubated with MTTmedium in a
5% CO2 incubator at 37°C. After 4 h, the absorbance was
measured at 570 nm using a Clariostar microplate reader
(BMG Labtech, Ortenberg, Germany).

Terminal Deoxynucleotidyl Transferase-
Mediated dUTP Nick End-Labeling Assay
Cell apoptosis was evaluated by a TUNEL assay using a
fluorescein direct in situ apoptosis detection kit (Millipore,
S7110) according to the manufacturer’s recommended
protocol. Apoptosis was determined as the percentage of
positive cells per 1,000 DAPI-stained nuclei, and the cells were
visualized under a fluorescence microscope (Nikon Eclipse 50i)
at a magnification of 100×.

Senescence Assay
Cellular aging was assessed with a senescence cell staining kit
according to the manufacturer’s instructions (Sigma, CS0030).
Cultured HUVECs were fixed and then incubated with fresh X-
gal staining solution (1 mg/ml, 5 mmol/l potassium ferrocyanide,
5 mmol/l potassium ferricyanide, and 2 mmol/l MgCl2; pH 6).
After the cells were stained, the numbers of blue-stained and
total cells were determined, and the percentage of b-
galactosidase-positive cells was calculated.

Assessment of Mitochondrial Injury
The mitochondrial membrane potential (DYm) has been used as
a parameter of mitochondrial function (46). To assess
mitochondrial function in HUVECs after HS, JC-1 (5,5’,6,6’-
tetrachloro-1,1’,3,3’- tetraethylbenzimidazolcarbocyanine
iodide) staining (BD Biosciences, 551302) was performed and
assessed by fluorescence microscopy (Nikon Eclipse 50i) at a
magnification of 200×. The images represent the merging of red
and green channels. In addition, the fluorescence intensity of the
cells was measured by a fluorescence microplate reader (BMG
Labtech, Ortenberg, Germany). The data are expressed as the
ratio of red fluorescence to green fluorescence intensity.

Serum Levels of Organ Injuries
The serum levels of creatine kinase (CK), aspartate transferase
(AST), and blood urea nitrogen (BUN) were measured by a FUJI
Dri-chem slide on a FUJIDRI-CHEM 4000i instrument.

Statistical Analysis
All experiments were performed independently at least 3 times,
and all continuous variables are presented as the mean ±
standard deviation (SD). The F test for equal variance was
performed before the differences among groups were analyzed.
Comparisons between two groups were analyzed using Student’s
t test. For multiple groups, the data were analyzed using one-way
ANOVA. For post hoc analysis, the Tukey test was used to correct
for multiple comparisons, and the Fisher Least Significant
Difference test was used for planned comparisons. Target
protein expression measured by immunoblotting was analyzed
by densitometry and is expressed as percent changes relative to
an internal control or as the phosphorylated protein level relative
to the total protein expression. Statistical significance was
Frontiers in Immunology | www.frontiersin.org 4
defined as a P value less than 0.05. Analyses were performed
using a statistical software package (SPSS version 16.0 for
Windows; SPS, Inc; Chicago, IL, USA) and GraphPad software.
RESULTS

ALDH2*2 KI Mice Are Susceptible to
HS-Induced ALI In Vivo
There were no significant differences in body temperature between
wild-type (WT) and ALDH2*2 KI mice after WBH
(Supplementary Figure 1). Compared to WT mice, ALDH2*2 KI
mice were more vulnerable toWBH with increased mortality rates
(Figure 1A). ALDH2*2 mice were susceptible to WBH-induced
ALI, there was a significant increase in the wet/dry ratio of lung
tissue in WBH-induced mice (Figure 1B). WBH significantly
induced pathological fluid accumulation and inflammatory cell
infiltration in the lung (Figure 1C). Increased inflammatory cells,
protein levels and ROS production were observed in the BALF of
ALDH2*2 KI mice subjected to WBH compared with WT mice
(Figures 1D–F). In lung homogenates, the ROS production was
increased in ALDH2*2 KI mice subjected toWBH compared with
that inWTmice (Figure 1G). ALDH2 activity was decreased in the
livers of ALDH2*2 KI mice compared withWTmice (Figure 1H).
WBHsignificantly induced the accumulationof 4-HNE,NOX1, the
phosphorylated-p65:p65 ratio and the phosphorylated-p38:p38
ratio (Figure 1I). There were no significant differences in NOX4
expression between the groups. In addition, there were significantly
elevated serum levels of AST, CK and BUN in ALDH2*2 KI mice
subjected to WBH compared with WT mice (Supplementary
Figure 2). Taken together, these results indicate that ALDH2*2
KI mice are susceptible to WBH-induced ALI.

Silencing ALDH2 Exacerbates Heat Stress
Induced Inflammatory Pathways and
Reduced the Viability of HUVECs In Vitro
To further confirm the effect of ALDH2 on heat stress in vitro,
silencingALDH2was used inHUVECswith orwithout heat stress.
As expected, the protein and activity of ALDH2 were decreased by
silencing ALDH2 (Figures 2A, B). There was increased ROS
accumulation in HUVECs subjected to 42°C for 2 h (Figures 2C,
D). Silencing ALDH2 reduced the viability and exaggerated
apoptosis and senescence of HUVECs subjected to heat stress
(Figures 2E–G). Consistent with the results of previous studies
(5, 47), heat stress induced mitochondrial dysfunction and
apoptosis. We found silencing ALDH2 attenuated the level of
DYm (Figure 2H) and increased the expression of cytochrome c
and cleaved caspase 3 relative to the HS in HUVECs (Figure 2I).
Meanwhile, thephosphorylated-p65:p65 ratio, thephosphorylated-
p38:p38 ratio, the expression of NOX1 and the toxic 4-HNE were
accumulated in the silencing ALDH2 subjected to HS in HUVECs
(Figure 2I). NOX4 expression was not significantly different
between the group. These results suggest that reduced ALDH2
exacerbates heat stress induced NF-kB inflammatory pathways,
ROS production, mitochondrial dysfunction and reduces the
viability of HUVECs in vitro.
October 2021 | Volume 12 | Article 740562
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Alda-1 Attenuates Heat Stress-Induced
Activation of Inflammatory Pathways and
Preserved Viability in HUVECs In Vitro
To understand the effect of ALDH2 activation on HS, Alda-1 was
pretreated in HS induced HUVECs. Consistent with previous
studies (29, 31, 48), Alda-1 (20mM) significantly augmented
Frontiers in Immunology | www.frontiersin.org 5
ALDH2 activity (Figure 3A) and reduced heat stress-induced
ROS accumulation (Figures 3B, C). Alda-1 ameliorated the heat
stress-induced cell death (Figure 3D) and reduced heat stress-
induced apoptosis (Figure 3E) and senescence (Figure 3F) in
HUVECs. Alda-1 reversed the heat stress-reduced DYm
(Figure 3G). Alda-1 attenuated the heat stress-induced
A B

E

I

F G HD

C

FIGURE 1 | Effects of ALDH2 on HS-induced ALI in vivo. C57BL/6J WT and ALDH2*2 KI mice were exposed to WBH (42°C, 80% RH for 1 h) and then analyzed.
(A) Survival of mice subjected to WBH (n = 20 in each group). (B) Representative images of the lungs and wet/dry ratio of the lungs (n = 5). (C) H&E stain of the
lungs (n = 5). (D) Total cells in the BALF (n = 5). (E) Total protein in the BALF (n = 5). (F) ROS production in the BALF as determined by DHE fluorescence measurement
using a fluorescence microplate reader with an excitation wavelength of 518 nm and an emission wavelength of 606 nm (n = 5). (G) ROS production in lung homogenates as
determined by DCF fluorescence measurement using a fluorescence microplate reader with an excitation wavelength of 488 nm and an emission wavelength of 535 nm
(n = 5). (H) The ALDH2 activity in liver homogenates was measured by NADH production using the O.D. absorbance at 450 nm in a microplate reader (n = 5). (I) The protein
and 4-HNE levels in lung homogenates were measured by immunoblotting. Densitometric analysis was conducted with imaging processing software. The data were quantified
by normalization to GAPDH; phosphorylated proteins were normalized to total proteins (n = 5). The data are expressed as the mean ± SD. Statistical significance is indicated
as *p < 0.05.
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FIGURE 2 | Silencing ALDH2 augmented heat stress-induced activation of NF-kB, ROS production and apoptosis in HUVECs in vitro. HUVECs were transfected
with ALDH2 siRNA or control siRNA (scramble) before heat stress induction (42°C for 2 h). (A) ALDH2 protein expression was measured by immunoblotting (n = 5).
(B) The ALDH2 activity in cell lysate was determined by measuring NADH production based on the O.D. absorbance at 450 nm in a microplate reader (n = 5).
(C) Measurement of ROS production based on DCF fluorescence using a fluorescence microplate reader with an excitation wavelength of 488 nm and an emission
wavelength of 535 nm (n = 5). (D) Measurement of cellular ROS production based on DHE fluorescence using a fluorescence microplate reader with an excitation
wavelength of 518 nm and an emission wavelength of 606 nm (n = 5). (E) The viability of HUVECs was measured by the MTT assay based on the O.D. absorbance
at 570 nm in a microplate reader (n = 5). (F) The levels of apoptosis were measured by the TUNEL assay as determined fluorescence microscopy. The percentage of
apoptotic cells was determined based on the number of TUNEL-positive cells among the total number of cells (n = 5). (G) The levels of senescence were measured
by b-galactosidase activity detection using bright field microscopy (n = 5). (H) Detection of mitochondrial dysfunction by the JC-1 assay, revealing a decrease in the
mitochondrial membrane potential (DYm) in live cells as determined by fluorescence microscopy and fluorescence microplate reader. The DYm level is expressed as
the merge of the red and green channels, and the data were quantified as the ratio of red fluorescence intensity to the green fluorescence intensity (n = 5). (I) The
protein and 4-HNE levels in lung homogenates were measured by immunoblotting. Densitometric analysis was conducted with imaging processing software. The
data were quantified by normalization to GAPDH; phosphorylated proteins were normalized to total proteins (n = 5). The data are expressed as the mean ± SD.
Statistical significance is indicated as *p < 0.05.
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phosphorylated-p65:p65 ratio, phosphorylated-p38:p38 ratio,
cytochrome c, cleaved caspase 3, NOX1 and 4-HNE accumulation
(Figure 3H). There were no significant differences regarding
NOX4 expression. These results suggest that activation of
ALDH2 by Alda-1 reduces heat stress induced mitochondrial
dysfunction and ROS accumulation of HUVECs in vitro.

Alda-1 Ameliorates WBH-Induced ALI
In Vivo
We then tested the protective effects of Alda-1 on WBH-induced
ALI in vivo. Pretreatment with Alda-1 significantly increased
HS-related survival rates by 25% (Figure 4A). Alda-1
ameliorated WBH-induced ALI, there was a significant
decrease in wet/dry ratio of lung tissue in mice that received
WBH exposure with Alda-1 pretreatment (Figure 4B). In
addition, Alda-1 significantly reduced pathological fluid
accumulation and inflammatory cell infiltration in the lung
(Figure 4C). There were decreased inflammatory cell protein
levels and ROS production in the BALF of Alda-1-pretreated
mice subjected to WBH (Figures 4D–F). In lung homogenates,
mice subjected to WBH increased ROS accumulation by 2.8-fold
relative to the control, whereas pretreatment with Alda-1
reduced the level by 2.9-fold (Figure 4G). As expected, Alda-1-
treated mice had significantly elevated ALDH2 activity
(Figure 4H) in liver homogenates. Alda-1 significantly
decreased the WBH-induced accumulation of 4-HNE, NOX1
expression, the phosphorylated-p65:p65 ratio, the phosphorylated-
p38:p38 ratio, cytochrome c expression and cleaved caspase 3
expression (Figure 4I). NOX4 expression was not significantly
different between the groups. Alda-1 attenuated HS-induced
elevations in serum levels of AST, CK, and BUN (Supplementary
Figure 2). These results suggest that pretreatment with Alda-1
ameliorates WBH-induced ALI in vivo through reduced activation
of NF-kB and apoptotic pathways and ROS accumulation.
DISCUSSION

In this study, we demonstrated the protective role of ALDH2 in
HS-induced ALI. Alda-1 attenuated HS-induced ALI by
reducing the accumulation of ROS and toxic aldehydes and
alleviating vascular inflammation and endothelial dysfunction.
A schematic is shown in Figure 5.

In this study, we highlight 4-HNE and ROS production as a
vicious cycle in heatstroke-induced ALI and the roles of ALDH2
in breaking the vicious cycle. Activation of NF-kB-induced
NOXs activation and ROS production (34, 49, 50). Previous
studies indicated that 4-HNE increased the production of ROS
through NOX and 5-lipoxygenase (5-LO) (51). 5-LO expression
induced by HNE is regulated by activation of the p38 MAPK and
NF-kB pathways in macrophages (52). The activation of 5-LO by
HNE enhanced the CD36 expression and MMP-2 production
and led to macrophage foam cell formation and atherosclerotic
plaque instability (53, 54). Nicotinamide adenine dinucleotide
phosphate oxidases (NOX) are transmembrane enzymes that
catalyze the generation of superoxide anions through the transfer
Frontiers in Immunology | www.frontiersin.org 7
of electrons from NADPH to molecular oxygen and NOXs-
derived ROS induce endothelial dysfunction (55). NOX1 is a
major source of ROS that induces p38 and NF-kB activation
and 4-HNE expression, thereby causing inflammation and
oxidative stress (56, 57). In addition, NF-kB and p38 activation
upregulate NOX-1 overexpression in ECs (38, 58). NOX-derived
ROS causes a decrease in the DYm, resulting in an increase
in mitochondrial-derived ROS, whereas mitochondrial ROS
production cause a secondary activation of NOXs (59). NOX-
derived ROS are mediators of endogenous biological changes
under HS (60), consistently, we also found that acute
HS induces NOX1 overexpression but not NOX4. Using mice
carrying the human ALDH2*2 dysfunctional polymorphism, we
demonstrated that this ALDH2*2 variant conferred susceptibility
to HS, as evidenced by increased ROS and 4-HNE accumulation,
vascular inflammation and endothelial dysfunction. Previous
studies have shown increased inflammatory markers in
patients with HS and in animal models of HS. HS resembles
sepsis in several aspects, and increasing evidence suggests
that endotoxemia and cytokines may be implicated in HS
pathogenesis (16). HS significantly elevates the levels of
cytokines in BALF and activates the NF-kB signaling pathway
in lung tissue (61). HS induces p38 activation and inflammatory
signaling, apoptosis and pyroptosis in vascular cells (14, 15, 17,
62). Consistent with previous studies, we also found that mice
subjected to HS had increased accumulation of ROS and 4-HNE
(18). ALDH2*2 variants are associated with the increased
incidence of several neurodegenerative, cardiovascular and
endocrinological diseases as well as lung and alimentary tract
cancers (62). The accumulation of 4-HNE has been implicated in
the pathogenesis of numerous oxidative stress-related diseases
and in the development and progression of CVDs (63–65). The
rs671 polymorphism in ALDH2 promotes macrophage foam cell
formation and vascular inflammation in atherosclerosis (65, 66).
Patients with ALDH2 deficiency have higher postoperative
oxidative stress levels and are susceptible to cisplatin-induced
cytotoxicity via the overproduction of ROS (67, 68). Genetic
ALDH2-deficient mice are prone to ethanol-induced liver
inflammation and fibrosis by paracrine activation of IL-6 in
Kupffer cells (69). Consistent with previous studies, we also
found that decreased ALDH2 activity resulted in enhanced
phosphorylation of p65 and p38 and apoptosis in ECs (40,
70, 71).

The primary treatment for HS is the alleviation of
hyperthermia. Adjunctive therapies for organ injury are still
limited (3). We provided a rationale for the use of an ALDH2
activator as an adjunctive HS treatment in this study. ALDH2
was shown to protect against oxidative stress and the subsequent
accumulation of toxic aldehydes and adducts in IRI (24). ALDH2
protects against heat shock and is involved in the pathogenesis of
sepsis (72). ALDH2 overexpression prevented acetaldehyde-
induced cell injury and decreased apoptosis in ECs and
oxidative stress-induced endothelial dysfunction (73–75). Alda-
1 binds to ALDH2 and restores ALDH activity by acting as a
structural chaperone (29). Previous studies demonstrated
decreased ALDH2 expression due to increased ALDH2 protein
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FIGURE 3 | Effects of Alda-1 on HS-induced vascular inflammation, ROS and apoptosis in vitro. Alda-1 (20 mM) was added to HUVECs for 6 h before HS (42°C for
2 h). (A) The ALDH2 activity in cell lysate was determined by measuring NADH production based on the O.D. absorbance at 450 nm in a microplate reader (n = 5).
(B) Measurement of ROS production based on DCF fluorescence as determined by using a fluorescence microplate reader with an excitation wavelength of 488 nm
and an emission wavelength of 535 nm (n = 5). (C) Measurement of cellular ROS production based on DHE fluorescence as determined using a fluorescence
microplate reader with an excitation wavelength of 518 nm and an emission wavelength of 606 nm (n = 5). (D) The viability of HUVECs was measured by the MTT
assay based on the O.D. absorbance at 570 nm in a microplate reader (n = 5). (E) The levels of apoptosis were measured by the TUNEL assay as determined by
fluorescence microscopy. The percentage of apoptotic cells was determined based on the number of TUNEL-positive cells among the total number of cells. (F) The
levels of senescence were measured by b-galactosidase activity detection using bright field microscopy (n = 5). (G) Detection of mitochondrial dysfunction by the JC-
1 assay, revealing that the mitochondrial membrane potential (DYm) was decreased in live cells as determined by fluorescence microscopy and a fluorescence
microplate reader. The DYm level is expressed as the merge of the red and green channels, and the data were quantified as the ratio of red fluorescence intensity to
green fluorescence intensity (n = 5). (H) The protein and 4-HNE levels in lung homogenates were measured by immunoblotting. Densitometric analysis was
conducted with imaging processing software. The data were quantified by normalization to GAPDH; phosphorylated proteins were normalized to total proteins
(n = 5). The data are expressed as the mean ± SD. Statistical significance is indicated as *p < 0.05.
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FIGURE 4 | Alda-1 attenuates HS-induced ALI in vivo. Alda-1-pretreated C57BL/6J mice were exposed to WBH (42°C, 80% RH for 1 h) and then analyzed.
(A) Survival of mice subjected to WBH (n = 20 in each group). (B) Representative images of the lungs and wet/dry ratio of the lungs (n = 5). (C) H&E stain of the
lungs (n = 5). (D) Total cells in the BALF (n = 5). (E) Total protein in the BALF (n = 5). (F) Measurement of ROS production in BALF based on DHE fluorescence as
determined using a fluorescence microplate reader with an excitation wavelength of 518 nm and an emission wavelength of 606 nm (n = 5). (G) Measurement of
ROS production in lung homogenates based on DCF fluorescence as determined using a fluorescence microplate reader with an excitation wavelength of 488 nm
and an emission wavelength of 535 nm (n = 5). (H) The ALDH2 activity in lung homogenates was measured by NADH production based on the O.D. absorbance at
450 nm in a microplate reader (n = 5). (I) The protein and 4-HNE levels in lung homogenates were measured by immunoblotting. Densitometric analysis was
conducted with imaging processing software. The data were quantified by normalization to GAPDH; phosphorylated proteins were normalized to total proteins
(n = 5). The data are expressed as the mean ± SD. Statistical significance is indicated as *p < 0.05.
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turnover in both humans with the ALDH2*2 variant and in
ALDH2*2 KI mice (76, 77). Aldehydes and 4-HNE also
inactivate ALDH2 itself and the mitochondrial electron
transport chain (64). Alda-1 restored the high-glucose-induced
decrease in ALDH2 protein expression and activity in rat
cardiomyocytes (78). Consistently, we also found that Alda-1
increased ALDH2 activities and protein expression under heat
stress. Nonetheless, Alda-1 increased the ALDH2 activity but not
its protein expression in the control cells. We speculated that Alda-
1 stabilizes heat stress-induced ALDH2 degradation by acting as a
chemical chaperone (29). ALDH2 protects against angiotensin II-
induced ROS generation and prevents ROS-induced vessel
contraction (28). Pretreatment with Alda-1 upregulated ALDH2
activity and reduced 4-HNE and MDA accumulation in various
models of intestinal IRI (32). Accelerated aldehyde degradation by
Alda-1 also decreased bile duct ligation-induced liver necrosis,
inflammation and fibrosis (33). Alda-1 attenuated 4-HNE-
Frontiers in Immunology | www.frontiersin.org 10
induced vascular smooth muscle cell proliferation and migration
by regulating NF-kB activation, ameliorated vascular remodeling
in a mouse model of pulmonary hypertension and inhibited
atherosclerosis and fatty liver in hyperlipidemic mice (30, 31).
Alda-1 inhibits oxidized low-density lipoprotein-induced priming
and activation of the NLRP3 inflammasome by reducing oxidative
stress in macrophages (79). Alda-1 attenuated high-glucose-
induced mitochondrial injury in H9c2 cells (80). In this study,
we found that Alda-1 attenuated HS-induced accumulation
of 4-HNE and ROS and further prevented HS-induced ALI.
Our previous study also demonstrated that Alda-1 attenuated
AngII-induced abdominal aortic aneurysm (AAA) in ApoE-KO
mice (34).

Increased immune cells in BALF could be due to endothelial
activation/dysfunction and recruitment of inflammatory cells.
Consistent with previous studies (14, 17), We have found that
there were increased total cells in the BALF in mice subjected to
HS. A recent study regarding hyperoxia induced ALI also
revealed that pretreatment with Alda-1 reduced hyperoxia
induced immune cell infiltration, alveolar damage and lung
inflammation and preserved alveolar permeability through the
activation of Akt and mTOR pathways (35). Here we
demonstrated that pretreatment with Alda-1 prevented HS-
induced ALI by reducing ROS production, toxic aldehydes and
mitochondrial injury and preserving the viability of ECs.

Through HS clearly induces endothelial barrier dysfunction
and hyperpermeability (13–17), the potential role of hydrostatic
lung edema formation in HS induced ALI models are otherwise
limited. Accumulated ROS also induced lung edema formation
through downregulation of alveolar epithelial Na/K-ATPase
activity with impaired alveolar fluid reabsorption (81).

Limitations
We are aware that the development of HS could be multifactorial
in nature, including other cell types, mediators and pathways.
Infiltrated immune cells in BALF could be determined to further
elucidate the roles of ALDH2 on HS. The roles of ALDH2 in
other inflammatory cells as well HS-induced changes in
pulmonary hemodynamics, lung endothelial permeability and
the alveolar fluid resorption should be further investigated. Heat
shock response systems, including the heat shock factor-1 (HSF-
1) and heat shock protein (HSP) stress systems, provide
protection against thermal insult by regulating the
transcription of several HSPs and promoting chaperone
activities to alleviate proteotoxic stresses in eukaryotic cells.
The interplay among HSF-1, HSPs and ALDH2 should be
further explored. HSF-1 can upregulate the expression of
ALDH2 via protein kinase C (82). 4-HNE targets and impairs
the function of HSP70 and the endoplasmic reticulum homolog
of HSP70, glucose-regulated protein 78 (83, 84).
CONCLUSION

We demonstrated the crucial role of ALDH2 in protecting
against heat stress-induced ROS production and vascular
FIGURE 5 | Schematic of the role of ALDH2 in HS.
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inflammation and preserving the viability of ECs. ALDH2
activation by Alda-1 attenuated WBH-induced ALI in vivo.
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are expressed as the mean ± SD. Statistical significance is indicated as *p < 0.05.
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