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Background: Currently, a comprehensive method for exploration of transcriptional
regulation has not been well established. We explored a novel pipeline to analyze
transcriptional regulation using co-analysis of RNA sequencing (RNA-seq), assay for
transposase-accessible chromatin using sequencing (ATAC-seq), and chromatin
immunoprecipitation with high-throughput sequencing (ChIP-seq).

Methods: The G protein-coupled receptors (GPCRs) possibly associated with
macrophages were further filtered using a reduced-Cox regression model. ATAC-seq
profiles were used to map the chromatin accessibility of the GPRC5B promoter region.
Pearson analysis was performed to identify the transcription factor (TF) whose expression
was correlated with open chromatin regions of GPRC5B promoter. ChIP-seq profiles
were obtained to confirm the physical binding of GATA4 and its predicted binding regions.
For verification, quantitative polymerase chain reaction (qPCR) and multidimensional
database validations were performed.

Results: The reduced-Cox regression model revealed the prognostic value of GPRC5B.
A novel pipeline for TF exploration was proposed. With our novel pipeline, we first
identified chr16:19884686-19885185 as a reproducible open chromatin region in the
GPRC5B promoter. Thereafter, we confirmed the correlation between GATA4 expression
and the accessibility of this region, confirmed its physical binding, and proved in vitro how
its overexpression could regulate GPRC5B. GPRC5B was significantly downregulated in
colon adenocarcinoma (COAD) as seen in 28 patient samples. The correlation between
GPRC5B and macrophages in COAD was validated using multiple databases.
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Conclusion: GPRC5B, correlated with macrophages, was a key GPCR affecting COAD
prognosis. Further, with our novel pipeline, TF GATA4 was identified as a direct upstream
of GPRC5B. This study proposed a novel pipeline for TF exploration and provided a
theoretical basis for COAD therapy.
Keywords: chromatin accessibility, ATAC-seq, ChIP-seq, multi-omics analysis, transcription factor
HIGHLIGHTS

• This study provides a novel pipeline to explore transcription
factors based on multi-omics data, which is described
adequately enough to be repeated and taken further.

• With our pipline, GATA4 was identified to be the direct
upstream transcription factor regulating GPRC5B.

• GPRC5B may affect COAD patient prognosis, possibly by
interacting with macrophages
INTRODUCTION

Colon cancer, a type of malignant tumor, is the third leading
cause of cancer deaths worldwide (1–3). Colon adenocarcinoma
(COAD) is the most common pathological subtype of colon
cancer. Currently, the prognosis of advanced COAD patients
remains poor. Accordingly, a better understanding of the
molecular mechanisms involved in COAD is warranted.

In recent years, increasing evidence has revealed that immune
infiltration might be an essential factor in COAD patient
prognosis (4). Tumor-infiltrating macrophages of mixed origin
are an important component of immune infiltration (5).
Currently, several studies have indicated that tumor-infiltrating
macrophages could impact COAD progression (6, 7). However,
an improved understanding of the underlying mechanisms of
action is still needed, and a search for potential macrophage-
targeted therapeutic options is also required.

G protein-coupled receptors (GPCRs), a group of cell surface
signaling proteins, represent the most prominent superfamily of
pharmacological targets (8, 9). It has been confirmed that various
GPCRs are involved in the progression of tumors (10), including
colon cancer (11). Lysophosphatidic acid receptors (12),
protease-activated receptor 1 (13), prostaglandin E2 receptors
(14), and endothelin receptors (15) have all been identified as key
players in colon cancer. Nevertheless, the functions of many
GPCRs still remain unclear. Thus, an improved understanding of
the involvement of GPCRs in colon cancer formation and
progression might contribute to the development of a novel
generation of antitumor therapeutics. Additionally, to date, a
qPCR, Quantitative polymerase chain
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large number of GPCRs have been reported to influence tumor
development through macrophages (16, 17). For example, our
previous study demonstrated that LGR4 could maintain
protumoral macrophages and thus play a vital role in tumor
progression (18). Considering the information presented above,
we inferred that macrophage-associated GPCRs could be a
potential target for COAD therapy, and we employed
bioinformatic methods for a more comprehensive investigation.

Currently, to explore the regulation of a target gene, various
algorithms would be applied to transcriptome data for pathway
quantization, followed by correlation analysis. If the target genewas
statistically correlated with a quantized pathway, its involvement in
the regulation of this pathway would be proposed. Besides analysis
of transcriptome data from RNA sequencing (RNA-seq) profiles,
our study further acquired epigenetic data to explore the target
gene’s regulation. Assay for transposase-accessible chromatin using
sequencing (ATAC-seq) used Tn5 transposase to determine the
nucleosome position andmap the open chromatin regions (19, 20).
The accessible chromatin sites in the promoter regions reflect the
potential binding of transcription factors (TFs). Genes with
chromatin accessibility in the promoters were more likely
regulated by TFs. ATAC-seq profiles could detect the open
chromatin regions of target genes and indicate their regulatory
mechanism. Through co-analysis of ATAC-seq and transcriptome
data, we could identify potential TFs, whose expressions were
significantly correlated with the open promoter regions of the
target gene. Next, chromatin immunoprecipitation (ChIP)-seq
profiles were obtained to confirm the physical binding of
potential TFs and the predicted binding regions.

Here, multi-omics bioinformatics was employed to discover
the macrophage-correlated GPCRs that might play a key role in
COAD. With transcriptome data from RNA-seq profiles, we
explored the GPCRs that might be associated with tumor
infiltrating macrophages. GPRC5B was eventually selected
based on its clinical value. Moreover, epigenetic data from
ATAC-seq profiles were also obtained to explore regulation
mechanisms. The above-mentioned results were verified
through quantitative polymerase chain reaction (qPCR),
chromatin immunoprecipitation with high-throughput
sequencing (ChIP-seq), and multidimensional databases.
MATERIALS AND METHODS

Ethics
Our study was approved by Tongji Hospital, Shanghai, China
(reference number 2018-LCYJ-005). Written consent was
obtained from all participants/patients before the study.
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Data Collection
The ATAC-seq profiles of 41 COAD samples were obtained from
the NCI Genomic Data Commons (https://gdc.cancer.gov/
about-data/publications/ATACseq-AWG). We acquired the
Fragments Per Kilobase per Million mapped reads (FPKM)
and htseq-count profiles of 514 samples from TCGA database
(https://tcga-data.nci.nih.gov/), including 473 COAD samples
and 41 solid normal tissue samples. Clinical demographic
information of 426 COAD patients was also retrieved. The
baseline information of all COAD patients is provided in
Supplemental Table S1.

Infiltrating Immune Cells
The normalized gene expression matrix was obtained from the
FPKM profiles. Further, based on the signature markers provided
by Charoentong et al. (21), the Single Sample Gene Set
Enrichment Analysis (ssGSEA) (22, 23) was applied to
estimate the tumor-infiltrating immune cells in COAD. The
signature markers are all listed in Supplemental Table S2. We
applied the Wilcoxon rank-test to compare the difference in the
abundances of immune cells between COAD samples and
normal solid tissue samples.

Integrative Analysis of GPCRs and Tumor-
Infiltrating Macrophage
The list of GPCRswas downloaded from the GPCRNaVa database
(http://nava.liacs.nl) (24) and gene expression of recorded GPCRs
were retrieved (Supplemental Table S3). To explore the GPCRs
potentially correlated with tumor-infiltrating macrophages, we
performed a Spearman correlation analysis. The filtered GPCRs
were further included in the Lasso regression model and the
reduced-Cox regression model. Eventually, based on the reduced-
Coxmodel, a nomogramwas constructed to predict COADpatient
prognosis. Calibration curves were displayed to validate the
accuracy and discrimination of the nomogram.

A Novel Pipeline for TF Exploration
Publicly available datasets were analyzed in this study, including
41 paired ATAC-seq and RNA-seq profiles of the same COAD
patients. The sources of these profiles have been described in data
collection section. The upstream analysis of ATAC-seq data was
completed following the pipeline proposed by M. Ryan Corces
et al. And a total of 122872 reproducible peaks were observed in 41
ATAC-seq profiles of COAD patients. In this study, we directly
downloaded these peaks from the supplemental data file “cancer
type-specific count matrices in normalized counts” (https://gdc.
cancer.gov/about-data/publications/ATACseq-AWG).

With the data above, we proposed a novel pipeline to explore TF
regulation based on multi-omics data. Our pipeline included:
1) Peak annotation. We used the R package “ChIPseeker” to
annotate peaks (annotatePeak function with tssRegion from
-2000 to 2000, TxDb equal to “TxDb.Hsapiens.UCSC.hg38.
knownGene”, and annoDb equal to “org.Hs.eg.db”). We obtained
the 45377 peaks which were annotated as “Promoter (<=1kb)” or
“Promoter (1-2kb)”. 2) Getting the peaks located in the promoter
region of target gene. We first used the R package
“GenomicFeatures” to check the gene location of the target gene
Frontiers in Immunology | www.frontiersin.org 3
GPRC5B (genes function with x equal to “TxDb.Hsapiens.UCSC.
hg38.knownGene”). Then, we search the above 45377 peaks, and
we found the target peak (chr16:19884686-19885185) which had an
overlap with the gene location of GPRC5B (chr16: 19856691-
19886167). 3) Getting the mRNA expression of TFs. We
downloaded the list of TFs from the Cistrome database (http://
cistrome.org/). Based on the list, we can get the TF mRNA
expression from RNA-seq profiles. 4) We used the R package
“stats” (cor.test function) to perform the Pearson correlation
analysis between the TF mRNA expression and the ATAC-seq
peak accessibility of the target peak (chr16:19884686-19885185).
The correlation threshold was set as an absolute value of r > 0.2, p <
0.01. In this study, the TF GATA4 expression was found to be most
highly correlated with the target peak (chr16:19884686-19885185).
5) We used the Cistrome to browse the GATA4 ChIP-seq data
(Cistrome Data Browser function with species equal to “Homo
sapiens”, and factors equal to “GATA4”), and we can check the
overlap between the target peak (chr16:19884686-19885185) and
the peaks of GATA4 ChIP-seq data. Figure 1 presents an overview
of the pipeline of our study.

Co-Analysis of ATAC-Seq and
RNA-Seq Profiles
Chromatin accessibility analysis was performed based on ATAC-
seq profiles. Peak regions over chromosomes were visualized
through the R package karyoploteR (25). We also applied
ChIPseeker (26) to map the tagMatrix, indicating the locations
of peaks around the transcription start site (TSS) regions. The
peaks near the TSS regions were annotated by TxDb. Hsapiens.
UCSC. Hg38. knownGene. For visualization, we used a pie plot
to better show the relationship between peak locations and
promoter regions.

To explore the TF directly upstream of GPRC5B, the Pearson
correlation analysis was performed for TF mRNA expression and
chromatin accessibility of the GPRC5B promoter region. The
potential TFs were further filtered by ChIP-seq profiles of colon
cancer cells, which were obtained from the Cistrome database
(http://cistrome.org/) (27, 28).

Multi-Database Validation
To minimize the bias of using a single database, we validated our
results using multiple databases, including: Gene Expression
Omnibus (GEO, ID: GSE85001, https://www.ncbi.nlm.nih.gov/
geo/), Timer 2.0 database (http://timer.comp-genomics.org/) (29,
30), GEPIA database (http://gepia.cancer-pku.cn/) (31), Human
Protein Atlas database (https://www.proteinatlas.org/) (32, 33), and
LinkedOmics database (https://linkedomics.org/) (34). We also
used four different algorithms (EPIC (35), XCELL (36), TIMER
(37), and MCP-counter (38) algorithms) to confirm the significant
correlation between tumor-infiltrating macrophages and GPRC5B.
The EPIC and TIMER algorithms are partial deconvolution
algorithms, while the XCELL and MCP-counter algorithms are
scoring methods based on a set of marker genes (39).

qPCR Validation
We additionally validated the mRNA expression level of GPRC5B
using fresh frozen tissue samples. COAD samples and paired normal
January 2022 | Volume 12 | Article 741634
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tissues were obtained from 28 patients from Tongji Hospital,
Shanghai, China. TRIzol reagent (Magen, R4801-01) was used for
RNA extraction following the manufacturer’s instructions. After
reverse transcription, qPCR was performed using cDNA,
SyberGreen (Yeasen, 11200ES08) and human GPRC5B primers
(Forward: ACAATGCAGCTCTCCGAACAG, Reverse:
TGATACACGTTGCTTCTAAACGG). The amplification
program was set as follows: 95°C for 210 sec; 40 cycles at 95°C for
210 sec, 58°C for 30 sec, 63°C for 20 sec; melting curve from 58°C to
95°C. Every sample in the qPCR experiment was repeated in
triplicate. Additionally, human GAPDH was selected as the
internal control (Forward: GGAGCCAAAAGGGTCATCATCTC,
Reverse:TGATGGCATGGACTGTGGTCATG).Apaired t-testwas
applied to screen the significant differences.
Frontiers in Immunology | www.frontiersin.org 4
Statistical Analysis
Statistical significance was set at p < 0.05. The correlation
threshold was set as an absolute value of r > 0.2, p < 0.01 in
Pearson or Spearman analysis. Variable normality was checked
using Shapiro-Wilk normality test. For nonnormally distributed
variables, the Wilcoxon rank-test was used for two independent
group comparisons, while the Student’s t-test was used to
compare normally distributed variables. Paired data which
were normally distributed were analyzed by paired t-test. In
Kaplan-Meier survival analysis, to prevent the bias caused by
non-tumor-related death, we obtained results only from patients
who had a follow-up time of more than 90 days. The optimal
cutoffs for Kaplan-Meier survival analysis were determined by R
package survminer (Version 0.4.9; https://CRAN.R-project.org/
FIGURE 1 | An overview of the novel pipeline of our study.
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package=survminer). The differentially expressed genes were
identified by R package edgeR (Version 3.28.1), and the
statistical significance was set at adjusted p < 0.05. R (version
3.5.1; www.r-project.org) was the main analysis software.
RESULTS

Quantitation of Macrophages in COAD
We estimated the scaled proportion of tumor-infiltrating
immune cells using the ssGSEA method to render the immune
cells of each COAD patient comparable (Figure 2A). To make
the results more reproducible and reliable, the whole ssGSEA
process followed the signature markers from Charoentong et al.
The detailed macrophage subsets, such as M0, M1, and M2,
would be further analyzed in the final multi-database validation
part. According to the violin plot in Figure 2B, total macrophage
expression was significantly decreased in COAD samples.
Kaplan-Meier plot of 5-year survival indicated that the COAD
patients with higher macrophage infiltration displayed poorer
prognosis (p < 0.05, Figures 2C, D).
Frontiers in Immunology | www.frontiersin.org 5
Identifying GPCRs Significantly Correlated
With Macrophages in COAD
To explore the potentially relevant GPCRs, we first filtered the
recorded GPCRs by Spearman correlation analysis. The list of
known GPCRs was obtained from the GPCR NaVa database, and
GPCR expressions were retrieved from the RNA-seq profiles.
Eventually, correlation analysis between GPCRs and macrophage
expression was performed, identifying 190 GPCRs for further
analysis (Supplemental Table S4).

Identification of the Potential Prognostic
Biomarker GPRC5B
Considering that macrophages might influence COAD patient
prognosis in a GPCR-related way, we aimed to identify a group
of GPCRs correlated with macrophages and presented as
prognostic predictors. Thus, all GPCRs obtained in the
aforementioned results were further processed using the Cox
regression model. We utilized LASSO regression to prevent
overfitting (Figure 3A). According to the LASSO regression
results, CRHR1 and GPRC5B were regarded as eligible and
were included into the final reduced-Cox regression model
A

B DC

FIGURE 2 | (A) Immune infiltration of 28 immune cell subtypes was quantitated via the ssGSEA method in 473 COAD samples and 41 normal tissue samples. (B) The
relative macrophage infiltration was significantly downregulated in COAD tissues (p < 0.0001). (C) Illustration of the optimal cutoff point identification for survival analysis in (D).
The cutoff point with the maximum standardized Log-rank statistical value was regarded as the optimal cutoff point. (D) Kaplan-Meier plot of 5-year survival of COAD patients
with high vs. low ssGSEA scores of macrophage infiltration. The COAD patients with higher macrophage infiltration displayed poorer prognosis (p < 0.05). COAD, colon
adenocarcinoma; ssGSEA, single sample gene set enrichment analysis. * p ≤ 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not significant.
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(C-index = 0.59, p < 0.05, Figure 3B). The reduced-Cox
regression model indicated that CRHR1 (p = 0.003) and
GPRC5B (p = 0.016) might evaluate the prognosis of COAD
effectively. Furthermore, a nomogram was also constructed
(Figure 3C), and the calibration curves indicated acceptable
accuracy (Figures 3D, E).

Although both CRHR1 and GPRC5B might be important
prognostic factors in COAD, we found that GPRC5B was more
highly correlated with tumor-infiltrating macrophages [r = 0.49
(Spearman), p < 0.05, Figures 4A, B]. Further, as shown in
Figure 4C, CRHR1 was only detected in part of the RNA-seq
Frontiers in Immunology | www.frontiersin.org 6
profiles, while GPRC5B was widely expressed in COAD patients.
Collectively, we identified GPRC5B as a potential macrophage-
related biomarker in COAD patients. More specifically, GPRC5B
was a prognostic risk factor in COAD (Figures 4D, E).

Verification of GPRC5B Expression in
COAD via qPCR
First,weapplied theRpackageEdgeR(40) to thehtseq-countprofiles,
identifying GPRC5B as a differentially expressed gene in COAD (p <
0.05, Figure 4C). Tominimize the bias caused by bioinformatics, we
also obtained clinical samples from Shanghai Tongji Hospital and
A B

D E

C

FIGURE 3 | (A) To prevent the bias caused by overfitting, LASSO regression was applied. (B) Based on the LASSO regression results, the reduced multi-Cox regression
model was constructed. CRHR1 (p = 0.003) and GPRC5B (p = 0.016) were shown to be potentially correlated with COAD prognosis. (C) A nomogram based on the
reduced-Cox model in (B) was constructed (p = 0.0005, AIC = 855.16, C-index = 0.6). (D, E) Calibration curves of 3-year survival (D) and 5-year survival (E) validated the
acceptable accuracy of the model. LASSO, least absolute shrinkage and selection operator; CRHR1, corticotropin releasing hormone receptor 1; GPRC5B, G protein-
coupled receptor class C group 5 member B; COAD, colon adenocarcinoma.
January 2022 | Volume 12 | Article 741634
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performed qPCR on COAD tissues and the paired normal tissues
from 28 patients. The qPCR result was consistent with our
bioinformatic findings, indicating that GPRC5B was significantly
downregulated in COAD tissues (Figure 4F).

Novel Pipeline Identified GATA4 as a
Direct TF for GPRC5B
To further explore the regulation of GPRC5B, we combined
ATAC-seq and RNA-seq profiles for co-analysis. It is well-
known that TFs regulate genes by binding to the open regions
around the promoter. Thus, we acquired the chromatin
accessibility landscape of COAD patients from 41 ATAC-seq
profiles. Figure 5 showed that accessibilities were widely
presented across the genome. Most open chromatin regions
located around TSS regions (Figures 6A, B). For visualization,
the pie plot indicated that the open chromatin regions were
primarily located in the promoter regions (41%, Figure 6C).
Across samples, we identified chr16:19884686-19885185 as the
reproducible open chromatin region in the GPRC5B promoter.
Frontiers in Immunology | www.frontiersin.org 7
Thereafter, according to the TF list from CISTROME
database, we retrieved a TF expression matrix from the FPKM
profiles. Correlation analysis was applied to TF expression and
the identified accessible promoter regions (chr16:19884686-
19885185) (Supplemental Table S5). GATA4 expression was
found to be most highly correlated with the GPRC5B open
promoter regions (p < 0.01), indicating that the TF GATA4
might regulate GPRC5B.

For validation, we then acquired the GATA4 ChIP-seq data
from CISTROME. Figure 6D shows that the GATA4 protein
specifically bonded to the identified promoter regions (Blue area,
chr16:19884686-19885185) in colon cancer cells.

After confirming the physical combination between GATA4
and the GPRC5B promoter, we downloaded the RNA-seq
profiles of GATA4-overexpressed cells from GEO (GSE85001).
GPRC5B was identified as a differentially expressed gene and
found to be upregulated in the treatment group (Figure 6E).

Collectively, the results showed that the TF GATA4 could
bind to the GPRC5B promoter regions, regulating GPRC5B
A B

D E F

C

FIGURE 4 | (A) Correlation heatmap of macrophages and CRHR1 and GPRC5B expression. (B) GPRC5B was significantly correlated with macrophages (r = 0.49,
Spearman, p < 0.01). CRHR1 was statistically, but weakly, correlated with macrophages (r < 0.2, Spearman, p < 0.01). (C) GPRC5B was a differentially expressed
gene in COAD samples (p = 8.4e-06), whereas CRHR1 was only detected in a small number of samples. (D) An illustration of the optimal cutoff point identification
for survival analysis in (E). (E) GPRC5B was a potential prognostic risk factor in COAD patients (p < 0.0001). (F) For qPCR validation, clinical samples of 28 COAD
tissues and paired normal tissues were acquired from Tongji Hospital, Shanghai, China. GPRC5B was significantly downregulated in COAD tissues (p = 0.0021).
CRHR1, corticotropin releasing hormone receptor 1; GPRC5B, G protein-coupled receptor class C group 5 member B; COAD, colon adenocarcinoma.
January 2022 | Volume 12 | Article 741634
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expression. Detailed steps of the novel pipeline above are
visualized in Figure 7.

Multiple Database Validation
To prevent bias due to the use of a single database, multiple
databases were used for validation. We confirmed that GPRC5B
was significantly correlated with tumor-infiltrating macrophages
using four algorithms (EPIC, XCELL, TIMER, and MCP-counter,
Figure 8A). To be more exact, based on the CIBERSORT
algorithm, we found that GPRC5B was more highly correlated
with M2 macrophages (r = 0.395, p < 0.01, Figure 8B). Similar
results were obtained from the GEPIA database (Figure 8C),
indicating that GPRC5B was correlated with the surface marker
CD163 (r = 0.51, p < 0.01) and MRC1 (r = 0.54, p < 0.01) of
M2 macrophages.

Furthermore, according to the LinkedOmics database, there
was a significant increase in GPRC5B expression with advancing
T stage (Figure 8D). Patients with high GPRC5B expression
tended to have poorer prognosis (Figure 8E). The Human
Protein ATLAS database also confirmed the prognostic value
of GPRC5B (Figure 8F). Moreover, according to Timer 2.0
database, GPRC5B was identified as a differentially expressed
gene in various tumor types, including COAD (Figure 8G).
DISCUSSION

COADisone of themost fatalmalignant tumor typesworldwide. In
recent years, an increasing number of studies have indicated that
tumor-infiltrating immune cells might play an important role in
cancer development and progression (41–43). However, further
Frontiers in Immunology | www.frontiersin.org 8
study of the underlying mechanisms is still warranted. Conversely,
although various GPCRs have been proven to be involved in tumor
progression, the functions of many GPCRs remain unclear. As cell
surface proteins, GPCRs could regulate a wide range of
physiological processes and have always been important targets
for drug development. Thus, we discovered that macrophage-
associated GPCRs showed prognostic value in COAD. Our study
aimed to explore potential pharmacological targets for COAD.

In this study, we found that GPRC5B was a key GPCR
affecting COAD patient prognosis and could be a novel target
of antitumor therapeutics. Also, considering the potential value
of GPRC5B, we decided to further explore the regulation of
GPRC5B through integrated bioinformatics. Combining RNA-
seq and ATAC-seq profiles together, we identified GATA4 as a
direct upstream TF of GPRC5B. The results above were verified
through qPCR, ChIP, cell experiments, and multidimensional
database validations.

GPRC5B belongs to type 3 GPCR family, characterized by a
signature seven-transmembrane-domain motif. First identified
in 2000 by Hans Brauner-Osborne and Povl Krogsgaard-Larsen
(44), GPRC5B is currently an orphan heterotrimeric GPCR. It
has been reported to modulate insulin secretion, and it might be
associated with type 2 diabetes (45). Additionally, Carvalho et al.
revealed that GPRC5B might regulate the membrane availability
of the prostacyclin receptor (46). Furthermore, some studies
indicated that GPRC5B might be involved in the regulation of
obesity-associated inflammatory response and macrophage
infiltration (47, 48). Some studies have indicated the role of
GPRC5B in cancer, while its specific molecular mechanisms
remain largely unknown (49–51). Our findings have supported
the clinical value of GPRC5B in patients with COAD.
FIGURE 5 | Visualization of peaks (marked in red) over chromosomes. Chromatin accessibilities were widely present over the whole genome.
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We identified GPRC5B as a differentially expressed gene in
COAD through RNA-seq and qPCR of clinical samples. GPRC5B
was significantly downregulated in COAD patients, while its
expression would increase with the increase in tumor stages.
Considering that GPRC5B was known as a cell surface protein, its
expression pattern would make it an ideal pharmacological target.
Next, according to the integrated analysis of GPRC5B and tumor-
infiltrating immune cells, we also showed that GPRC5B was
significantly associated with macrophages. As this correlation was
primarily based on statistical methods, and the macrophages were
quantized through the ssGSEA algorithm, we acquired multiple
algorithms for validation. The classical algorithms, including EPIC,
XCELL, TIMER, MCP-counter, and CIBERSORT, were all
employed in this study to validate the result of ssGSEA algorithm.
With the knowledge that macrophages are important in COAD
development and progression, we hypothesized that the
interactions between GPRC5B and tumor-infiltrating
macrophages, potentially type M2, might be important in COAD
and further affect the prognosis of patients with COAD. Based on
Frontiers in Immunology | www.frontiersin.org 9
the results above, we found that GPRC5B is a potential therapeutic
target for COAD.

Moreover, a novel pipeline of multi-omics analysis was proposed
in this study. Here, we applied this novel pipeline to explore the
regulation ofGPRC5B, identifyingGATA4 as its direct upstreamTF.
The detailed workflow is displayed in Figure 1. In recent years, there
have been various studies, which followed the classic pipeline to solve
similar questions. However, most of these studies could only prove
the correlationbetween the target genes and the algorithm-quantized
pathways, primarily based on transcription data and Pearson/
Spearman correlation analysis. Although multi-omics databases
were used for validation, it was still hard to further explore the
underlying mechanism. For example, Pearson/Spearman analysis
could only tell the correlation degree based on statistics, instead of
biological significance. Also, there were currently plenty of
quantization algorithms, transferring the mRNA expression matrix
into immune cell fractions, microenvironment scores, pathway
expressions, and other key parameters. There was no doubt that
these algorithms were effective and convincing. However, if we
A

B

D

E

C

FIGURE 6 | (A) Visualization of read count frequency of peaks revealed that they were primarily located around the TSS. (B) Peaks are mapped to the TSS regions
and further aligned in a tagMatrix, indicating that the majority of chromatin accessibilities were near the TSS. (C) Pie plot reveals that most of the open chromatin
regions were located in promoters. (D) GATA4 ChIP-seq data show the strong overlap between the GATA4 protein binding regions and the predicted regions
(highlighted in blue). GATA4 could physically bind to the GPRC5B promoter at chr16: 19884686-19885185. (E) According to the GEO database (GSE85001),
GPRC5B was significantly upregulated in the GATA4-overexpression group. TSS, transcription start site; ChIP-seq, chromatin immunoprecipitation sequencing;
GPRC5B, G protein-coupled receptor class C group 5 member B; GEO, Gene Expression Omnibus.
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primarily focus on mRNA level and statistical screening, some
important biological process might be ignored. To solve these
problems, many researchers would apply laboratory experiments to
confirm biological significances.

Considering the reasons above, we combined ATAC-seq,
RNA-seq, and ChIP-seq profiles together for integrated
analysis. ATAC-seq used Tn5 transposase to map the open
chromatin regions, indicating the potential binding sites for
TFs. It was known that genes with chromatin accessibility in
the promoter regions are more likely to be regulated by TFs. The
ChIP-seq profiles could ensure the physical binding between a
specific TF and the target gene promoter region.

In our study, we first identified chr16:19884686-19885185 as the
accessible chromatin region of the GPRC5B promoter through
ATAC-seq profiles. Thereafter, we discovered that the mRNA
expression of GATA4 was significantly associated with
chr16:19884686-19885185. For confirmation, we acquired the
ChIP-seq profiles of the GATA4 protein in colon cancer cells. The
open chromatin region (chr16:19884686-19885185, highlighted in
blue)was found tooverlapwith theGATA4binding regions toagreat
extent. We also found that, with the upregulation and
Frontiers in Immunology | www.frontiersin.org 10
downregulation of GATA4 expression, GPRC5B would be
regulated accordingly. Collectively, through this novel pipeline, we
identified GATA4 as the direct upstream TF of GPRC5B.

Several inevitable limitations need to be addressed. First, our
pipeline required paired ATAC-seq and RNA-seq profiles of the
same samples, the amount of which was relatively small in public
databases. However, despite the limited data sources, we
acquired 41 eligible paired profiles to prove the effectiveness of
our pipeline. Second, although we have identified GPRC5B as a
key molecule in COAD prognosis through bioinformatics, we
have not put forward any proof in vivo. Future studies should
experimentally verify our findings.

Despite the limitations mentioned above, our study was the first
to infer that GPRC5B, correlated with tumor-infiltrating
macrophages, might be a key molecule affecting COAD
prognosis. The interaction between GPRC5B and tumor-
infiltrating macrophages could be a potential target for clinical
therapy.Wealso proposed anovel pipeline, identifyingGATA4 as a
direct upstream TF of GPRC5B. This pipeline was based on the
integration of multi-omics data, which was easy to apply and could
be used to achieve a more convincing conclusion.
FIGURE 7 | Visualization of the detailed steps of our novel pipeline.
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FIGURE 8 | (A) Based on the EPIC, XCELL, TIMER, and MCPcounter algorithms, GPRC5B was closely correlated with tumor-infiltrating macrophages in COAD.
(B) The CIBERSORT algorithm indicated a closer correlation between GPRC5B and M2 macrophages (r = 0.395, p < 0.01), compared with M1 macrophages (r =
0.199, p < 0.01). (C) The GEPIA database showed that GPRC5B was significantly correlated with the M2 macrophage surface marker CD163 (r = 0.51, p < 0.01)
and MRC1 (r = 0.54, p < 0.01). (D) The LinkedOmics database confirmed that GPRC5B was gradually upregulated following the progress of COAD development
through different tumor stages. (E) The LinkedOmics database indicated that GPRC5B could be a potential risk factor for COAD (p < 0.05). (F) The Human Protein
Atlas database indicated that GPRC5B could be a potential risk factor for COAD (p < 0.05). (G) The Timer 2.0 database showed the mRNA expression level of
GPRC5B across various tumor types. GPRC5B was significantly downregulated in COAD samples (p < 0.001). GPRC5B, G protein-coupled receptor class C group
5 member B; COAD, colon adenocarcinoma; TPM, Transcripts per million. * p ≤ 0.05; ** p < 0.01; *** p < 0.001.
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CONCLUSIONS

GPRC5B, correlated with tumor-infiltrating macrophages, is a
potential key molecule affecting COAD prognosis. Further, with
ournovel pipeline,TFGATA4was identifiedas a direct upstreamof
GPRC5B. This study proposed a novel pipeline for TF exploration
and provided a theoretical basis for COAD therapy.
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