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Viruses cause a wide spectrum of clinical disease, the majority being acute respiratory
infections (ARI). In most cases, ARI symptoms are similar for different viruses although
severity can be variable. The objective of this study was to understand the shared and
unique elements of the host transcriptional response to different viral pathogens. We
identified 162 subjects in the US and Sri Lanka with infections due to influenza,
enterovirus/rhinovirus, human metapneumovirus, dengue virus, cytomegalovirus,
Epstein Barr Virus, or adenovirus. Our dataset allowed us to identify common pathways
at the molecular level as well as virus-specific differences in the host immune response.
Conserved elements of the host response to these viral infections highlighted the
importance of interferon pathway activation. However, the magnitude of the responses
varied between pathogens. We also identified virus-specific responses to influenza,
enterovirus/rhinovirus, and dengue infections. Influenza-specific differentially expressed
genes (DEG) revealed up-regulation of pathways related to viral defense and down-
regulation of pathways related to T cell and neutrophil responses. Functional analysis of
entero/rhinovirus-specific DEGs revealed up-regulation of pathways for neutrophil
activation, negative regulation of immune response, and p38MAPK cascade and down-
regulation of virus defenses and complement activation. Functional analysis of dengue-
specific up-regulated DEGs showed enrichment of pathways for DNA replication and cell
division whereas down-regulated DEGs were mainly associated with erythrocyte and
myeloid cell homeostasis, reactive oxygen and peroxide metabolic processes. In
conclusion, our study will contribute to a better understanding of molecular
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mechanisms to viral infections in humans and the identification of biomarkers to
distinguish different types of viral infections.

Keywords: viral respiratory infections, host response (HR), human patients, influenza, enterovirus, rhinovirus (RV),

metapneumovirus, dengue virus (DEN)

INTRODUCTION

Respiratory viral infections represent a significant threat to
human health worldwide. Prior to the SARS-CoV-2 pandemic,
influenza was the most common cause of morbidity and
mortality in adults with respiratory viral infections (1).
Implementation of molecular diagnostics has demonstrated
that other viruses such as metapneumovirus and rhinoviruses
are also significant contributors to the overall burden of
respiratory infections (2, 3). The host response to respiratory
infection has been described in both experimental model systems
and in human patients. In humans, transcriptome analyses have
been performed to describe the response in the peripheral blood
for several viral infections including influenza virus [e.g. (4-20)].
or SARS-CoV-2 [e.g. (21-28)]. Several studies described the
specific transcriptome response in peripheral blood cells that
distinguish viral from bacterial infections (6, 7, 9, 10, 29) or
moderate from severe influenza infections (12, 14, 17, 18).
However, few studies have distinguished transcriptomic
responses to different viral pathogens (8, 23, 30, 31).

Here, we performed transcriptomic analysis from the
peripheral blood of patients infected with different viruses
including respiratory and non-respiratory infections. We
identified conserved elements of the host response common to
all included viruses and we identified virus-specific responses.
These findings confirm the potential for host response
diagnostics to differentiate between viral infections despite
their shared clinical features.

MATERIALS AND METHODS

Clinical Enroliment and Case Definitions

Patients were enrolled prospectively for sample collection in the
Emergency Departments (EDs) of three hospitals from 2009
through 2016: Duke University Medical Center (Durham, NC),
Durham VA Health Care System (Durham, NC), and UNC
Health Care (Chapel Hill, NC). Enrollment was by convenience
sampling as part of two consecutively executed observational
studies: Community Acquired Pneumonia and Sepsis Study
(CAPSS), and Rapid Diagnostics in Categorizing Acute Lung
Infection (RADICAL) study. Patients were eligible for CAPSS if
they were >6-years old with a known or suspected infection of
<28-days duration and if they exhibited two or more systemic
inflammatory response syndrome criteria (32). RADICAL
enrolled patients age >2-years with acute respiratory illness of
<28-days duration. Healthy controls were adults recruited as part
of a longitudinal study evaluating community-onset respiratory
viral infections among Duke University undergraduates. Samples

were selected from asymptomatic participants (33). In Sri Lanka,
consecutive patients =15 years of age who were hospitalized in
the largest tertiary care hospital in the Southern Province were
enrolled from June 2012 to October 2014. Subjects were eligible
for enrollment within the first 48 hours of admission if they had
documented fever >38°C and lacked signs of a focal bacterial
infection (e.g., urinary tract infection). Demographic and clinical
data were obtained at enrollment and during the course of
hospitalization by interview and chart review. All subjects were
noted to be of Sri Lankan descent. Acute dengue was confirmed
using IgG ELISA, virus isolation, real-time reverse transcription
polymerase chain reaction (RT-PCR) for DENV, and RT-PCR
for flaviviruses, as previously described (34). Supplemental
respiratory pathogen testing was performed for all subjects
using either the ResPlex V2.0 (Qiagen; Hilden, Germany),
Respiratory Viral Panel (Luminex; Austin, TX), or Respiratory
Pathogen Panel (Luminex; Austin, TX). Table S1 provides
details of microbiological assay for individual study
participants. Some assays did not distinguish between
rhinovirus and enterovirus. Therefore, infections due to either
virus were considered as one category. EBV and CMV can both
be detected in the blood long after acute infection, making it
difficult to determine whether their identification is infection or
just a bystander. However, the cases included here were
determined through clinical adjudication to represent true
infection in the forms of mononucleosis and acute CMV
infection. Clinical adjudications were performed to identify the
microbiological etiology of illness except for those enrolled in Sri
Lanka (6). Adjudicators were clinicians experienced in managing
patients with ARI, defined either by subspecialty training in a
relevant field or by >2 years of post-graduate clinical experience
in that field. Relevant areas of expertise included hospital
medicine, emergency medicine, infectious diseases, or
pulmonary/critical care medicine. Information available to
adjudicators included the electronic medical record,
supplemental etiology testing, and the case report.
Adjudications were performed at least 28 days after enrollment
and before any gene expression data were generated. All subjects
included in this analysis had a microbiologically confirmed viral
infection with a clinical syndrome compatible with a viral illness.
Compatible respiratory viral clinical syndromes included upper
respiratory infection, rhinosinusitis, pharyngitis, laryngitis, acute
bronchitis, acute exacerbation of chronic obstructive pulmonary
disease, bronchopneumonia, and pneumonia. No bacterial/viral
co-infections were included in this analysis.

Preparation and Sequencing of Blood RNA
Upon enrollment, whole blood was collected into PAXgene
Blood RNA tubes (Qiagen) and processed according to
manufacturer instructions with storage at -80°C. Total RNA
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was extracted using QIAsymphony PAXgene Blood RNA Kit on
QIAsymphony SP instrument (QIAGEN). RNA yield was
determined using Qubit RNA BR Assay Kit read on Victor X2
Plate Reader (Perkin Elmer), and quality assessed using Agilent
HS RNA (15NT) Kit read on Fragment Analyzer System
(Agilent). Strand-specific RNA sequencing libraries were
generated using NuGEN Universal Plus mRNA-Seq kit with
AnyDeplete-mediated human globin transcript depletion
(NuGEN, Redwood City, CA). The libraries were sequenced on
Mlumina NovaSeq 6000 S4 flow cell at 150bp paired end reads
with an average of 50M read pairs per RNA sample.

Bioinformatic Analysis

Reads were quality checked with package FastQC (version 0.11.4,
http://www.bioinformatics.babraham.ac.uk/projects/fastqc),
then quality trimmed using Trimgalore (version 0.4.4, https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/)
with default settings. Trimmed reads were mapped to human
genome annotation hg38 (ENSMBL hg38 release 91) using STAR
[version 2.5.2b (35)] with default settings. Analysis and
visualization of expression data was performed using the R
software package (version 3.4.0) (36). Mapped reads were
counted using RsubRead [version 1.32.4 (37)]. Raw counts
from human genome were then normalized using DESeq2
[version 1.16.1 (38)]. Principal component analysis (PCA) was
used to visualize groups (pathogens, sex) and identify outliers.
One extreme outlier was removed based on the PCA. For
identification of differentially expressed genes (DEG), the
Limma package [version 3.42.2 (39, 40)] was used. DEGs were
identified based on an adjusted p-value of < 0.05 and exhibiting
more than a 1.5-fold (log2 = 0.5849625) difference in expression
levels. Multiple testing adjusted p-value were calculated
according to Benjamini and Hochberg (41). Volcano plots
were generated with the package EnhancedVolcano, version
1.8.0 (42). Pathway association analysis was performed with
the package clusterProfiler (43). Digital cell quantification was
performed with package ComICS (44).

Data Availability

Raw and processed data were deposited at the public GEO gene
expression database (https://www.ncbi.nlm.nih.gov/geo/; GEO
ID: GSE157240).

RESULTS

Cohort Characteristics

Subjects were recruited from three U.S. EDs based on the
presence of acute respiratory infection or suspected sepsis.
Subjects were also enrolled in Sri Lanka based on the presence
of acute, undifferentiated febrile illness. Only those confirmed to
have viral etiologies were included in this analysis. The dataset
consisted of 182 samples including 20 healthy controls. The
group was well-balanced by gender with 98 females and 84
males. The mean age was 39 years with a range of 15 to 90 years.
Table 1 shows the demographic and clinical data for all

participants. Our analysis focused primarily on 65 subjects
with influenza A virus (IAV), 31 with enterovirus/rhinovirus
(ENV), and 17 with human metapneumovirus (MPV).
Additional comparator groups were comprised of 21 subjects
with dengue (DENV) and 28 subjects with other viruses [10
parainfluenza (PIV), 7 respiratory syncytial virus (RSV), 5
adenovirus (ADV), 3 cytomegalovirus (CMV), and 3 Epstein-
Barr virus (EBV)].

Host Responses in IAV, ENV, and MPV
Infections Compared to Healthy Controls
We first compared the transcriptome responses for each
respiratory virus (IAV, ENV, MPV) to healthy controls.
Table 2 lists the number of differentially expressed genes
(DEGs) from these comparisons. Detailed results are provided
in Tables S2-S4. The other respiratory viruses (ADV, CMV,
EBV, PIV and RSV) were not included in these analyses because
of inadequate small sample size. Figures 1A-C illustrate the
DEGs for each virus versus healthy controls. The total number of
DEGs were similar for each virus (1335, 1136 and 1691 for IAV,
ENV and MPV, respectively). DEGs in the Venn diagram found
only in one given virus infection were: 367 in IAV, 189 in ENV,
and 456 in MPV-infected patients (Figure 1D). Functional
analyses of the DEGs found only in one given virus were
‘interleukin-1 production’, ‘antigen processing’, ‘response to
LPS and bacteria’ and ‘angiogenesis’ for IAV (Figure 1E);
‘negative regulation of immune system’ and ‘macrophage
activation’ for ENV (Figure 1F); and ‘viral gene expression’,
‘protein targeting to ER and membrane’, and many pathways
related to cell division for MPV-only DEGs responses when
compared to healthy controls (Figure 1G).

Furthermore, we combined all DEGs from the three
comparisons to healthy controls resulting in 2,298 DEGs (all
genes from Figure 1D). We then performed a comparative
cluster pathway association analysis for all up-regulated DEGs
and all down-regulated DEGs. The up-regulated DEGs were
mainly associated with ‘response to virus, ‘interferon pathway’,
‘activation of innate immune response’, and ‘cytokine secretion’
(Figure 2A). The down-regulated DEG pathways were enriched
for ‘protein targeting to membranes’, ‘cell differentiation’, and ‘T
cell activation and differentiation’ (Figure 2B). There were 598
DEGs that overlapped between all comparisons (center of
Figure 1D). The functional analysis of these overlapping DEGs
showed a dominant representation of host responses to viral
infections, ‘regulation of innate immune response’, ‘cellular
response to type 1 interferon’, ‘response to virus’, ‘cytokine
secretion’, ‘regulation of viral process’ (Figure 2C). To visualize
these host responses, we selected the top 50 most differentially
expressed genes (by absolute fold-change) from each virus-to-
healthy comparison and represented them as a heatmap
(Figure 2D). Most genes were up-regulated compared to healthy
controls, and the largest group of up-regulated genes was observed
for IAV suggesting that the response to IAV was strongest
compared to the other two infections. The latter observation
became more obvious when we investigated the magnitude of
responses for the three pathogens as detailed below.
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TABLE 1 | Demographics and clinical characteristics of study participants.

Dengue Influenza Enterovirus/ Metapneumo-virus Other Viruses* Healthy Control Total
Rhinovirus

n 21 65 17 28 20 182
Age

Mean 34.2 40.5 40.5 60.1 42.5 18.3 39.4

Range 15-72 18-80 19-86 33-90 19-80 18-20 15-90
Gender

Male 14 27 8 12 11 84

Female 7 38 9 16 9 98
Race

Black 1(6.0%) 34(52.3%) 19(61.3%) 7 (41.2%) 13 (46.4%) 1(5.0%) 5 (41.2%)

White 1(6.0%) 23(35.4%) 7 (22.6%) 10 (58.8%) 13 (46.4%) 13 (65.0%) 67 (36.8%)

Asian 19 (90.5%) 7 (10.8%) 4 (13.0%) 0 (0%) 1(3.6%) 5 (25.0%) 6 (19.7%)

Unknown/Other 0 (0%) 1(1.5%) 1(3.0%) 0 (0%) 1(3.6%) 1 (5.0%) 4(2.2%)
Fever 20 (95.2%) 64 (98.5%) 26 (83.9%) 16 (94.1%) 20 (71.4%) 0 (0%) 146 (80.2%)
Symptom Score**  Mean 3.4 5.8 5.3 5.6 4.5 5.2

Median 4 6 6 5 5

IQR 1(3-4) 2 (5-7) 34-7) 2 (5-7) 2.25 (3.75-5) 2 (4-6)
Comorbidities**

Chronic Lung Disease 9 (18.8%) 12 (38.7%) 7 (41.2%) 3(10.7%) 0 (0%) 1(17.0%)

Hypertension 21(32.3%) 8(25.8%) 9 (62.9%) 10 (35.7%) 0 (0%) 9 (26.9%)

Hyperlipidemia 1(16.9%) 6 (19.4%) 7 (41.2%) 6 (21.4%) 0 (0%) 0 (16.4%)

Smoking 21(32.3%) 15 (48.4%) 6 (35.3%) 4 (50%) 0 (0%) 7 (31.3%)

Diabetes mellitus 9 (18.8%) 2 (6.5%) 4 (23.5%) 4 (14.2%) 0 (0%) 0 (11.0%)

Cancer 1(1.5%) 0 (9%) 5 (29.4%) 4 (14.2%) 0 (0%) 0 (5.5%)
Outcomes

Hospital Admission 19 (90.5%) 17 (26.2%) 9 (29.0%) 2 (70.6%) 5 (53.6%) 2 (39.6%)

Mean Hospital LOS (days)**** 6.1 4.4 14.4 9.8 4.4 7.0

*Other viruses includes parainfluenza (10), Respiratory Syncytial Virus (7),adenovirus (5), Epstein Barr Virus (3), and cytomegalovirus (3).

**Symptom severity score based on 7 symptoms (nasal congestion, sneezing, cough, malaise, sore throat, fever, headache). One point was awarded for each symptom.
***Comorbidity data was not collected for viral subjects enrolled in Sri Lanka (19 dengue, 7 influenza, 4 entero/rhinovirus, 1 parainfluenza).

***Mean hospital length of stay calculation did not include healthy controls or subjects not admitted.

Differences in the Magnitude of

Host Responses

We then investigated the magnitude of the host response to the
three viruses by calculating the degree of differential gene
expression relative to healthy controls (mean fold-change for
the total 2,298 DEGs gene between infected and healthy group).
For all up-regulated DEGs, the magnitude of differential
expression was greatest for IAV and MPV (Figure 3A). For all
down-regulated genes, the magnitude was greatest for MPV
(Figure 3B). We also determined whether the magnitude of
responses in selected pathways was different among the three
respiratory viruses. ‘Response to type I interferon’ (Figure 3C)
and ‘Cytokine secretion’ (Figure 3D) were the main response
pathways to viral infections. They were most upregulated in the
IAV group, followed by MPV, and then ENV. For the down-
regulated pathways, ‘Regulation of T cell activation’, MPV had
the most pronounced decrease in expression followed by ENV
and then IAV (Figure 3E). Although the three viruses induced

similar qualitative changes in gene expression and associated
pathways, these results highlight that there are virus-specific
differences in the magnitude of changes in infected versus
control samples.

Virus-Specific Responses in IAV

and ENV Infections

To identify host responses that more specifically characterize a
single viral infection compared to other respiratory viruses, we
added gene expression data for subjects with adenovirus (ADV),
cytomegalovirus (CMV), Epstein-Barr virus (EBV), parainfluenza
virus (PIV), or respiratory syncytial virus (RSV) infections to our
analysis and contrasted a single virus (IAV, ENV, or MPV) against
all others in a linear regression model. Healthy controls were
excluded. Virus-specific responses were not determined for the
other respiratory viruses (ADV, CMV, EBV, PIV, RSV) due to low
sample sizes. No MPV-specific response was found and so we only
present data for the IAV- and ENV-specific responses.

TABLE 2 | List of DEGs for comparison of single respiratory virus infections versus controls.

Comparison Model DEG total DEG up DEG down
IAV versus hity model.matrix(~ O + vir_grp2); IAV against healthy controls 1335 937 418
ENV/RHV versus hity model.matrix(~ O + vir_grp2); ENV against healthy controls 1136 815 321
MPV versus hlty model.matrix(~ O + vir_grp2); MPV against healthy controls 1691 1110 581

Number of DEG for the different contrasts between patients with respiratory infections and healthy controls. Model, model used in limma for this comparison and groups included in model.
DEG, differentially expressed genes; IAV, influenza; ENV/RHYV, enterovirus/rhinovirus, MPV, metapneumovirus; hity, healthy controls.
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FIGURE 1 | Host responses in IAV, ENV and MPV infections versus healthy controls. (A) Volcano plot of results of the contrast from the linear regression analysis of
influenza virus infected versus healthy controls. y-axis: -logio BH multiple testing adjusted p-values, x-axis: logs fold change. DEGs (absolute log-fold change > 1.5,
corresponding to a logo-fold change > 0.58; multiple testing adjusted p-value < 0.05) are colored red and the top 40 most strongly regulated (by log-fold change)
DEGs are labeled. Blue: genes with adjusted p-value < 0.05. (B) Volcano plot of results of the contrast from the linear regression analysis of entero/rhino virus
infected versus healthy controls. y-axis: -log;o BH multiple testing adjusted p-values, x-axis: log, fold change. DEGs (absolute log-fold change > 1.5, corresponding
to a log,-fold change > 0.58; multiple testing adjusted p-value < 0.05) are colored red and the top 40 most strongly regulated (by log-fold change) DEGs are labeled.
Blue: genes with adjusted p-value < 0.05. (C) Volcano plot of results of the contrast from the linear regression analysis of MPV infected versus healthy controls.
y-axis: -logio BH multiple testing adjusted p-values, x-axis: log, fold change. DEGs (absolute log-fold change > 1.5, corresponding to a logo-fold change > 0.58;
multiple testing adjusted p-value < 0.05) are colored red and the top 40 most strongly regulated (by log-fold change) DEGs are labeled. Blue: genes with adjusted
p-value < 0.05. (D) Venn diagram illustrating the overlaps between the DEGs from contrasts of IAV, ENV and MPV versus controls. A total of 2,298 DEGs were
identified in all three infections (all genes combined part), 598 DEGs were commonly shared between the three infections (central part). IAV: DEGs from influenza
versus healthy controls, ENV: DEGs from enterovirus/rhinovirus versus healthy controls, MPV: DEGs from human metapneumovirus versus healthy controls.

(E) Functional analysis using GO term enrichment for the genes from the Venn diagram for IAV DEGs. Network of top 20 pathways and associated genes. Red: up-
regulated, green: downregulated. (F) Functional analysis using GO term enrichment for the genes from the Venn diagram for ENV DEGs. Network of top 20
pathways and associated genes. Red: up-regulated, green: downregulated. (G) Functional analysis using GO term enrichment for the genes from the Venn diagram
for MPV DEGs. Network of top 20 pathways and associated genes. Red: up-regulated, green: downregulated. NS, not significant.

For identification of IAV-specific responses, we compared
gene expression in 65 subjects with influenza against 97 subjects
with non-TAV respiratory viral infections. This analysis revealed
374 DEGs (242 up- and 137 down-regulated genes, Figure 4A).
The top four IAV up-regulated genes were CCL2 (C-C Motif
Chemokine Ligand 2), CCL8 (C-C Motif Chemokine Ligand 8),
CXCL10 (C-X-C Motif Chemokine Ligand 10), and DEFBI
(Defensin Beta 1) (Figure 4B). For details about their
functions, see discussion. The complete list of DEGs can be
found in Table S5. The heatmap for the top 50 most strongly (by
absolute fold change) differentially regulated genes specific to
TAV-infected patients showed a clear signature of up- and down-
regulated genes that distinguished IAV from the other
respiratory viruses (Figure 4C). Functional analysis of these
IAV-specific DEGs revealed up-regulation of genes for
pathways ‘response to interferon gamma, ‘response to
interferon type I’, ‘regulation of viral process’, ‘defense
response to virus’ (Figure 4D), and down-regulation of genes
from pathways T cell responses’, ‘neutrophil activation’, and
‘negative regulation of transmembrane transport’ (Figure 4E).

We then compared the host response to ENV infections (31)
to all other respiratory viruses (131). We identified 235 DEGs. Of
these, 104 were up-regulated and 131 were down-regulated
(Figure 5A). The top four up-regulated genes are shown in
Figure 5B: CNTNAP3, CNTNAP3B, PI3, and PHF24. For details
about their functions, see discussion. The complete list of DEGs
can be found in Table S6. Of the 235 ENV-specific DEGs, 184
were also present in the IAV-specific signature. Although these
184 overlapping DEGs appeared in both ENV and IAV
signatures, the magnitude or direction of change was different
in the two viral infections. This is consistent with the observation
that influenza induced the most robust host response while ENV
induced the weakest host transcriptional response. Beyond the
184 overlapping DEGs in the EAV- and IAV-specific signatures,
there were 51 DEGs appearing exclusively in the ENV signature
and 190 exclusively in the IAV signature, which could serve as
biomarkers to distinguish these viral infections. The heatmap of
the top 50 most strongly regulated DEGs by absolute fold change
(Figure 5C) revealed an ENV-specific pattern distinguishing
these patients from other respiratory infections. Functional
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FIGURE 2 | Functional analysis of DEGs. (A) Functional analysis using GO term enrichment for the combined set of all up-regulated DEGs from the comparison of
IAV, ENV and MPV versus healthy controls. The top 30 (by p-value) pathways are presented. AV, influenza virus; ENV, enterovirus/rhinovirus; MPV,
metapneumovirus. (B) Functional analysis using GO term enrichment for the combined set of all down-regulated DEGs from the comparison of 1AV, ENV and MPV
versus healthy controls. The top 30 (by p-value) pathways are presented. (C) Functional analysis using GO term enrichment for the overlapping 598 DEGs (central
part of ) of all three respiratory infections versus healthy controls. Note that all genes are grey since the fold-change cannot be displayed for the overlapping genes
for three comparisons combined. (D) Expression levels of the top 150 DEGs from the comparisons of the three respiratory infection groups versus healthy controls
(top 50 by log-fold change from each comparison) are presented. Values were scaled by row. red: up-regulated DEGs, blue: down-regulated DEGS. Note, that the
combined 150 genes contained duplicates and the figure represents a total of 95 unique genes. IAV, influenza virus; ENV_RHV, enterovirus/rhinovirus; MPV,
metapneumovirus; hity_ctrl, healthy controls.

analysis of these ENV-specific DEGs revealed up-regulation of
genes from pathways ‘neutrophil activation’, ‘interleukin 5
production’, ‘negative regulation of immune response’,
‘response to cAMP’, ‘p38MAPK cascade (Figure 5D), and
down-regulation of genes from pathways ‘response to virus’,
‘response to interferon’, ‘regulation of viral process’,
‘complement activation, classical pathway’ (Figure 5E).

Comparison of Respiratory With
Non-Respiratory Viral Infections
In order to characterize gene expression profiles in different types
of viral infection, additional analyses included subjects infected
with dengue virus (DENV)—a non-respiratory virus. We began
by exploring the host response to DENV infection as compared

to the healthy state. There were 1468 DEGs, including 941 up-
regulated and 527 down-regulated genes (Figure 6A). The
complete list of DEGs can be found in Table S7. The DEGs
identified here exhibited a large overlap with the DEGs obtained
from the comparisons of respiratory infections to healthy
controls above. However, many DEGs were specific for DENV
infections (480 of the total of 2,778 DEGs from all
comparisons, Figure 6B).

The host response to DENV infections has both shared and
unique features to other viruses when compared to the healthy
state. We next explored the DENV-specific host responses by
comparing it to the response induced by other viral infections,
not including healthy controls. This identified 429 DEGs specific
for DENV infection (Figure 7A and Table S8). The top four
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FIGURE 4 | Responses in IAV versus other respiratory infections. (A) Volcano plot of results of the contrast from the linear regression analysis of influenza virus
infected versus all other respiratory virus infections. y-axis: -logio BH multiple testing adjusted p-values, x-axis: log, fold change. DEGs (absolute log-fold change >
1.5, corresponding to a log,-fold change > 0.58; multiple testing adjusted p-value < 0.05) are colored red and the top 20 up- and down-regulated (by log-fold
change) DEGs are labeled. Blue: genes with adjusted p-value < 0.05. (B) Normalized gene expression levels of the top four most strongly up-regulated (by absolute
fold-change) influenza virus versus all other respiratory virus specific DEGs. CCL2, C-C Motif Chemokine Ligand 2; CCL8, C-C Motif Chemokine Ligand 8; CXCL10,
C-X-C Motif Chemokine Ligand 10; DEFBT, Defensin Beta 1; 1AV, influenza; ENV_RHV, enterovirus/rhinovirus; MPV, human metapneumovirus; other_vir, all other
respiratory viruses; hity_contr, healthy controls. (C) Heatmap of expression levels of the top 50 most strongly regulated (by absolute fold-change) DEGs from the
contrast of IAV infected patients versus all other respiratory infections are presented. Values were scaled by row. red: up-regulated DEGs, blue: down-regulated
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CMV, cytomegalovirus; EBV , Epstein-Barr virus. (D) Functional analysis using GO term enrichment for the DEGs from the contrast of IAV infected versus all other
respiratory virus infections. Network of top 20 up-regulated pathways and associated genes. Red: up-regulated. (E) Functional analysis using GO term enrichment
for the DEGs from the contrast of IAV infected versus all other respiratory virus infections. Network of top 20 down-regulated pathways and associated genes.
Green: down-regulated. NS, not significant.
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DENV up-regulated genes are shown in Figure 7B as an
example: HISTHIB (H1.4 Linker Histone, Cluster Member),
HISTIH3F (H3 Clustered Histone 7), HISTIH2BM (H2B
Clustered Histone 14), and HISTIH2AL (H2A Clustered
Histone 16). The heatmap for the top 50 most strongly DEGs
in DENV-infected subjects (Figure 7C) reveals virus-specific
signatures. Functional analysis of the DENV-specific up-
regulated DEGs showed enrichment of pathways for ‘DNA
replication-dependent nucleosome assembly’, ‘nucleosome and
chromatin assembly’, ‘chromosome segregation’, and ‘nuclear
division’ suggesting a high level of cell proliferation (Figure 7D).
Down-regulated DEGs were mainly associated with ‘erythrocyte
and myeloid cell homeostasis’, ‘negative regulation of
phosphorylation’, ‘reactive oxygen and peroxide metabolic
processes’, and ‘oxygen transport’ (Figure 7E).

Pan-Viral Response

The shared responses to dengue infection and other respiratory
viruses could be considered a pan-viral response given the disparate
clinical syndromes associated with these infections. As shown in
Figure 6B, there were 427 DEGs common to all virus infections
compared to healthy controls. Functional analysis of these pan-viral
DEGs showed ‘response to virus’, ‘response to type I interferon’, and
‘response to interferon gamma’ pathways (Figure 8). Thus,
activation of interferon pathways is a unifying aspect of the host
response to viral infection.

Digital Cell Quantification

We then performed a digital cell quantification, based on gene
expression levels of all genes, to estimate the relative abundance
of different cell populations in the different groups: IAV, ENV,
MPV, and DENV infected subjects (Figure 9). Here, we observed
an increase in monocytes, NK cells, and erythroblasts and a
decrease in CD4 and CD8 T-cells in all infected patients. None of
these responses were observed in controls. The only viral
infection showing a unique pattern was DENV, which included
an increase in B cells relative to the healthy state or other
viral infections.

Analysis of Confounding Factors

In addition to virus pathogen, several other confounding factors
may contribute to the variation in gene expression. We therefore
performed association analyses of virus pathogen, demographic
and clinical confounders with the first ten principal components.
This analysis revealed strong correlation of variation with viral
pathogens, and in addition, with the occurrence of chronic lung
diseases and with age categories young/adult/old (Table S9). The
correlation with age categories was biased because most of the
healthy controls were younger than 18 and most of the infected
patients were older than 18. Sex, hypertension, hyperlipidemia,
smoking, diabetes, and cancer did not show any strong
correlations with the first principal components (Table S9).
When analyzing only infected patients, the correlation with age
category was weaker whereas the correlation with chronic lung
disease was still significant (Table S10). To further explore the
potential impact of chronic lung disease, we compared gene
expression among influenza-infected subjects (the largest
phenotypic group) with or without chronic lung disease. There
was a similar number of DEGs whether or not chronic lung
disease was present (1355 DEGs) or absent (1367 DEGs). Of
these, 1329 DEGs overlapped between these two groups. In
addition, we investigated the effect of hospitalization. Only
IAV infected patients had reasonable sample sizes for a
comparison (Table S11). However, when contrasting
hospitalized versus non-hospitalized patients, we did not find
any significantly differentially expressed genes.

DISCUSSION

Here, we studied the host response in the peripheral blood of
patients infected with different viral pathogens. To our
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knowledge, this is the largest primary study of the host
transcriptomic response to viral pathogens that includes
several pathogens: influenza A virus (IAV), entero/rhino virus
(ENV), metapneumovirus (MPV), parainfluenza (PIV),
respiratory syncytial virus (RSV), adenovirus (ADV),
cytomegalovirus (CMV), and Epstein-Barr virus (EBV).
Furthermore, the comparison of respiratory infections to
patients infected with a non-respiratory virus, dengue virus
(DENV), has not been reported in any previously published
study. We identified differentially expressed genes that are
common to these infections, and signatures that are unique for
individual pathogens.

The responses to all three major respiratory virus infections
(IAV, ENV, MPV) were dominated by the up-regulation of genes
from the interferon pathway as well as chemokine/cytokine
related responses. This was the case for each single viral
infection and for the overlap of the DEGs from the three
respiratory viral infections. These observations are consistent
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with many other studies in humans [e.g. (4-20)]. including
SARS-CoV-2 infection [e.g. (21-28)] and a meta-analysis of
publicly available data (31).

Among the down-regulated DEGs, all three respiratory
viruses induced changes that were enriched for protein
targeting to membranes and cell differentiation pathways.
However, ENV and MPV infections exhibited a stronger
down-regulation of T cell activation and cell adhesion
molecules compared to IAV infections. Down-regulation of
adaptive immune response signals is a common feature of
respiratory virus infections that has been described for SARS-
CoV-2 (23, 26, 28, 45, 46) and for severe versus moderate IAV
infections (12, 17). We speculate this pattern of immune
response gene down-regulation in ENV and MPV infected
subjects is consistent with the induction of a generally weaker
host response. This hypothesis was further supported by the
relative magnitude of host gene expression response, which was
greatest for IAV, intermediate for MPV, and weakest for ENV,
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consistent with the severity of clinical disease associated with
these infections (47-50). Alternatively, ENV and MPV may exert
a stronger suppression of the host response by expressing viral
genes that specifically down-regulate the host viral detection
pathways compared to IAV, and therefore, innate immune
signals are weaker.

The peripheral blood transcriptomic response to MPV
infection has not yet been well described in the literature. It
has been speculated that MPV more strongly suppresses the host
interferon response than RSV infections (51). The comparison of
host responses to MPV with RSV infections in animal models
showed that MPV was a stronger inducer of interferon-ot and
interferon-y (52). MPV inhibits pattern recognition-dependent
signaling (RIG-I-like receptors) in vivo, resulting in reduced
interferon induction and pathway activation (53, 54). BALB/c
mice infected with human MPV had lower levels of
inflammatory cytokines compared to RSV infections but a
more sustained production of CXC cytokines (52, 54). Thus,
these reports in the literature agree with our results showing that
MPV induces an intermediate interferon response, lower than
IAV but higher than ENV infections.

There is a growing interest in host response-based
diagnostics, where most signatures focus on identifying the
pathogen class (e.g., viral or bacterial) (55). Adding pathogen-
specific host responses would augment the utility of such
diagnostic approaches. This would be particularly relevant
when new strains emerge where pathogen-detection tests are
not readily available (e.g., influenza HIN1pdm09 and SARS-
CoV-2).

Comparing the host response to IAV infections versus all
other respiratory viruses, we identified 374 DEGs. The top four
IAV up-regulated genes were CCL2 (C-C Motif Chemokine
Ligand 2), CCL8 (C-C Motif Chemokine Ligand 8), CXCL10
(C-X-C Motif Chemokine Ligand 10), and DEFBI (Defensin
Beta 1). The first three genes represent cytokine/chemokine
genes, which are a central component of the innate immune
response. DEFBI is a member of the defensin gene family that
consist of microbicidal and cytotoxic peptides mainly produced
by neutrophils. The most down-regulated genes were ARGI
(Arginase 1), OLAH (Oleoyl-ACP Hydrolase), CA4 (Carbonic
Anhydrase 4) and CNTNAP3 (Contactin Associated Protein
Family Member 3). ARGI catalyzes the hydrolysis of arginine
to ornithine and urea. Arginine metabolism is a critical regulator
of innate and adaptive immune responses where it is an
antimicrobial effector pathway in polymorphonuclear
granulocytes. OLAH contributes to the release of free fatty
acids from fatty acid synthase, and CA4 catalyze the reversible
hydration of carbon dioxide. Both genes have no known function
in the host defense against viral infections. CNTNAP3 represents
a cell-recognition molecule mediating glial cell contacts. It has
not previously been implicated in in the host response to
viral infections.

We also identified 235 ENV-specific DEGs. The top four up-
regulated genes were CNTNAP3, CNTNAP3B, PI3, and PHF24.
Note that CNTNAP3 was downregulated in the IAV-specific
response but was up-regulated in ENV infections. CNTNAP3B,
like CNTNAP3, is a cell-recognition molecule mediating glial cell
contacts and has not been identified as part of the host response
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to viral infection. PI3 (PHD Finger Protein 24) has no known
function and PHF4 (Peptidase Inhibitor 3) represents a
neutrophil-specific elastase with anti-microbial functions.

In contrast to IAV and ENV, we did not identify a MPV-
specific signature. One explanation may be that the response to
MPV is intermediate to the comparator viruses and therefore, the
magnitude of difference between MPV and either IAV or ENV is
too small to detect. Alternatively, there may have been too few
MPV cases to detect small but significant differences. Future
studies with more balanced and larger groups or a meta-analysis
including other cohorts may resolve this issue.

Our results are in good agreement with similar studies
described in the literature. A dataset published by Zhai et al.
(8) reported transcriptomic data from adult subjects (127 - 131
depending on the sampling day) infected with different
respiratory viruses and samples from the same individuals
before infection. Of the 117 unique DEGs they reported as
distinguishing viral infections from healthy controls, 108
overlapped with the viral vs. healthy comparison in our study.
Thus, our results are well in agreement with this study. Andres-
Terre et al. (31) performed a meta-analysis on published data for
three respiratory viral infections (IAV, RSV, and rhinovirus) and
identified an IAV signature including 127 genes. We compared
this gene list with our IAV-specific list of 374 DEGs and found an
overlap of 52 genes. The same authors also defined a smaller, 11-
gene, [AV-specific gene list. Our [AV-specific list contained 10 of
these 11 TAV-specific genes. In addition, they determined a
common viral signature (‘meta-virus signature’) consisting of
396 genes. Our combined respiratory viral DEGs (total of 2,298
genes for all respiratory viruses combined) overlapped with this
list for 115 genes. Although there are some genes included in
each signature that do not appear on the other, the results are
consistent particularly when focusing on the most discriminating
DEGs. Abbasi et al. (30) reported that after infection with
rhinovirus in pediatric patients, CXCLI0, CMPK2, RSAD2,
SERPINA3, and TNFAIP6 were up-regulated whereas CXCL14,
IVNSIABP, and ZMAT3 were down-regulated in comparison to
IAV infections. Similar to these findings, in our dataset,
IVNSIABP and ZMAT3 were downregulated in ENV
infections compared to IAV infection. In contrast, in our
dataset, CXCL10, CMPK2, RSAD2, and TNFAIP6 were
significantly down-regulated in ENV infections compared to
TAV infections. Thus, the direction of the regulation of genes
in adult and pediatric patients may be different for several innate
immune response genes. This hypothesis will have to be
confirmed in future studies.

The host response to dengue infection overlapped
considerably with that of other viruses. However, there were
also notable DENV-specific responses including an up-
regulation of histone-associated and cell cycle regulating genes.
An analysis of protein-protein-interaction networks for these
DENV-specific DEGs using the STRING interaction database,
revealed networks regulated by the CDC6 (Cell Division Cycle 6)
protein. CDC6 is essential for the initiation of DNA replication
and functions as a regulator at the early steps of DNA replication.
Almost all DENV-specific host response changes included an

upregulation of gene expression. A notable exception was
BCL2L1 (BCL2 Like 1). BCL2L1 is involved in the regulation of
mitochondrial membrane potential and controls production of
reactive oxygen species and release of cytochrome C, which are
potent inducers of cell apoptosis. Our observations suggest that
DENV induces a greater degree of cellular proliferation of
circulating immune cells than we observed for respiratory viral
infections. This may be due to the systemic nature of dengue,
which is not restricted to the respiratory tract. It is also possible
that infection of blood lymphocytes by DENV itself initiates the
proliferation of blood cells. The increase in pro-B cells, observed
in our DCQ, may support this hypothesis. However, more target
studies will be necessary to validate this interpretation. Future
studies with single cell RNAseq will help address these
possibilities. In addition, performing ATACseq on PBMCs of
Dengue-infected subjects would be another important future
approach to interrogate cell-specific chromatin changes.

Our study has several limitations. Most subjects in this study
had mild or moderate clinical disease, limiting our ability to
identify severity-dependent host changes. It is also possible that
subjects with more severe infections, such as due to IAV or
DENYV, presented to clinical care earlier in the disease course. If
so, it is possible that virus-specific differences could have
represented different phases of the host response. There is also
the possibility that confounding variables contributed to the
observed gene expression differences. Most demographic
variables were evenly distributed among the groups although
this was not universally the case. Analyses to identify such
confounding variables revealed age and chronic lung disease
may have contributed. Although the viral pathogen itself was the
largest contributor to observed differences, we cannot exclude
the potential impact of these other variables. Information about
duration of symptoms/time of sampling and the potential impact
of treatment was not available for most subjects, precluding our
ability to control for this. There was an age difference in the
comparison groups, with infected being 40s to 60s, and healthy
controls being more uniformly between 18-20. Moreover, the Sri
Lanka subjects tended to be older than U.S. subjects. However,
we did not adjust for age since there was still a significant amount
of heterogeneity among ages within each group. We also note
that nearly all subjects with DENV came from Sri Lanka,
although the Sri Lanka cohort included several other types of
infection as well. Nevertheless, we cannot discount the role that
genetic variability may have played in these results. Here, bulk
RNAseq was used to measure gene expression changes in the
blood. Furthermore, analysis of respiratory samples may be more
appropriate to study responses in infected tissues. This approach
does not identify cell-specific expression changes. Future
experiments could perform single cell RNAseq to confirm
some of our findings and identify cell type-specific anti-viral
host responses. Furthermore, information about the viral
genomes (e.g., pathogen genome sequencing) could have
identified pathogen-derived factors (e.g., variants) responsible
for the observed host response differences. Another limitation is
that gene expression analyses were performed in blood cells but
not in the infected respiratory tract tissues, which may differ (56).
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Our study may contribute to the identification of novel
biomarkers for different viral infections. However, it should be
noted that more studies will be necessary to identify and validate
clinically relevant biomarkers.

In conclusion, we compared the host response to different
viral infections in humans and determined common pathways
but also virus-specific differences in the host response at the
molecular level. Inclusion of multiple types of viruses revealed
there to be a pan-viral response. This study contributes to our
understanding of the host transcriptional responses to viral
infections in humans and the identification of biomarkers that
could be used as a diagnostic strategy for pathogen identification.
It provides a basis for follow-up validation studies in cell culture
and animal models and identifies many genes and pathways as
potential targets for future host-targeted drug development.
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