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COVID-19 pandemic remains an on-going global health and economic threat that has
amassed millions of deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the etiological agent of this disease and is constantly under evolutionary
pressures that drive the modification of its genome which may represent a threat to the
efficacy of current COVID-19 vaccines available. This article highlights the pressures that
facilitate the rise of new SARS-CoV-2 variants and the key mutations of the viral spike
protein – L452R, E484K, N501Y and D614G– that promote immune escape mechanism
and warrant a cautionary point for clinical and public health responses in terms of re-
infection, vaccine breakthrough infection and therapeutic values.
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INTRODUCTION

Since the outbreak of the COVID-19 pandemic in late 2019, SARS-CoV-2 virus has caused significant
mortality and morbidity worldwide. While some regions of the world are seeing a dwindling of
infected cases, others, especially densely populated regions are still recording high levels of infection.
Efficient control of viral spread and decrease in mortality has been attributed to rigorous public health
measures and global mass immunisation campaigns that have begun in December 2019.
Manifestations of COVID-19 may range from mild to severe and life-threatening. While the
majority of cases are subclinical, a significant portion of COVID-19 patients develop severe or fatal
illness, which is often characterised by acute respiratory distress syndrome and hyper-inflammatory
immune responses (1, 2). Epidemiological and public health surveillance efforts utilise viral genome
information to track and monitor the growth of the pandemic. There is a growing concern for
emerging viral strains that can potentially hamper public health strategies, post-vaccine or natural
immunity and antiviral treatments. The World Health Organisation (WHO) has classified emerging
variants with reference to the original Wuhan strain into different categories according to its hazard
grade, with Variants of Concern (VOCs) as the ones needing urgent monitoring of. Currently, there
are four VOCs which include Alpha (B.1.1.7), Beta (B.1351), Gamma (P.1) and Delta (B.1.617.2)
variants that are at the front of the pandemic wave, with the latter seemingly outperforming the others.
In response to this, unprecedented scale of sequencing and tracking of SARS-CoV-2 genome evolution
has been initiated to accommodate the rapid accumulation of viral mutations and to understand the
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evolutionary adaptation of the virus in humans in hope to better
design effective COVID-19 vaccines and treatment options.
EVOLUTIONARY PRESSURE DRIVING THE
EMERGENCE OF SARS-COV-2 VARIANTS

SARS-CoV-2 virus is a large RNA virus with a 30-kb genome
that encodes for four structural proteins: spike glycoprotein,
nucleocapsid, membrane and envelope proteins (3). The genome
of SARS-CoV-2 has been reported to accumulate two nucleotide
substitutions per month, which is relatively slow for an RNA
virus owing to its proofreading 3’–5’exoribonuclease (4). While
most chance mutations are often silent that lead to no changes at
biological level or deleterious that compromise viral fitness, some
may confer selective advantage for its fitness. This leads to their
propagation in subsequent viral populations, which carry
advantageous phenotypes and are often subjected to a
purifying selection. This is evident by a genetic drift reported
in SARS-CoV-2 variants particularly in their spike and
nucleocapsid gene sequences which are most variable (5).
Additionally, evidence of independently co-occurring or
converging mutations in SARS-CoV-2 genome also suggests
that there exists a persistent and increasing selection pressure
on the virus, which can occur both at population and individual
patient levels.

In an infected individual, variants can independently inhabit
different tissues and up to four variants have reportedly been
identified within a patient (6, 7). However, it is unlikely that
minor intra-host mutations will propagate and become fixed due
to their low frequencies and natural bottleneck effects (8, 9).
While minor viral genetic mutations within infected individuals
are expected, a genetic drift may raise concern at the population
level. Currently, the pandemic has already infected over 200
million cases globally, leaving behind convalescent individuals
with natural immunity against the virus. Additionally, as
immunisation has begun globally, a growing portion of the
population is now carrying vaccine-induced immunity against
the circulating virus. The increasing degree of immunity in the
human population is inevitably conferring a great deal of
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selective pressure on the virus that promotes the rise of
antibody escape mutants. The emergence of immune escape
mutants is perhaps most apparent in chronic COVID-19
patients as documented in multiple reports. Persistent
infections with SARS-CoV-2 seen in immunocompromised
individuals who cannot effectively fight infection accelerates
viral evolution which gives rise to large genomic diversity and
mutations in the viral spike, ORF1ab, ORF8 and nsp1 proteins
(10, 11). These mutations were observed to recur and
independently emerge in these patients (10, 11).

In addition to vaccination, immunotherapies have also been
used as COVID-19 disease interventions. These include
repurposed drugs such as antiviral remdesivir and
corticosteroids, convalescent plasma therapy that carry
neutralising antibodies, and antiviral monoclonal antibodies
(12, 13). Unfortunately, these may also pose as drivers for
advantageous mutations. Reports on the use of convalescent
plasma has shown to contribute to the generation of antibody
escape variants (14–16). The use of sub-optimal antibodies in
convalescent therapy and re-infection at the face of a decaying or
a partial primary immunity may provide a selective pressure for
immune escape mutations.

Spike Variants Pose a Threat to Current
Vaccines and Therapeutics
Spike protein of SARS-CoV-2 defines the tropism of the virus,
facilitates its spread, and modulates host immune function. It is
the viral entry point of the host cell by which it binds to host
angiotensin-converting enzyme 2 (ACE2) receptor. It is
composed of 1273 amino acids and harbours two subunits that
are bridged by a furin cleavage site. Subunit 1 contains two
important domains: N terminal domain (NTD) and receptor
binding domain (RBD) (Figure 1). It is also the main target of
vaccination efforts as the majority of serum neutralising activity
is directed on its RBD (17, 18).

A primary infection with SARS-CoV-2 provokes immune
responses that generate potent anti-SARS-CoV-2 neutralising
antibodies and CD4+ and CD8+ T cell responses which clear the
infection and culminate with an immune response memory to
fight future infection. As the pandemic continues to sweep across
A

B

FIGURE 1 | An illustration of SARS-CoV-2 spike protein mutations identified in its subunit 1 that have been (A) shown to promote resistance to neutralizing
monoclonal antibodies (⎔) and serum antibodies (from convalescent (●) and/or vaccinated (⦰) individuals), and increase the protein affinity to ACE2 receptor (◯)
and viral infectivity (■) and (B) reported in breakthrough and/or secondary infections.
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the globe, it has gradually become apparent that a primary
infection with SARS-CoV-2 does not provide a full protection.
Although rare, cases of re-infection were documented as early as
August 2020 and many are expected to be underreported as it
can be difficult to distinguish between re-infection and
prolonged vira l shedding (19–22) . Addit ional ly , a
comprehensive whole genome sequencing is necessary to
identify two separate episodes of infection. A natural exposure
to SARS-CoV-2 generate anti-SARS-CoV-2 IgG antibodies that
are largely protective for at least 6 months post-infection (23, 24).
Repeat infection can be caused by a low potency and quality of
immune memory, or a decline in anti-SARS-CoV-2 antibody
titre over time. However, a report of a re-infection case indicates
that a secondary infection with SARS-CoV-2 occurred in the
presence of intact anti-SARS-CoV-2 antibody titre, suggesting
that a seropositivity does not necessarily guarantee immunity
and raising concern about immune escape variants that can
overcome previous immunity (25).

Reports on vaccine breakthrough infections in vaccinated
individuals are also accumulating, raising concern of developing
escape mutants in the face of immune selection (26–30). A
breakthrough infection is defined as a detection of SARS-CoV-2
antigen or RNA more than 14 days after receiving a COVID-19
vaccine. To date, over 10, 000 breakthrough infections have been
reported (31). The durability of vaccine-induced antibodies is yet
to be determined, but vaccines against SARS-CoV-2 elicit more
robust antibody responses than a natural infection which may
suggest a more stable protection (32). Nevertheless, both natural-
and vaccine-induced anti-SARS-CoV-2 antibodies demonstrate
comparable neutralising power (33).
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As of June 14th, a total of 6,238 nucleotide substitutions, 56
insertions and 278 deletions in the spike protein have been
recorded in clinical isolates (34, 35). The most profound mark
of SARS-CoV-2 evolution is perhaps the D614G mutation that
emerged as early as 6 months into the outbreak. D614Gmutation
is located outside of the RBD (Figure 1). D614G variant
bypassed natural bottlenecks due to its selective advantages
that lead to improved viral infectivity and transmissibility and
reduced viral sensitivity to neutralising convalescent sera (36–
38). It immediately outcompeted other sequence groups and
became ubiquitous worldwide. All VOCs that are driving the
current pandemic waves harbour this dominant mutation.

The main target of serum neutralising antibodies is the RBD of
the virus spike protein, which upon recognition prevents the virus
from gaining entry to the host cell. A growing list of mutations in
the RBD and NTD of the spike protein has been reported to resist
neutralisation by therapeutic monoclonal antibodies, convalescent
sera and vaccinee sera (Figure 1). Among them, a few merit
concern as they have also recently been identified in re-infection
and breakthrough infections with VOCs, likely for their location in
the immune epitope region of the RBD that may impact
antigenicity, hinder immune neutralising antibody binding and
promote pathogenesis (Table 1) (17, 18).

E484K mutation first emerged in late 2020 and has now been
gaining prevalence among the circulating strains. It has been
acquired by at least 9 strains including VOCs Alpha, Beta and
Gamma, and other variants under monitoring Zeta (P.2), Eta
(B.1.525), Iota (B.1.526), Kappa (B.1.617.1), B.1.620 and Mu
(B.1.621) (39). It is noteworthy to mention that five reinfection
cases of E484K-carrying variants (Gamma and Zeta), which
TABLE 1 | Mutations of SARS-CoV-2 spike protein, their phenotypic impact in vitro, in vivo or in silico, and reports in re-infection and vaccine breakthrough infection
cases.

Spike mutations G142D L452R E484K N501Y D614G P681R References

Variants Delta Delta Alpha Alpha Ubiquitous Delta (35, 39)
Kappa Beta Beta Kappa
Epsilon Gamma Gamma
Iota Zeta Mu

Eta
Iota
Kappa
B.1.620
Mu

Phenotypic
impact

Resistance to
neutralising mAb

Increases Increases Increases Increases – – (33, 36, 40–
45)

Resistance to
convalescent sera

– Increases Increases – Increases – (37, 40, 42,
43, 46–48)

Resistance to
vaccine sera

– Increases Increases Increases – – (33, 43, 48–
52)

Affinity to ACE2
receptor

– Increases Increases Increases – – (53–55)

Infectivity – Increases – Increases viral
shedding in animal in
vivo

Increases Increases (36, 38, 40,
48, 56–58)

Reported in re-infection cases – A case in
Panama

Cases in Brazil Cases in UK and Brazil Cases in Brazil, Hong Kong,
India, Panama, UK, USA

– (19, 25, 59–
63)

Reported in vaccine
breakthrough cases

Cases in
India

Cases in
California

Cases in India, Israel,
and New York

Cases in California,
India and Israel

Cases in Israel and New York Cases in
India

(57, 64–67)
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primary infections were of non-E484K variants, have been
reported in Brazil as early as December 2020. Two of the cases
reported the presence of anti-SARS-CoV-2 IgG antibodies during
re-infection suggesting the possibility of E484Kmutation in aiding
antibody evasion (59). Furthermore, breakthrough infections in
vaccinated individuals are also growing in number. A cohort study
identified a slight reduction of protection by vaccines against
subsequent infection with E484K-carrying Alpha and Beta
variants of concern (64). Another report also documented an
infection of a vaccinated individual with E484K-carrying variant
(65). In another study, a full vaccination elicited a high level of
neutralising antibodies that were capable of inhibiting an E484K
variant in vitro but failed to pre-empt a high viral replication (66).

In vitro studies showed that E484K mutation can significantly
reduce binding and resist neutralisation by convalescent and vaccine-
induced sera and monoclonal antibodies (33, 40–42, 46, 47, 49–51).
Additionally, in silico and cryo-EM studies have found that E484K
mutation enhances the virus affinity for host ACE2 receptor binding
which may account for the increased infectivity of these mutant
variants (53, 54). Its impact on infectivity in vitro has been revealed in
an infection assay of murine ACE2-expressing HEK29T cells with
E484K-carrying pseudotyped viruses whereby 3-fold more infection
was observed (68). The prevalence of E484K-carrying variants has
been increasingly reported in viral isolates, presenting at low
frequency in the circulating strain populations (42), likely due to
the positive selection that provides for an immune escape and a
greater transmissibility. This is consistent with in vitro evolutionary
studies that showed that E484Kmutation is readily introduced in the
viral genome when cultured in the presence of anti-SARS-CoV-2
neutralising antibodies or ACE2 receptor (42, 47, 54). Furthermore,
four E484 mutational changes at this residue position demonstrated
an immune escape phenotype in presence of vaccinee sera,
highlighting the importance of this residue as part of the dominant
neutralising epitope (40).

Also gaining in frequency among circulating variant
sequences is N501Y substitution that has been acquired by
three VOCs Alpha, Beta and Gamma. A report has
demonstrated that N501Y mutation reduces the virus
sensitivity to neutralising monoclonal antibodies and vaccine-
induced polyclonal antibodies (33, 51). In vitro infection assay of
murine ACE2-expressing HEK293T cells with N501Y-carrying
pseudotyped virus also showed that this mutation caused a 5-fold
increase in viral infectivity (68). Additionally, it was shown that it
is positively selected in vitro when the virus is grown in the
presence of ACE2 to which it developed a higher binding affinity,
and in vivo in a chronically infected immunocompromised
patient (54, 69, 70). The increase in ACE2 tropism
consequently promotes viral replication, transmission and
shedding (69). N501Y-carrying variants (VOCs Alpha and
Gamma) have been reported in four re-infection cases in
which primary episode of infection agents were of non-N501Y-
carrying variant (25, 59). Three of these cases described the
presence of anti-SARS-CoV-2 IgG antibodies at the timepoint of
secondary infection, raising speculation of antibody escape that
Frontiers in Immunology | www.frontiersin.org 4
may be mediated by this mutation. Furthermore, several
independent reports of breakthrough infections with N501Y-
caryying variant had been reported in vaccinated individuals
suggesting an evasion of humoral immunity (65, 67).

While E484K only mildly increases the affinity of the RBD for
ACE2 receptor, N501Y appears to substantially enhance it by
allowing it to engage the receptor for longer (71–73). This is in
agreement with an observation of pseudotyped viruses carrying
N501Y mutation demonstrating a higher infectivity in vitro than
those carrying E484K mutation (68). In contrast, the E484
residue in RBD engages more with antibodies than with ACE2
receptor, which may explain the relevance of E484K mutation in
mediating antibody escape (72). The co-existence of these two
mutations can produce a synergistic effect whereby they
dramatically improve spike binding affinity to ACE2 receptor
and reinforce the virus ability to evade immunity (68, 72, 73).
The importance of these mutations for viral fitness is highlighted
by their convergence in certain variants, including Beta, Gamma,
and Mu (Table 1).

Another mutation that has gained attention is L452R
substitution which can resist neutralisation by monoclonal
antibodies and vaccinee and convalescent sera (36, 40, 43, 46,
48, 52). It provides a greater affinity of binding to ACE2
receptor and thus promotes viral replication and infectivity
(48, 55, 56). A report of breakthrough infections in fully or
partially vaccinated healthcare workers and a secondary
infection with L452R-carrying variants have been described,
highlighting the relevance of this mutation in mediating viral
immune escape (60, 67). L425R mutation has been identified in
the circulating VOC Delta and other variants including Epsilon
(B.1.427/B.1.429), Iota and Kappa. Of important note, Delta
variant is currently posing the most concern and threat to
public health, as it has displaced other variants owing to its
pronounced ability to transmit and escape antibodies
(monoclonal antibodies and convalescent and vaccinee sera)
(74–76). Increasing numbers of breakthrough infection with
Delta variant have been reported (57, 77). Other mutations, in
addition to L452R of the RBD, have been attributed to its
explosive spread. Upstream NTD mutation G142D has been
shown to resist binding by monoclonal antibodies which may
be mediated by the change of the conformation of the spike
protein that deters antibody binding (44, 45). Downstream
P681R mutation in furin cleavage site promotes cleavage and
processing of the spike protein and hence the entry efficiency
and infectivity of the virus in vitro (57, 58).

Although current available vaccines are engineered based on
the spike protein of the Wuhan reference strain, vaccinated
individuals are expected to carry potent neutralising antibodies
that are cross-reactive which can circumvent the issue of variants
(78). Nevertheless, the growing evidence for immune evasion by
emerging spike variants prompts a heavier consideration for a
more adequate and effective vaccine design guided by genomic
surveillance that can stimulate a more durable protection from
SARS-CoV-2 infection.
November 2021 | Volume 12 | Article 742167
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RESEARCH GAPS AND PROSPECTS

SARS-CoV-2 spike and nucleocapsid proteins are hotspots of
genetic modification owing to the host immune selection
pressure. Genomic surveillance is increasingly becoming a
powerful tool in guiding public health responses and health
interventions and therefore in controlling the trajectory of this
pandemic. This will provide a wealth of databases that can be
used to infer decisions on evaluating health interventions,
vaccine efficacy, inform therapeutic development and design,
assess the risk of re-infection and breakthrough infections, and
tackle the issue of immune and diagnostic escape variants.

The growing relevance of a select spike mutations urges
immediate investigation, particularly E484K, to discern
whether it will become the next consensus sequence (as did
D614G). Not explored in this article is the impact of spike or
nucleocapsid mutations on primary diagnosis which have been
documented elsewhere (79–81). Other clinical indicators should
therefore accompany molecular-based COVID-19 diagnostic
tests – more so in the wake of a growing trend of re-infection
and breakthrough infection – to guide not only clinical
evaluation, but also isolation and discharge decisions.

Because a waning and heterogeneous protective immunity
has been suggested as risk factors of secondary and breakthrough
infections, the identification of correlate of protection with a
consideration of immune escape mutations, is crucial in
Frontiers in Immunology | www.frontiersin.org 5
identifying the most optimal vaccine design that promises a
more preserved antibody titre and protection. One can expect the
need for periodic reformulation of the vaccines in the future as
‘boosters’ to adapt to the most common variant at the time,
recover the declining immunity and mitigate the risk of future
emerging variants. Future interventions could consider
harnessing other facet of protective immune responses, in
addition to humoral immunity, to relieve selective pressure for
immune escape variants. Notably, T cell-mediated immune
responses are reported to be relatively more stable following
SARS-CoV-2 infections and are potent at targeting the spike
protein (82). Additionally, the heterogeneity of resistance profile
of spike variants to monoclonal antibodies suggests that
administering a cocktail of antibodies would be a more
beneficial approach at targeting these variants (42). Other
mutations outside of the spike gene should also be warranted
surveillance in studying the evolution of SARS-CoV-2 and its
interaction with human host to pre-empt potential novel variants
that may affect current efforts of controlling the pandemic.
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