
Frontiers in Immunology | www.frontiersin.

Edited by:
Liwu Li,

Virginia Tech, United States

Reviewed by:
Valentin P. Yakubenko,

East Tennessee State University,
United States
Ruoxi Yuan,

Hospital for Special Surgery,
United States

*Correspondence:
Enrique Ortega

ortsoto@iibiomedicas.unam.mx

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 19 July 2021
Accepted: 29 October 2021

Published: 23 November 2021

Citation:
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Leukocyte Membrane Enzymes
Play the Cell Adhesion Game
Georgina I. López-Cortés , Laura Dı́az-Alvarez and Enrique Ortega*

Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México,
Mexico City, Mexico

For a long time, proteins with enzymatic activity have not been usually considered to carry
out other functions different from catalyzing chemical reactions within or outside the cell.
Nevertheless, in the last few years several reports have uncovered the participation of
numerous enzymes in other processes, placing them in the category of moonlighting
proteins. Some moonlighting enzymes have been shown to participate in complex
processes such as cell adhesion. Cell adhesion plays a physiological role in multiple
processes: it enables cells to establish close contact with one another, allowing
communication; it is a key step during cell migration; it is also involved in tightly binding
neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in
pathophysiological scenarios like migration and metastasis establishment of cancer cells.
Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and
other components of the cell membrane. Recently, several cell membrane enzymes have
been reported to participate in distinct steps of the cell adhesion process. Here, we review
a variety of examples of membrane bound enzymes participating in adhesion of
immune cells.
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INTRODUCTION

Enzymes play crucial roles in all life processes and its perpetuation because they facilitate most
biochemical reactions, both within and outside the cells. Enzyme function is determined not only by
substrate specificity and enzymatic properties, but, notably, by its cell compartmentalization.
Ectoenzymes are membrane-bound enzymes which the catalytic site is found outside the cell,
they mainly reach its position by means of vesicles or carrier proteins (1). Ectoenzymes are a widely
heterogeneous class of enzymes essential to homeostasis maintenance. They regulate the
concentration and activity of certain molecules in the extracellular milieu, such as hormones,
nucleotides, bioactive peptides (2), etc. Several ectoenzymes have been reported to perform other
functions aside of catalyzing chemical reactions (3), reason for which they have been included in the
list of moonlighting proteins (http://www.moonlightingproteins.org/). A moonlighting protein has
multiple functions that are not the result of gene fusion, distinct RNA splice variants, or proteolytic
fragments. It has been postulated that moonlighting proteins originally had a unique function but
have acquired others, in many cases by virtue of post-translational modifications. The origin and the
enzymatic functions of moonlighting proteins are thoroughly discussed elsewhere (3, 4).
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López-Cortés et al. Leukocyte Membrane Enzymes in Adhesion
Some moonlighting proteins are enzymes participating in
cell adhesion processes (5–7). Cell adhesion enables cellular
organization and communication in multicellular organisms.
At the molecular level, it is a finely orchestrated process that
includes the activation of canonical adhesion molecules, which
trigger signal transduction cascades (8) and ultimately drive
cell attachment to other cells or to the extracellular matrix
(ECM). In leukocytes, cell adhesion is a critical process not
only for cellular distribution in tissues, but also for establishing
immunological synapses, mobilization, and migration. Such
phenomena entail the coordination of several proteins. For
example, leukocyte transendothelial migration requires
molecules involved in protein-protein interactions that cause
the deceleration of cells in circulation, proteins mediating the
firm attachment of leukocytes to the endothelium and their
squeezing through the endothelial junctions, and finally other
proteins that mediate the active movement of cells through the
tissues. Throughout these processes, membrane receptors
initiate signal transduction pathways that regulate the cell’s
adhesion properties and its changes in morphology. Therefore,
it becomes evident that membrane adhesion molecules are
activated at different time points to mediate either the
approaching of cells’ membranes or strengthen their
interaction, while in the intracellular compartment the
cytoskeleton is rearranged (9). Here, we review the role of
several ectoenzymes expressed by leukocytes involved in
different steps of cell adhesion, and thus are considered as
moonlighting proteins (Table 1 and Figure 1).
Frontiers in Immunology | www.frontiersin.org 2
CD13

CD13, also Aminopeptidase N (ANPEP, gp150) (EC: 3.4.11.2) is
a Zn2+-dependent metalloproteinase that catalyzes the cleavage
of neutral amino acids at the N-terminal portion of peptides.
CD13 is highly glycosylated and has a large extracellular region, a
single transmembrane pass and a short cytoplasmic tail (10, 11).
Through its enzymatic activity, CD13 modulates different
processes, as it cleaves a wide variety of bioactive peptides,
including Angiotensin III, Enkephalin, some cytokines, and
others (10). CD13 is expressed by myeloid cells, endothelium,
renal and intestinal epithelial cells, neurons and, importantly, it
is overexpressed in various cancer types (12–15).

CD13 is particularly highly expressed in myeloid cells and
leukemias, hence, it was used as a marker of myeloid cells even
before it was known to be the same as the membrane enzyme
Aminopeptidase N (16). CD13 expressed in myeloid cells has
since been shown to participate in phagocytosis (17–19), cell
adhesion (20, 21) and migration (22, 23). Evidence shows that
CD13 participation in these processes is dependent on the
activation of signal transduction cascades, and, at the same
time, independent of the enzymatic activity, leading to the idea
that CD13 could also be a receptor. Moreover, CD13 crosslinking
with monoclonal antibodies triggers heterotypic and homotypic
aggregation, i.e. between cells of different types or between cells
of the same type, respectively. This is true for human neutrophils,
monocytes and the monocytic cell line U-937 (21, 24). Cell
aggregation induced by CD13 crosslinking with the anti-CD13
TABLE 1 | Expression and properties of the membrane enzymes that participate in cell adhesion in leukocytes.

Enzyme Expression Transmembrane
pass

Cytoplasmic
aa

Ligands Interactions with
other proteins on
the same cell
membrane

Associated
to signal

transduction

CD13 Endothelial cells, kidney and intestinal epithelial cells, monocytes,
DC, macrophages, granulocytes, neurons

1 9 Unknown FcgR I and II,
possibly b1
integrin

Yes

CD26 Endothelial cells, intestine and lung epithelial cells, T and B
lymphocytes and NK cells

1 6 ADA,
Fibronectin,
Collagen
type 1,
Caveolin-1

TCR, M6P/IGF-IIR,
CXCR4, CD45

Yes

CD38 NK cells, T and B lymphocytes, HUVEC, thymocytes, monocytes,
osteoclasts, platelets, erythrocytes, neurons, astrocytes, muscle
cells, prostatic, pancreatic, kidney, retinal and corneal epithelial
cells

1 21 CD31 TCR, BCR, CD19,
CD81, class II
MHC, CD16

Yes

CD73 Most B and T CD8+ lymphocytes, some CD4+ T cells, Th17,
Treg, NK cells, follicular Dendritic Cells and myeloid derived
suppressor cells, muscle cells, neurons, fibroblasts, reactive
astrocytes, endothelial cells, and some epithelial cells.

Glycosyl
phosphatidyl
inositol anchored

None Laminin,
fibronectin,
tenascin C,
N-CAM, b2
integrin

Not determined Yes

CD156 Monocytes, macrophages, granulocytes, dendritic cells, endothelial
cells, B cells. In inflammatory conditions can be induced on
osteoclast, lung epithelial cells, glial cells and neurons.

1 146
(has signaling
motifs)

b1 integrin b1 integrin Yes

CD157 Neutrophils, monocytes, immature lymphocytes, bone marrow
stromal cells, synoviocytes, endothelial and mesothelial cells,
dermal fibroblasts

Glycosyl
phosphatidyl
inositol anchored

None Fibronectin,
type I
Collagen,
laminin, CD31

b1 and b2
integrins

Yes
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antibody mAb452 is dependent on signal transduction and
independent of integrins (24). It is noteworthy that, while
some anti-CD13 antibodies induce cellular aggregation (mAb
452, mAb MY7 and mAb WM15), others do not (mAb WM47)
(21, 24), and there are two monoclonal antibodies (mAb E and
mAb C) that disaggregate cell aggregates previously induced by
mAb 452 (25). Little is known about the mechanisms involved,
or about why different mAbs show different abilities to induce
aggregation (24), but it is hypothesized that this could be related
to the epitopes recognized by the mAbs.

Alongside well-studied adhesion molecules such as integrins
and selectins, other molecules contribute or regulate
transendothelial migration of leukocytes. Among them, CD13
participates by promoting monocyte adhesion to the
endothelium (20), which is one of the initial stages of
leukocyte exit from the blood vessels into the tissues. In a
mouse model of peritoneal inflammation, the absence of CD13
reduced the amount of leukocyte infiltration, specifically of
inflammatory monocytes, dendritic cells (DC) and neutrophils.
The conclusion was that optimal monocyte infiltration is
achieved when both monocytes and endothelial cells express
CD13 (26).

Although there are reports identifying putative ligands (27),
CD13 is still considered an orphan receptor because the natural
Frontiers in Immunology | www.frontiersin.org 3
ligand under physiological conditions remains undiscovered (10)
and the short cytoplasmic tail opens the question of how it is able
to transduce signals. On one hand, Riemann et al. observed,
using Fluorescence Resonance Energy Transfer (FRET), that
after crosslinking, CD13 co-localizes with FcgR I and II (CD64
and CD32, respectively) (28), suggesting that CD13 signaling
activity stems from its association with molecules with canonical
domains for signal transduction. On the other hand, it has been
difficult to show the association of CD13 with other membrane
proteins by immunoprecipitation. Nevertheless, it is clear that
the signal transduction cascade involves CD13 phosphorylation
in a Src-dependent manner (29), which causes the activation of
the Focal Adhesion Kinase (FAK) and the approach of the
scaffold protein IQGAP1, which mediates the remodeling of a-
Actin (20, 22, 29, 30). Then, Ca2+ mobilization and PI3K
activation ensue, leading to MAPK activation (31).

It was recently reported that CD13 participates in the
recycling of b1 integrin (CD29). After the integrin activation
by ECM-ligation, CD13 is phosphorylated and forms a complex
with IQGAP1 and the small GTPase ARF6, which directs the b1
integrin to early endosomes (Rab5+) and then back to the
membrane (22), this would result in an increase of the cell’s
adhesive properties. Another report shows evidence that CD13
expression regulates the expression of Syndecan 1 (SNC1) and b4
FIGURE 1 | Linear representation each enzyme sequence. The different regions are displayed as color boxes: catalytic sites are red and the known binding sites for
specific substrates, yellow. Intracellular regions are shown in blue, trans-membrane regions are represented as grey boxes, and extracellular regions are shown in
purple. CD73 and CD157 are bound to the membrane through a glycosylphosphatidyl inositol molecule (GPI), symbolized by a grey coil. CD156/ADAM-8 is the only
enzyme with signal transduction motifs (SH3 binding domains) in the cytoplasmic region.
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integrin (CD104) by downregulating the activation of PKCd
(32), which would enhance adhesiveness. However, it is not clear
whether CD13 directly modulates PKCd activity, or it is an
indirect effect. Additionally, it has been suggested that CD13
could also promote adhesion by interacting with the ECM, via
molecules like Galectin-3 or fibronectin (33), or with other
membrane molecules (24).
CD26

The moonlighting protein CD26 is an enzyme of great relevance
in T cell biology. CD26 participates in interactions with several
proteins during T cell activation, establishing physical contact
with the Antigen Presenting Cells (APC) so it reaches an accurate
activation level, and enabling cell-cell communication. As an
enzyme, CD26 [dipeptidyl peptidase IV (DPPIV) or Adenosine
Deaminase Complexing protein 2 (ADCP2)] (EC: 3.4.14.5) is
central to the regulation of multiple processes via its serine
exopeptidase activity. It cleaves dipeptides from the N-terminus
of peptides with proline or alanine at the penultimate position
(34). Some of its substrates include Glucagon-like protein 1
(GLP-1) and the Gastric Inhibitory Protein (GIP) (35) (both
important in glucose metabolism), as well as Substance P, and
various chemokines. CD26 is a type II membrane protein with a
short 6-aa cytoplasmic tail, a single transmembrane pass and a
large 738-aa extracellular region that includes the catalytic site
(35). The extracellular portion of CD26 contains 2 domains: a C-
terminal serine protease domain homologous to a/b-hydrolases,
and a propeller domain comprising two subdomains: a cysteine-
rich region and a highly glycosylated region. CD26 forms
homodimers on the cell membrane (36).

CD26 is expressed on the endothelium, epithelial cells of the
kidney, liver, lung, intestine and on T cells, some B and NK cells,
as well as on myeloid cells (37). In activated T cells, CD26
participates in lymphocyte adhesion to endothelial cells through
interaction with another membrane enzyme, adenosine
deaminase (ADA), expressed on endothelial cells (38). It was
shown that CD26-ADA interaction increases lymphocyte
adhesion to the endothelium, and it was suggested that the
increased adhesion is mediated by the integrin lymphocyte
function-associated antigen-1 (LFA-1, CD11a/CD18), because
CD26-ADA interaction promotes the high affinity conformation
of the integrin (38). The mechanism through which LFA-1 is
activated is not clear, but it certainly involves an inside-out
signaling pathway. ADA is implicated in the immunomodulation
of adenosine, and both CD26 and ADA are expressed at higher
levels on T effector cells than on Treg cells.

It has been suggested that CD26 regulates multiple T-cell
processes, including maturation, migration, activation and
cytokine secretion (39). Several proteins involved in T-cell
activation interact with CD26 in an enzymatic activity-
independent manner, including Mannose 6-Phosphate/Insulin-
like Growth Factor II receptor (M6P/IGF IIR), CD45 (40),
Caveolin- 1, Fibronectin (FN), Collagen type 1, Streptokinase,
CXCR4, Plasminogen type 2, HIV gp120 protein, human
Frontiers in Immunology | www.frontiersin.org 4
coronavirus MERS-CoV Spike protein and the extracellular
Adenosine Deaminase (ADA) (23, 39, 41–44). Moreno et al.
demonstrated a physical interaction between CD26-bound ADA
with Adenosine Receptor 2 (A2R), possibly through a molecular
bridge between lymphocytes expressing CD26 and DCs
expressing A2R (45). Also, CD26 on T cells is presumed to
interact with Caveolin-1 on APCs, which could contribute to the
overall interaction between these cells (40). In fact, ADA and
Caveolin-1 bind to CD26’s highly glycosylated region while FN,
Collagen type 1, Plasminogen and Streptokinase bind to the
cysteine-rich region (35).

Multiple reports establish the ability of CD26 to directly bind
to FN and Collagen type I in the ECM (46). Metastatic cancer
cells and blood-born cancer cells move toward different tissues
via interactions between CD26 and a polymeric form of FN
expressed in lung epithelial cells (34). Similarly, Sato et al.
demonstrated in a T-anaplastic large cell lymphoma cell line
(T-ALCL) , Karpas 299 , that CD26 modulates the
phosphorylation of b1 integrin by inducing the activation of
p38 Mitogen Activated Protein Kinase (MAPK) (47).
This suggests that CD26 mediates cell adhesion to the
ECM through MAPK-dependent phosphorylation and b1
integrin activation.

CD26 is considered as a potential target for cancer therapy,
because it is a marker of multiple types of cancer cells (44, 48,
49). In a model using mice inoculated with Karpas 299
lymphoma cells expressing or not CD26, CD26 was shown to
be necessary for tumor development (47). As aforementioned,
CD26 participates in cell adhesion to the ECM and the
endothelium through its binding sites for FN, Collagen type I
and ADA. The anti-CD26 antibody 6A3, which blocks the FN
binding site on CD26, decreased adhesion of cancer cells (50).
CD73

The enzyme ecto-5’ nucleotidase (Ecto-5’-NT) (EC: 3.1.3.5),
CD73, or Lymphocyte-Vascular Adhesion Protein 2 (LVAP-2)
is a glycosyl phosphatidyl inositol-anchored membrane protein
involved in the metabolism of nucleotides. Ecto-5’-NT catalyzes
the dephosphorylation of nucleotide monophosphates into their
corresponding nucleosides (51, 52). It is expressed on the
membrane as an homodimer, although it can be also found
intracellularly and as a soluble form in circulation (52).

Minimal concentrations of nucleotides are released
physiologically into the extracellular space as messengers (53),
but injuries or mechanical damage may result in an increased
release of nucleotides into the extracellular space, leading to an
inflammatory response (54). Conversely, high concentrations of
extracellular adenosine downregulate pain, inflammation,
proliferation and cytokine secretion (53). Hence, CD73 has been
proposed as a key regulator of inflammation and a prominent
target in chronic pain (54, 55). CD73 and CD39 work together on
the cell membrane regulating of the adenosine metabolism; for
example, Treg cells and myeloid- derived suppressor cells
(MDSCs) use the nucleotidase CD39 to cleave ATP into AMP,
November 2021 | Volume 12 | Article 742292
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which then is dephosphorylated into adenosine by CD73 (56, 57).
The nucleosides can subsequently be transported into the cell
through purinergic receptors such as A2A (53), and once inside
the cell, be phosphorylated again for different purposes, including
cell proliferation (58, 59). The increased expression of CD73 and
CD39 produce increased extracellular concentrations of
adenosine, which contributes to the immunosuppressive
microenvironment of tumors and it has been demonstrated that
they both are regulated by the hypoxia- inducible factor- a (HIF-
1a) (57). Thus, inhibition of the enzymatic activity of these
enzymes has been proposed as a potential therapeutic strategy
to combat cancer (60).

CD73 is widely expressed. In the hematopoietic lineage, it is
present on mature B lymphocytes, some CD8+ T cells, Tregs, and
Follicular Dendritic Cells (FDC) (61). Other non-hematopoietic
cells also express CD73, such as fibroblasts, some epithelial and
endothelial cells, skeletal muscle cells and neurons and,
significantly, a variety of solid tumors (52, 62). In addition to
its enzymatic activity, the role of CD73 in different
immunological processes has also been studied, including
lymphocyte activation, proliferation, cell adhesion, and the
formation of germinal centers in secondary lymphoid organs
(59, 63, 64).

As an adhesion molecule, CD73 participates in cell
interactions with sulphated proteins of the ECM, such
interactions potentially contribute to regulate invasiveness and
metastasis of cancer cells (65). Chicken’s gizzard CD73 interacts
with columns containing Laminin or Fibronectin bound to
sepharose beads, which reduces its enzymatic activity (65–68).
Human CD73 also interacts with the ECM protein Tenascin C,
important for adhesion of MDA-MB-231 breast cancer cells; this
interaction inhibits 75% of CD73’s enzymatic activity (69). These
observations make it highly likely that these ligands bind near the
catalytic site.

In addition to ECM proteins, there is evidence that CD73
interacts with CD56, Neural-Cell Adhesion Molecule (N-CAM)
(64) and CD18, the b chain of the integrin Lymphocyte
Function-Associated Antigen-1 (LFA-1, integrin aL/b2,
CD11a/CD18), enabling cellular adhesion between endothelial
cells and lymphocytes (70, 71). Moreover, CD73 is known to be
chopped off upon crosslinking with mAbs on lymphocytes but
not on endothelial cells, suggesting a mechanism for regulation
of lymphocyte-endothelial cell adhesion (59). CD73 interaction
with LFA-1 may be the major mechanism by which CD73
contributes to enhance cell adhesion of lymphocytes to
endothelial cells and along with its enzymatic activity, it could
represent a major function of this moonlighting protein (64).
CD38

The ADP-ribosyl cyclase 1 or CD38 (EC: 2.4.99.20, EC: 3.2.2.6) is
a conserved enzyme with 10 cysteines that are essential for
maintaining its tertiary structure and for its catalytic activity
(72). CD38 catalyzes the reaction of breaking up nicotinamide
adenine dinucleotide (NAD+) into adenine dinucleotide
Frontiers in Immunology | www.frontiersin.org 5
phosphate ribose (ADPR), cyclic ADP ribose cADPR and
nicotinamide (73–75). cADPR is a second messenger that
induces Ca2+ mobilization independently from 3,4,5-inositol
triphosphate (IP3) (74, 76). CD38 can also cleave NAD+ into
its precursors, releasing nicotinamide mononucleotide and
nicotinamide riboside (77). The enzyme can be found on the
cell membrane with its catalytic domain either on the
extracellular space or facing the cytoplasm, or on intracellular
membranes (77). CD38 is a 300-aa long, type II membrane
glycoprotein with a short cytoplasmic tail , a single
transmembrane pass and the majority of the protein on the
outer proportion of the plasma membrane (78, 79).

CD38 is considered a moonlighting enzyme because, aside its
enzymatic function, it has been proposed to act as a co-receptor
for various cell activation molecules. CD38 is expressed by naïve
T cells, a subset of regulatory T cells, chronic infection-related T
CD8+ cells, and thymocytes at the double positive stage (80, 81).
When T lymphocytes are activated, CD38 synthesis increases, via
Protein Kinase A and C (PKA PKC)-dependent pathway (82).
Expression of CD38 in human B lymphocytes starts from early
differentiation stages in the bone marrow, and it is maintained in
mature B cells. In murine B lymphocytes CD38 expression is
downregulated in cells entering germinal centers (83).
Circulating monocytes express low levels of CD38, but its
expression is increased by inflammatory stimuli and,
interestingly, this is associated with differentiation into DCs
(84). Other cells that express CD38 are NK cells, granulocytes
and non-immune cells such as osteoclasts, erythrocytes, platelets,
pancreatic and prostatic epithelial cells, neurons, astrocytes,
muscle cells, renal tubular cells, retinal ganglion and cornea
cells (85, 86).

Since CD38 has a short cytoplasmic tail, it was hypothesized
that this molecule should interact with other membrane proteins
to initiate intracellular signaling after activation upon antibody
ligation. CD38 crosslinking in fact induces several cellular
responses. Firstly, CD38 ligation on NK, T and B lymphocytes
leads to proliferation and upregulation of activation markers
(81). This molecule also participates during cell activation,
potentiating signal transduction due to its close proximity to
receptors mediating cell activation, such as the CD3/TCR
complex in T cells, the surface Immunoglobulin (sIg), CD19,
and CD81 in B cells, MHC class II in monocytes and CD16 in
NK cells (77, 87). In naïve T cells and monocytes, CD38
crosslinking induces the secretion of both Th1 (IFNg, M-CSF,
IL-1b, IL-6) and Th2 cytokines (IL-4, IL-10 and IL-5) (73, 88).
Activated neutrophils use CD38 to produce cyclic ADPR, which
induces the release of intracellular Ca2+ that is required for
responding to fMLP (75). In B lymphocytes, opposite
consequences of CD38 activation have been reported: while its
stimulation prevents apoptosis of B cells during clonal expansion
in germinal centers, it also induces apoptosis of B cells precursors
in the bone marrow, as well as of thymocytes in the thymus (80,
89, 90).

Regarding the role of lymphocytic CD38 in cell adhesion and
migration, Dianzani, et al. first proposed that it mediates weak
interactions between lymphocytes and the endothelium during
November 2021 | Volume 12 | Article 742292
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the first steps of adhesion, before the stronger interactions occur
(e.g. through integrins). They described two mechanisms for the
participation of CD38 in adhesion: a direct interaction with an
endothelial molecule, or by enabling the interaction of different
lymphocytic membrane molecules with an endothelial ligand
(91). A few years later, the same group reported that CD38
physically interacts with CD31 on endothelial cells and that this
interaction leads to Ca2+ mobilization, which in turn leads to
cytokine release, cell activation and cell-cell interaction with
endothelial cells (92). Also, ligation induces CD38 molecules to
aggregate in cholesterol and sphingolipids-rich membrane
microdomains, which facilitates their internalization (93). It is
plausible that such mechanism occurs during the first steps of
adhesion, decelerating leukocytes in the bloodstream.

CD38–CD31 interactions are also established between human
monocyte-derived dendritic cells (MDDCs) and endothelial cells.
Migration induced by CCL-21 is inhibited either by blocking
CD38 on MDDCs or CD31 on endothelial cells with specific
antibodies (84). However, interaction with CD31 is not the only
way that CD38 has for enabling cell migration; it was described
that the reduced migration of DCs and neutrophils lacking CD38
is related to the lack of cADPR, which impairs Ca2+ mobilization
(75, 92, 94). Thus, CD38 participates in migration in at least two
ways: by promoting adhesion via CD31, and by the enzymatic
production of cADPR, which induces Ca2+ mobilization required
for migration.

CD38 ligation in T cells, either with monoclonal antibodies or
with CD31, initiates a signal transduction cascade including the
phosphorylation of PLC-g, ZAP-70, MAPK and ERK2; whereas
in monocytes the signaling pathway comprises PI3K and c-Cbl
(73, 95, 96). This is noteworthy due to the fact that CD38 has
only a short cytoplasmic tail with no known signaling motifs.
Consequently, it is hypothesized that CD38 uses the signaling
machinery of other molecules, such as the BCR, TCR, CD16 and
MHC class II. The study of CD38 as a receptor started more than
three decades ago and, as is true for several other cell membrane
enzymes, more recently it has been refocused toward its
expression and function in cancer cells, leading to the proposal
of CD38 as a target for anti-cancer drugs (97–99).
CD157

The ectoenzyme ADP-Ribosyl cyclase 2 (EC: 3.2.2.6), also known
as CD157 or Bone Marrow Stromal Cell Antigen-1 (BST-1), is a
glycosylphosphatidyl inositol-anchored glycoprotein with NAD
glycol-hydrolase activity and ADP-ribosyl cyclase activity, like
CD38, which belongs to the same gene family. They share 36% of
their sequence and have similar pleiotropic functions both as
receptors and as enzymes. Although CD38 has a transmembrane
pass while CD157 does not, their structures are supported by 10
cysteines essential for disulphide-bond formation and enzymatic
activity (78).

CD157 is expressed on myeloid cells, immature lymphocytes,
bone marrow stromal cells, synoviocytes, endothelial and
mesothelial cells, and dermal fibroblasts. Invasiveness of
Frontiers in Immunology | www.frontiersin.org 6
ovarian cancer epithelial cells is CD157-dependent, which
increased expression promotes mesenchymal differentiation
(100). The expression of CD157 is upregulated on neutrophils
and basophils upon fMLP stimulation and on monocytes treated
with MCP-1 (101–103), expression levels do not change on
activated endothelial cells (104). CD157 expression on human
umbilical vein endothelial cells (HUVEC) is restricted mainly to
the intercellular region of membranes (104). CD157 plays a key
role in transendothelial migration of neutrophils, as treating
neutrophils with an anti-CD157 blocking antibody or treatment
of HUVEC cells with an anti-CD31 blocking antibody, hinders
their transendothelial migration (104). In humans, paroxysmal
nocturnal hemoglobinuria is a genetic defect characterized by the
attachment of glycolipids to proteins resulting in the absence of
CD157 and other GPI-anchored proteins on the cell membrane,
neutrophils from patients with this condition show impaired
transmigration even though neutrophils adhere to the vessel
wall (104).

CD157, as other GPI-anchored proteins, interacts with
different transmembrane molecules to transduce signals. The
antibody-induced clustering of CD157 on the cell membrane
initiates a Ca2+-dependent cascade, F-actin reorganization
toward the opposite pole of the cell, and b2 integrins
activation in neutrophils (102). Moreover, CD157 co-localizes
and functionally collaborates with b1 and b2 integrins for
adhesion to Fibrinogen and Fibronectin (102, 103), inducing a
signal transduction pathway that involves FAK, Src, AKT and
ERK 1/2 (103). As long as b2 integrin CD18 is associated with
CD11b to form MAC-1 (integrin aM/b2), CD157 co-
immunoprecipitates with this heterodimer (105, 106),
suggesting that CD157 can trigger intracellular signals using
the MAC-1 (CD11b/CD18) signal transduction machinery.

Soluble recombinant CD157 binds to various ECM proteins
such as Fibronectin, Fibrinogen, Collagen type I and Laminin,
and these interactions can be inhibited by an anti-CD157 mAb
or by heparin (107). Thus, CD157 participation in cellular
adhesion of leukocytes may involve i) its association with
integrins on the same cell membrane, ii) the interaction with
components of the ECM and iii) direct interaction of CD157
with CD31 on endothelial cells. It is thus conceivable that CD157
interaction with CD31 is employed for transendothelial
migration, while the interaction with Laminin, Collagen type I
and Fibronectin could be involved in the cell´s migration
through the tissues, enhancing the integrin-mediated adhesion
to ECM. Finally, even though CD157 does not have signal
transduction domains per se, its association with the CD18/
CD11b heterodimer suggests that it may use the signal
transduction cascade of this integrin.
CD156

Human CD156, or ADAM-8 (A Disintegrin andMetalloproteinase
domain-containing protein-8 (EC: 3.4.24.-)) is a type I
transmembrane glycoprotein. ADAMs are conserved proteins
that were initially related to the hemorrhagic snake venom
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protein (HSVP), which has a cysteine-rich region preceding the
metalloproteinase domain. Structurally, ADAMs have a pro-
domain that inhibits the active form of the enzyme, the catalytic
domain, the disintegrin domain, a cysteine-rich region, a single
transmembrane pass and a cytoplasmatic tail with signal
transduction function (108). The intracellular tail of ADAM-8
has a proline-rich region similar to the SH3 (Src homology 3)
binding sequence (109). ADAM-8 has a long list of substrates,
including cell adhesion molecules, cytokine receptors and ECM
proteins (110). ADAM family are metalloproteinases that bind to
integrins through a RGD motif (Arg-Gly-Asp), inhibiting platelet
aggregation (111).

Under physiological conditions, protein levels of ADAM-8 are
low in monocytes, macrophages, granulocytes, dendritic cells, and
endothelial cells, and even lower in B cells and neurons. But it has
been reported that CD156 is upregulated by different inflammatory
stimuli, such as Tumor Necrosis Factor-a (TNF-a) (112),
Interleukins (IL) 4 and 13 (113), Lipopolysaccharide (LPS),
Interferon-g (IFN-g), and by Peroxisome Proliferator-Activated
Receptor-g (PPAR-g) (114, 115). ADAM-8 expression is also
induced under inflammatory conditions in lung epithelium
(113), osteoclasts (116), and glial cells in the central nervous
system (CNS) (112).

ADAM-8 and ADAM-28 are the only members of the family
that do not have a canonical sequence for Furin-like convertases
between the pro-domain and the metalloproteinase domain
(117). Thus, activation is achieved after their multimerization
on the membrane and auto-catalytical cleavage of the pro-
domain (117). The disintegrin domain has an integrin-binding
loop with the residues KDM, followed by a cysteine-rich region
and an EGF-like sequence. Interestingly, three different forms of
ADAM-8 have been detected in cells: the inactive form with its
pro- domain, the active form without the pro-domain, and the
final form resulting from the removal of the metalloproteinase
domain, leaving the disintegrin domain as the N-terminal
domain (117). The first two forms are much less abundant
than the last one. The remaining peptide (named DCE)
consists of the disintegrin domain, and the cysteine-rich and
EGF-like sequences; DCE participates in homophilic interactions
with other cells (109, 117). Although the precise amino acids
implicated have not been identified, the interactions with its
ligands may include disulphide bonds, since reducing conditions
impede adhesion (117).

CD156 molecules from both the endothelial cell and the
leukocyte participate in the infiltration of myeloid cells into
inflamed tissue. Migration of the monocytic human THP-1 cell
line directed by CCL-2 was reduced when CD156 was
downregulated using a shRNA. Similarly, reduced levels of
CD156 diminished the migratory response of human
neutrophils towards CXCL8. This effect on the migratory
capacity was achieved either by chemically inhibiting CD156
enzymatic activity or by blocking the enzyme with monoclonal
antibodies (115). Furthermore, expression of the a subunit of the
integrin LFA-1 (integrin aL, CD11a) in monocytes is
upregulated in response to CCL-2, but silencing of CD156
affected this upregulation, decreasing even more the adhesion
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of leukocytes to endothelial cells (115). These results were
confirmed in an in vivo model where monocyte infiltration to
inflamed lungs was less significant in ADAM-8-/- than in wild
type animals. Wound healing assays revealed that ADAM-8-/-

endothelial cells have significantly reduced migratory capacity
(115). Although the mechanism is not yet completely
understood, the evidence shows that migration is dependent
on the enzymatic activity.

In order to accomplish cell adhesion, signal transduction
through ADAM-8/CD156 is possible because unlike the other
enzymes previously discussed, this enzyme has signaling motifs
in its cytoplasmic tail. Potential candidates that could modulate
the cascade are Src protein kinases (109), Cdc42-dependent actin
assembly protein 1 (TOCA-1), and Cdc42-interacting protein 4
(CIP4) (110, 118). Additionally, ADAM-8/CD156 disintegrin
domain interacts with b1 integrin inducing the FAK, ERK and
protein kinase B (AKT) activation (110, 119). Precisely these
pathways are implicated in ADAM-8-driven chemo-resistance
and enhanced invasiveness of human glioblastoma cells (119).
This suggests that ADAM-8 either modulates, or initiates signal
transduction cascades and that it may be a potential therapeutic
target in cancer.
CONCLUSIONS

The hypothesis that ectoenzymes could transmit biochemical
signals to the intracellular space was formulated before the term
of moonlighting proteins was even coined (1). According to
Stanley et al., all ectoenzymes must be integral proteins of the cell
membrane with the catalytic site on the extracellular face of the
membrane (1). However, ectoenzymes can also be found in other
intracellular compartments, making larger the list of possible
functions for each enzyme. Currently, several ectoenzymes are
included in the category of moonlighting proteins, implying that
these enzymes perform different functions depending on the cell
type that expresses them, the timing, and the microenvironment,
while they preserve their catalytic activity. Furthermore, in the
past few years, a growing number of moonlighting enzymes
expressed on immune cells have been shown to play a role in
complex processes such as cellular adhesion, phagocytosis, and
cell activation, among others.

Ectoenzymes constitute a heterogeneous category of proteins
that regulate multiple physiological processes through their
different enzymatic properties, by cleaving peptides and
hormones, processing molecules, clearing injured tissue, etc.
(2). The products of their enzymatic activity trigger functional
cellular responses that contribute to maintaining the homeostasis
of the organism. The membrane enzymes discussed (Figure 2)
contribute to the 4% of human leukocytes’ surface covered by
ectoenzymes (7).

Each subpopulation of immune cells is endowed with a
variety of specialized proteins that engage in processes such as
phagocytosis, immunological synapses, antigen presentation,
chemotaxis, and others. These add up to a variety of highly
specialized mechanisms that maintain homeostasis, respond to
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López-Cortés et al. Leukocyte Membrane Enzymes in Adhesion
danger signals, and scrutinize through the entire organism as
sentinels. In certain cells, a number of enzymes have evolved to
participate in cell adhesion. These ectoenzymes were probably
selected not because they had conserved domains relevant for
adhesion, but instead because certain chemical features of their
structure enabled the cell to establish interactions with molecules
on the surface of a different cell. Ultimately, chemical
interactions and affinity to specific motifs are the initial motor
for cell adhesion. This may have happened with some
ectoenzymes on immune cells which suffered a positive
selective pressure. In time, they became part of the cell´s array
of molecules that mediate cell adhesion. However, the
mechanisms by which these enzymes became capable of signal
transduction should be part of a different evolutionary history.
We hypothesize that the interaction of these enzymes with their
ligands induced the aggregation of other adhesion molecules on
the membrane that were included in the same microdomains
(e.g. lipid rafts), and such molecules were originally responsible
for signal transmission.
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Since enzymes function in an orchestrated fashion, their
expression and co-expression must be considered when
formulating hypothesis on their evolution and physiology. For
example in Jurkat and Raji cells, CD38 induces a dynamic
mobilization of pre-synthesized cytoplasmic CD73 toward the
membrane, where both function in the same axis (120). The
biological significance of this synergism is still unclear; as both
ectoenzymes share substrates, participate in lymphocyte
activation and in the adhesion to the endothelium. In the case
of CD73 and CD39, another nucleotidase, they take part side by
side in the same ATP metabolic pathway, showing critical co-
participation in the regulation of metabolism (55, 121).
Interestingly, this cascade is used by several cancer cells and
Treg cells to downregulate the immune response (55, 122). On
the contrary, few cells co-express CD38 and CD157, which
function similarly regarding their enzymatic and receptor
activities (101).

In addition to ADAM-8, other ADAM proteins may be
involved in cell adhesion. Distinct members of this family are
FIGURE 2 | Expression of the membrane enzymes on hematopoietic cells. Representation of hematopoietic and endothelial cells highlighting the membrane
enzymes involved in cell adhesion. Figure designed using images from Servier Medical Art (https://smart.servier.com/).
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overexpressed on cancer cells, and some of them have been
shown to provide resistance to chemotherapeutic agents (123).
Their deregulation during pathologies like cancer, reveal the
importance of not only their catalytic activity, but also of the
protein-protein interactions mediated by the disintegrin domain
of ADAM proteins. For example, ADAM-12 and ADAM-15
bind to the a9b1 (124) and avb3 integrins (125); ADAM-9 to
a6b1 integrin (126) and ADAM-23 to avb3 integrin (127).
Although it is speculated that these interactions contribute to
tumor growth and invasion, the fact that these same interactions
are formed by ADAM molecules expressed on leukocytes
awaits confirmation.

Cell adhesion is an ancient mechanism present since
unicellular organisms, as it serves for cell communication.
Thus, it is not surprising that many molecules have been
evolutionarily selected to participate in such a complex
process. Perhaps, selective pressures drove proteins toward the
acquisition of post-translational modifications which made them
part of this process. Finding other molecules that participate in
cellular adhesion would help gaining a deeper understanding of
the process per se. Also, as aforesaid, most of the molecules
mentioned here are overexpressed in various cancers. However
there are other disorders caused by adhesion molecules
deregulated that could be treated more efficiently. This is the
reason why many pharmacological developments attempt to
target specific tissues with certain expression profiles (128).
Furthermore, cell markers are especially useful for developing
Frontiers in Immunology | www.frontiersin.org 9
drugs, opening the door for more targeted and, hopefully,
virtually side-effects free treatments.
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