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Background and Purpose: Recent studies have shown that several proteins, including
Axl, are related to hemorrhagic transformation (HT) following intravenous thrombolysis by
affecting blood-brain barrier (BBB) function. However, the effects of these proteins on BBB
function have been studied primarily in animal models. In this study, we aimed to identify
serum protein markers that predict HT following intravenous thrombolysis in patients with
acute ischemic stroke (AIS) and verify whether these serum proteins regulate BBB
function and HT in animal stroke models.

Methods: First, 118 AIS patients were enrolled in this study, including 52 HT patients and
66 non-HT patients. In Step 1, baseline serum levels of Axl, angiopoietin-like 4, C-reactive
protein, ferritin, hypoxia-inducible factor-1 alpha, HTRA2, Lipocalin2, matrix
metallopeptidase 9, platelet-derived growth factor-BB, and tumor necrosis factor alpha
were measured using a quantitative cytokine chip. Next, sequence mutations and
variations in genes encoding the differentially expressed proteins identified in Step 1
and subsequent function-related proteins were detected. Finally, we verified whether
manipulation of differentially expressed proteins affected BBB function and HT in a
hyperglycemia-induced rat stroke model.

Results: Serum Axl levels were significantly lower in the HT group than in the non-HT
group; none of the other protein markers differed significantly between the two groups.
Genetic testing revealed that sequence variations of GAS6 (the gene encoding the Axl
ligand)-derived long non-coding RNA, GAS6-AS1, were significantly correlated with an
increased risk of HT after intravenous thrombolysis. In animal studies, administration of
recombinant GAS6 significantly reduced brain infarction and neurological deficits and
attenuated BBB disruption and HT.
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Conclusions: Lower serum Axl levels, which may result from sequence variations in
GAS6-AS1, are correlated with an increased risk of HT after intravenous thrombolysis in
stroke patients. Activation of the Axl signaling pathway by the GAS6 protein may serve as
a therapeutic strategy to reduce HT in AIS patients.
Keywords: acute ischemic stroke, blood-brain barrier, hemorrhagic transformation, recombinant tissue
plasminogen activator, growth arrest-specific 6, Axl
INTRODUCTION

Stroke is a major cause of disability and death worldwide (1, 2).
Recombinant tissue plasminogen activator (rt-PA) is currently
the most effective treatment for acute ischemic stroke (AIS) (3).
However, hemorrhagic transformation (HT), a major
complication of rt-PA therapy, increases life-threatening risk
and contributes to adverse events in patients with AIS (4, 5). The
mechanism of HT after thrombolysis is complicated, and
disruption of the blood-brain barrier (BBB) plays an important
role in this process (6, 7). Clinical studies of BBB permeability
imaging demonstrate that increased BBB permeability predicts
incidences of HT in patients with AIS (8, 9). Animal studies have
resulted in similar conclusions (10, 11).

Previous studies have reported several proteins associated
with BBB function, including Axl (12), angiopoietin-like 4
(ANGPTL4) (13), C-reactive protein (CRP) (14), ferritin (15,
16), hypoxia-inducible factor-1 alpha (HIF-1a) (17), HTRA2
(18), lipocalin2 (19), matrix metallopeptidase 9 (MMP-9) (20),
platelet-derived growth factor-BB (PDGF-BB) (21, 22), and
tumor necrosis factor alpha (TNF-a) (23). However, the effects
of these proteins on BBB function have been studied primarily in
animal or in vitro models, and their roles in BBB disruption and
HT after intravenous thrombolysis in patients with AIS are
largely unknown.

Thus, in the present study, we sought to (1) investigate baseline
serum levels of the above ten proteins in cases of AIS with and
without HT who underwent rt-PA therapy; (2) detect sequence
mutations and variations in the genes encoding differentially
expressed proteins identified in Step 1 and subsequent function-
related proteins; and (3) verify whether modulation of the
differentially expressed proteins in Step 1 can improve BBB
function and reduce HT in animal stroke models.
METHODS

The clinical study design was approved by the Ethics Committee
of the First Hospital of Jilin University, and all participants
provided written informed consent. The animal study design was
approved by the Animals Ethics Committee of Jilin University,
and all procedures were performed in accordance with the Guide
for the Care and Use of Laboratory Animals.

Study Design
Step 1: Detection of baseline serum levels of Axl, ANGPTL4,
CRP, ferritin, HIF-1a, HTRA2, lipocalin2, MMP-9, PDGF-BB,
org 2
and TNF-a in patients with AIS with and without HT using a
quantitative cytokine chip.

Step 2: Detection of gene sequence variations of genes and
related genes of the differentially expressed proteins identified in
Step 1.

Step 3: Verification of whether the manipulation of the
differentially expressed proteins in Step 1 affected BBB
function and HT in animal stroke models.

Clinical Study
Participants
We conducted a retrospective study of patients diagnosed with
ischemic stroke who underwent standard rt-PA treatment (0.9
mg/kg) at the Department of Neurology in the First Hospital of
Jilin University between June 2016 and June 2018. Additional
enrollment criteria included willingness to undergo venous blood
sample collection and computed tomography scans at the time of
admission and 24 h after thrombolysis. We excluded patients
with other neurological disorders, myocardial infarction or
unstable angina within six months, as well as patients with
atrial fibrillation. With these enrollment criteria, a total of 224
AIS patients were initially included in this study. For the HT
group, 52 consecutive patients who experienced HT and met the
criteria above were included. Sixty-six non-HT patients who met
the criteria above and did not experience HT during the same
period were selected from 172 eligible patients. Computer-based
randomization was used to select a group of non-HT patients
from 172 eligible patients.

Definition of HT
HT was defined as any newly developed intracranial hemorrhage
detected by computed tomography 24 h after rt-PA that was not
detected by computed tomography prior to thrombolysis (24).

Human Cytokine Antibody Array
We analyzed cytokines using the Quantibody Human custom
array (RayBiotech, Norcross, GA), which detects and quantifies
ten cytokines simultaneously (25–27). In short, monoclonal
antibodies complimentary to numerous proteins were printed
on glass slides to bind to the corresponding proteins in serum.
Then, the slides were incubated with a biotinylated secondary
antibody mixture and detected with Cy3-labeled streptavidin.
Each analyte was measured in quadruplicate. A laser scanner
(InnoScan 300 Microarray Scanner, Innoscansys, France) was
then used to scan the slides. The RayBiotech analysis tool was
used to analyze the signal values.
October 2021 | Volume 12 | Article 742359
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Blood Collection and DNA Extraction
Before rt-PA treatment, venous blood samples were collected
from the basal vein of each patients. Samples were centrifuged
(3000 rpm, 10 min) at 4°C; then, leukocytes were rapidly frozen
and stored at -80°C until analysis. Genomic DNA of the isolated
leukocytes was extracted using the Blood DNA Kit (Cat. #GO-
HYAS, GeneOn BioTech, China) according to the
manufacturer’s instructions.

Detection of Gene Mutation and Polymorphism
At the genetic level, we tested Axl, GAS6 (the gene encoding the
ligand for Axl), and the GAS6-derived long non-coding RNA
(GAS6-AS1) (28), including 20 SNPs of Axl, 1 InDel of Axl, 15
SNPs of GAS6, and 19 SNPs of GAS6-AS1. The detailed protocols
regarding target sequencing, data pre-processing, variant
discovery, annotation, and statistical analysis, followed
previously established methodology (29).

Target Sequencing
Qualified genomic DNA of each individual was hybridized with
the designed target capture array to enrich exonic DNA in each
library. Then, we performed sequencing with 150 bp pair reads
independently for each captured library on the Illumina Xten
platform to ensure that the average coverage of each sample was
approximately 700-2600 fold.

Data Pre-Processing
Samples were aligned to the NCBI human genome reference
assembly (hg19) using the Burrows-Wheeler Aligner. Next, we
employed Picard Mark Duplicates to label the duplicate reads to
reduce biases caused by data generation (such as PCR
amplification). Using the Genome Analysis Toolkit (GATK
v3.3), the BAM files were processed to realign around known
indels. We then recalibrated the base quality scores for the
individual base calls in each sequence read.

Variant Discovery
Germline short variant discovery proceeds from analysis-ready
BAM fi les and produces variant calls. GATK (v3.3)
HaplotypeCaller was used to call variants per sample in
targeted and flanking regions for each individual in order to
produce a file in GVCF format. We then performed joint
genotyping to combine the multisample GVCF. Next, we
performed GenotypeGVCFs to obtain a multisample genotype
for allsites. Finally, the hard-filter was applied to produce the
final multisample callset with the desired balance of precision
and sensitivity.

Annotation
SnpEff was used to separate single nucleotide variants into
different functional categories according to their genic location
and their expected effect on encoded gene products, based on
information from the RefSeq database. All variants were further
annotated by the control population of the 1000 Genomes
Project (2014 Oct release, http://www.1000genomes.org), ExAC
(http://exac.broadinstitute.org), EVS (http://evs.gs.washington.
edu/EVS), Disease databases of ClinVar (http://www.ncbi.nlm.
nih.gov/clinvar), and OMIM (http://www.omim.org).
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In addition, we categorized the single nucleotide variants into
known or novel groups according to whether they were present
in the Single Nucleotide Polymorphism database (version 150).

Statistical Analysis
After sample quality controls, 52 samples from HT patients and
66 samples from non-HT patients in targeted sequencing were
employed for statistical analysis. After unqualified variants
(–biallelic-only –geno 0.2 –hwe 0.0001) were filtered, single-
variant association analysis for single nucleotide variants and
inDel was performed by case-control association analysis with
the Fisher’s model using PLINK 1.9.

Animal Experiment
Rats were housed in a 12-h light/dark cycle, with room
temperature maintained at 23°C. Food and water were freely
available. A total of 184 male Sprague-Dawley rats weighing 250–
280 g (Changsheng Inc., Liaoning, China) were included in this
study. The sample size was determined based on that of previous
studies evaluating the effects of Axl in middle cerebral artery
occlusion (MCAO) or intracerebral hemorrhage (ICH) animal
models (30, 31) and previous results obtained in our laboratory.
The expected sample size of each group was approximately 6.
The exclusion criteria were as follows: dying before the chosen
endpoint or without a deficit after 1 h of reperfusion except in
case of sham animals. Our experiment was divided into two parts
to determine the effect of rGAS6 on hyperglycemia-induced rats
with HT at 24 and 72 h after MCAO, respectively. In the first
part, 108 rats were weighed and numbered according to their
weight. Computer-based randomization was used to divide the
animals into three groups, namely the sham group,
sham+dextrose+PBS (n=36); the HT group, MCAO+dextrose+
PBS (n=36); and the recombinant GAS6 (rGAS6) group,
MCAO+dextrose+rGAS6 (Axl agonist, n=36). A total of 16
rats that did not meet the inclusion criteria were replaced
immediately. A total of 54 rats were included in the second
part. They were randomly divided into three groups, the sham
group (n=18); the HT group (n=18); and the rGAS6 group
(n=18). A total of 6 rats that did not meet the inclusion
criteria were replaced immediately. The individuals performing
the experiments were blinded to both group membership
and outcome.

Hyperglycemia-Induced HT Rat Models
Rats were intraperitoneally injected with 50% dextrose (6 mL/kg)
15 min before MCAO to induce acute hyperglycemia. Anesthesia
was induced by 4% isoflurane in a nitrous oxide/oxygen mixture
(70/30) and maintained by 1.5% isoflurane using a facemask. A
feedback-controlled heating pad was used to maintain rectal
temperature at 37.0°C during and after surgery. MCAO was
induced according to previously established methodology (32,
33). Briefly, the right external carotid artery was dissected
through a midline neck incision, and its branches were also
dissected and coagulated. Next, the external carotid artery was
cut, leaving a stump as long as possible to attach to the common
carotid artery. A 4-0 nylon suture (2636-A5, Beijing Xi Nong
Technology Co Ltd., China) was inserted through the stump and
October 2021 | Volume 12 | Article 742359
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advanced into the internal carotid artery approximately 19-
20 mm to occlude the origin of the middle cerebral artery.
90 min after occlusion, the animals were re-anesthetized, and
the suture was removed. Rats in the sham group underwent the
same procedures without the suture insertion.

Intranasal Administration of rGAS6
The rats were re-anesthetized and treated with rGAS6 60 min
after occlusion. Nasal administration was performed according
to previously established methodology (34). PBS or rGAS6
dissolved in PBS (20 mg/kg, 0.25 µg/µl, R&D system,
Minneapolis, MN) was delivered alternately into the bilateral
nares, one drop every 2 min.

Neurological Score
Neurobehavioral defects were evaluated by a blinded investigator
using a modified Garcia neurological score 24 and 72 h after
MCAO (35). The modified Garcia score contained 6 items
including spontaneous activity, limb symmetry, forepaw
outstretching, body proprioception, response to vibrissae
touch, and climbing. The scores of spontaneous activity, limb
symmetry, and forepaw outstretching were scored from 0~3,
while the body proprioception, response to vibrissae touch, and
climbing were scored from 1~3. The total score ranged from 3
(most severe deficit) to 18 (maximum).

Assessment of Cerebral Infarct Volume
Rats were anesthetized and perfused with heparinized saline via
the ascending aorta 24 and 72 h after MCAO. The brains were
immediately removed and sliced into 2.0-mm thick coronal
s e c t i ons . Each s l i c e was immersed in 2% 2 ,3 , 5 -
triphenyltetrazolium chloride in the dark at 37°C for 20 min.
Then, the non-infarcted area was stained red, while the infarcted
area remained white. We used ImageJ software (National
Institutes of Health, NIH, USA) to measure the infarct areas
by tracing around the white area in each section. The infarct
volume was expressed as a percentage of the whole contralateral
hemisphere (36).

Brain Water Content
At 24 h after MCAO, animals were anesthetized and decapitated
as previously reported (37). Their brains were quickly removed,
and the water on the surface of the cerebral tissue was dried with
filter paper. The brains were then dissected into the following
three sections: the cerebellum, and left and right hemispheres.
Each sample was weighed on an electric analytic balance to
acquire the wet weight and then dried at 100°C for 24 h to
acquire the dry weight. Brain water content was calculated as
(wet weight–dry weight)×100/wet weight.

Spectrophotometric Assay of Hemoglobin
Cerebral hemorrhage was quantified using a spectrophotometric
assay of brain hemoglobin content (38). Rats were anesthetized
and perfused with heparinized saline via the ascending aorta 24
and 72 h after MCAO. The brain was quickly removed and
dissected into the left and right hemispheres. The two parts
were then homogenized in 0.1 mol/L of PBS and centrifuged
Frontiers in Immunology | www.frontiersin.org 4
(13000 g, 30 min) at 4°C. A “virtual” model of hemorrhage was
used to derive a standard curve. Briefly, incremental volumes of
homologous blood (0, 2, 4, 8, 16, and 32 mL) were added to the
perfused naïve brain. After homogenization and centrifugation,
Drabkin reagent (1.6 mL; Sigma) was added to 0.4 mL aliquots of
supernatant, and a spectrophotometer (Spectronix 3000, Milton-
Roy, Rochester, NY) was used to measure the optical density at
540 nm. The content of total hemispheric hemoglobin was
compared with the standard curve to obtain hemorrhage
volume (mL).

Measurement of BBB Function
Evans blue extravasation was measured to evaluate BBB function
in each group. In total, 4 mL/kg of 2% Evans blue dye in 0.9%
saline was injected via tail vein 24 h after reperfusion. Two hours
after injection, rats were anesthetized and sacrificed by transcardial
perfusion to completely remove the intravascular localized dye.
After decapitation, brains were rapidly removed and divided into
left and right hemispheres. Each hemisphere was weighed and
then placed in 3 mL of 50% trichloroacetic acid solution,
homogenized, incubated, and centrifuged (12000 rpm, 30 min).
A spectrophotometer (Ultrospec 3; Pharmacia LKB) was used to
measure the absorbance of the supernatant at 610 nm. To derive
the standard curve, incremental weights of Evans blue (0, 0.25, 0.5,
1, 1.5, 2 and 2.5 mg) were added to 3mL of 50% trichloroacetic acid
solution, respectively. Then, a spectrophotometer was used to
measure the optical density at 610 nm. The Evans blue content was
presented as micrograms per gram of brain tissue compared with
the standard curve (39).

Western Blots
Western blots were performed according to previously
established methodology (40). The primary antibodies used
were rabbit monoclonal anti-Axl (Abcam, Cambridge, MA;
used for total Axl) and rabbit polyclonal anti-phosphorylation-
Axl (Bioss Inc., Beijing, China). Rabbit polyclonal anti-b-actin
and the secondary antibodies were all from Beijing Biosynthesis
Biotechnology. Immunoreactivity was detected using an ECL
Plus chemiluminescence reagent kit (Amersham Biosciences,
Arlington Heights, IL).

Statistical Analysis
Analyses were performed using the Statistical Program for Social
Sciences version 17.0 (SPSS, IBM, West Grove, PA, USA).
Measurement data are presented as mean ± standard deviation
or median (interquartile range) depending on the data
distribution pattern. The Mann-Whitney test or Student’s t-test
was used to analyze statistical significances between the two
independent groups. Logistic regression model was used to
explore the association between multiple protein indexes and
hemorrhagic transformation. Proteins were converted into
binary variables (high and low) according to its median.
Variables with P<0.1 in univariate analyses were included in
the multiple analysis as confounding factors. One-way analysis of
variance or the Kruskal-Willis H test was used to compare the
differences between multiple groups (in the animal study
section). The post-comparison analyses used were the Tukey
October 2021 | Volume 12 | Article 742359
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and Bonferroni tests. Count data are expressed as absolute values
and percentages and were identified using a chi-square test.
Calculated two-tailed P-values<0.05 were considered to be
statistically significant.
RESULTS

Clinical Study
Participant Characteristics
This study included 118 patients who underwent rt-PA therapy,
including 52 HT patients (17 men, age: 63.27 ± 11.59) and 66
non-HT patients (18 men, age: 61.76 ± 10.97). The demographic
and clinical characteristics of the included patients are presented
in Table 1.
Frontiers in Immunology | www.frontiersin.org 5
Serum Proteins in HT and Non-HT Groups
The comparison of Axl, ANGPTL4, CRP, ferritin, HIF-1a,
HTRA2, lipocalin2, MMP-9, PDGF-BB, and TNF-a levels
revealed that Axl levels were significantly lower in the HT
group compared with the non-HT group (P<0.001) (Figure 1
and Table 2). The risk of hemorrhagic transformation in patients
with high Axl is 0.177 times that of patients with low Axl after
adjusting for hyperlipidemia, history of stroke, and blood
glucose (Table 3).

Genetic Results
At the genetic level, we tested the Axl, GAS6 (the gene encoding
the ligand for Axl), and GAS6-AS1 (28), including 20 SNPs of Axl,
1 InDel of Axl, 15 SNPs of GAS6, and 19 SNPs of GAS6-AS1. Our
results revealed that the GAS6-AS1 SNPs (rs1803628, rs9604573,
and rs7140110) were highly related to an increased risk of HT after
TABLE 1 | Demographical and clinical features of HT and non-HT groups.

HT group (n = 52) Non-HT group (n = 66) P-value

Sex (male/female) 35/17 48/18 0.52
Age (years) 63.27 ± 11.59 61.76 ± 10.97 0.47
Hypertension, n (%) 32 (61.5) 36 (54.5) 0.45
Diabetes, n (%) 15 (28.8) 11 (16.7) 0.11
Hyperlipidemia, n (%) 4 (7.7) 15 (22.7) 0.027
Atrial fibrillation, n (%) 11 (21.2) 9 (13.6) 0.28
History of stroke, n (%) 8 (15.4) 4 (6.1) 0.096
Application of antiplatelet agents, n (%) 8 (15.4) 7 (10.6) 0.44
Systolic blood pressure, mmHg 152.00 ± 18.84 147.80 ± 20.66 0.26
Diastolic blood pressure, mmHg 89.21 ± 11.79 87.23 ± 10.95 0.35
Blood glucose, mmol/L 8.10 (6.80, 10.58) 7.05 (6.00, 8.55) 0.005
Platelet, L 203.37 ± 54.82 198.41 ± 58.56 0.64
Low density lipoprotein cholesterol, mmol/L 2.84 ± 0.78 2.86 ± 0.74 0.88
NIHSS, points 12.0 (8.0, 15.0) 11.0 (6.75, 13.0) 0.29
October 2021 | Volume 12 | Article
HT, hemorrhagic transformation; NIHSS, National Institute of Health stroke scale.
FIGURE 1 | Serum levels of ten biomarkers. Heat map of quantitative protein chip of Axl, angiopoietin-like 4 (ANGPTL4), C-reactive protein (CRP), ferritin, hypoxia-
inducible factor-1 alpha (HIF-1a), HTRA2, Lipocalin2, Matrix metallopeptidase 9 (MMP-9), platelet-derived growth factor-BB (PDGF-BB), and tumor necrosis factor
alpha (TNF-a) in acute ischemic stroke (AIS) with/without hemorrhagic transformation (HT).
742359
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intravenous thrombolysis (P=0.010, 0.017, 0.025, respectively;
Table 4). The gene sequence variations of Axl or GAS6 were not
correlated with HT following intravenous thrombolysis.

Animal Experiment
Exclusion and Mortality
None of the rats in the sham group died during the present study.
Three rats were excluded from the first part of the experiment
due to the absence of neurological deficits, and five rats died due
to surgical accidents (two of subarachnoid hemorrhage, two of
respiratory distress, and one due to an inability to
thermoregulate), and eight rats died due to severe neurological
deficiencies after surgery (four rats died in each of the HT and
rGAS6 groups). One rat was excluded from the second part of
our study due to an absence of neurological deficits, while two
died of severe neurological deficiency within 24 h and three died
Frontiers in Immunology | www.frontiersin.org 6
of postoperative infections within 36~72 h (two died in the HT
group and one in the rGAS6 group). The mortality rates of the
two operated groups did not differ significantly.

Exogenous rGAS6 Treatment Reduced Brain
Infarct Volumes and Hemorrhage Volumes
and Improved Neurological Deficits in
Hyperglycemia Induced HT Rat Models
We tested brain infarct volumes, hemorrhage volumes, and
neurological deficits of rats at 24 and 72 h after MCAO.
Infarct volumes in the HT group were significantly increased
at both time points compared to those in the sham group.
Meanwhile, treatment with rGAS6 significantly reduced infarct
volumes compared with those in the HT group (each group at
each time point: n=6, P < 0.01; Figures 2A, B). In addition,
hemorrhage volumes in the HT group were significantly higher
than those of the sham group at 24 and 72 h after MCAO. rGAS6
treatment significantly reduced the hemorrhage volumes of rats
in the HT group 24 h after MCAO (each group, n=6, P < 0.01,
Figure 2C); however, no statistically significant difference was
observed at 72 h. Further, hemorrhage volumes in the HT group
at 72 h after MCAO tended to be lower than those observed at
24 h, while no apparent differences were found in the rGAS6
group between both time points. Rats in the HT group exhibited
significantly reduced neurological function during the
neurobehavioral test at 24 and 72 h after MCAO compared to
the sham group. Fortunately, the neurological function in the
rGAS6 group improved significantly at 24 and 72 h after MCAO
compared to that of the sham group (each group at each time
point: n=18, P < 0.01; Figure 2D).
TABLE 2 | Results of the Human Cytokine Antibody Array.

Indicators (pg/ml) HT group (n = 52) Non-HT group (n = 66) Z P

Axl 1219.25 (727.58, 2813.67) 3521.98 (1329.12, 9401.39) -3.94 <0.001
ANGPTL4 15692.84 (10671.96, 23447.44) 18364.70 (10805.05, 30421.49) -1.43 0.15
CRP 5587.28 (3687.05, 8209.64) 6203.38 (3716.98, 9383.56) -0.66 0.51
Ferritin 30121.05 (25609.18, 33738.50) 26704.34 (20492.54, 34090.38) -1.66 0.097
HIF-1a 1008.47 (279.33, 2344.25) 836.67 (361.52, 2068.20) -0.32 0.75
HTRA2 70069.17 ± 20754.44 65660.58 ± 22452.86 -1.19 0.24
Lipocalin2 6671.72 (6207.20, 7174.41) 6431.45 (5665.88, 7247.73) -1.66 0.097
MMP-9 9035.50 ± 1726.44 8900.01 ± 2145.92 -0.070 0.94
PDGF-BB 322.46 ± 76.17 298.46 ± 72.57 -1.86 0.063
TNF-a 70.15 (29.20, 122.00) 102.43 (0, 182.27) -0.71 0.48
October 202
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HT, hemorrhagic transformation; ANGPTL4, angiopoietin-like 4; CRP, C-reactive protein; HIF-1a, hypoxia-inducible factor-1 alpha; MMP-9, matrix metallopeptidase; PDGF-BB, platelet-
derived growth factor-BB; TNF-a, tumor necrosis factor alpha.
TABLE 3 | The Association between Multiple Protein Indexes and HT.

OR (95% CI)* P

Axl (high vs. low) 0.177 (0.074-0.426) <0.001
ANGPTL4 (high vs. low) 0.687 (0.318-1.488) 0.342
CRP (high vs. low) 1.052 (0.482-2.298) 0.899
Ferritin (high vs. low) 2.394 (1.068-5.368) 0.034
HIF-1a (high vs. low) 1.073 (0.493-2.338) 0.859
HTRA2 (high vs. low) 1.637 (0.747-3.590) 0.218
Lipocalin2 (high vs. low) 2.254 (1.007-5.045) 0.048
MMP-9 (high vs. low) 1.252 (0.569-2.755) 0.577
PDGF-BB (high vs. low) 2.273 (1.019-5.068) 0.045
TNF-a (high vs. low) 0.588 (0.269-1.282) 0.182
*Adjusted for hyperlipidemia, history of stroke, and blood glucose.
TABLE 4 | Association of GAS6 gene mutations and polymorphisms with hemorrhagic transformation.

Gene SNP ID Base Change Variant Type Allele Frequency OR P

Ctrl (%) HT (%)

GAS6-AS1 rs1803628 G>A Intron variant 7.69 19.23 2.86 0.010
GAS6-AS1 rs9604573 G>A Intron variant 16.15 29.81 2.20 0.017
GAS6-AS1 rs7140110 T>C Intron variant 16.15 28.85 2.10 0.025
7

GAS6-AS1, GAS6-derived long non-coding RNA.
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Exogenous rGAS6 Treatment Reduced
Brain Edema and BBB Permeability in
Hyperglycemia Induced HT Rat Models
When compared to the sham group, brain edema in the
ipsilateral hemisphere was significantly increased in the HT
group, while rGAS6 treatment reduced brain edema in the
ipsilateral hemisphere compared with the HT group.
Compared with the contralateral hemisphere, brain edema was
significantly increased in the ipsilateral hemisphere in the HT
group and the rGAS6 group (each group, n=6, P < 0.01,
Figure 3A). However, brain edema in the contralateral
hemisphere and cerebellum did not vary significantly between
the groups.

In addition, when compared to the sham group, the Evans
blue content in the ipsilateral hemisphere was significantly
increased in the HT group, while rGAS6 treatment
significantly reduced the Evans blue content in the ipsilateral
hemispheres. Compared with the contralateral hemisphere, the
content of Evans blue in the ipsilateral hemisphere was
significantly increased in the HT group and the rGAS6 group
2 h after the 24h MCAO (each group, n=6, P < 0.01, Figure 3B).
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Exogenous rGAS6 Treatment Potentiated
Axl Phosphorylation in Hyperglycemia
Induced HT Rat Models
Western blots demonstrated that the expression of total Axl was
significantly increased 24 h after MCAO compared with that in the
sham group (each group, n=6, P < 0.01, Figure 3C). However,
rGAS6 treatment did not appreciably alter the expression of total
Axl compared with the HT group. Interestingly, the expression of
phosphorylated Axl was significantly decreased after MCAO
compared with that in the sham group, while rGAS6 treatment
significantly increased the expression of phosphorylated Axl
compared to the HT group (P < 0.01, Figure 3C).
DISCUSSION

In this study, we observed that serum Axl levels were
significantly lower in the HT group than in the non-HT group.
The abnormally low levels of Axl may be due to gene sequence
variations of its related regulatory gene GAS6-AS1. Animal
experiments further confirmed that Axl agonist treatment (by
A B

C D

FIGURE 2 | Recombinant GAS6 (rGAS6) treatment reduces infarction and hemorrhagic volume and improves neurological deficits. The whole brain images and
slices of rats in the sham, hemorrhagic transformation (HT), and rGAS6 groups stained with 2,3,5-triphenyltetrazolium chloride taken 24 and 72 h after MCAO,
respectively, are shown separately in (A) (n=6 for each group at each time point). The infarction volume of each group 24 and 72 h after MCAO is shown in (B). The
hemorrhagic volume of each group 24 and 72 h after MCAO is shown in (C) (n=6 for each group at each time point). The neurologic score of each group 24 and
72 h after MCAO is shown in (D) (each group at each time point, n=18). *P < 0.05 versus sham; †P < 0.05 versus hemorrhagic transformation (HT) as shown via
one-way analysis of variance followed by the Tukey test, or the Kruskal-Wallis test with Bonferroni correction.
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rGAS6) improves BBB function and reduces HT in
hyperglycemia-induced HT rat models by enhancing Axl
phosphorylation. These results may assist in identifying AIS
patients at higher risk for HT, and also provide potential
therapeutic targets for HT treatment.

Axl has been reported to play a key role in maintaining BBB
integrity (12, 30). Tong et al. discovered that after using a specific
Axl antagonist, brain edema and inflammatory cytokine release
were deteriorated in an ICH mouse model (30), suggesting that
Axl may be a protective factor for BBB integrity. In the MCAO
rat model, Axl activation successfully attenuated neurological
dysfunctions by inhibiting the TLR/TRAF/NF-kB inflammatory
pathway (31). Since inflammation can promote BBB disruption,
it may indicate a possible mechanism for Axl to protect BBB. In
our study, we demonstrated that lower levels of Axl were
associated with greater opportunities for HT, which also
indicated the protective effect of Axl on BBB function.
However, it is worth noting that we did not detect an
association between Axl-associated gene sequence variations
and HT following intravenous thrombolysis. The abnormally
low levels of Axl could be caused by something other than the
Axl gene itself.

GAS6 is the ligand of Axl, and previous research indicates
that Axl and GAS6 are co-dependent. Axl uniquely depends on
GAS6 for activation, and GAS6 requires Axl for stable
Frontiers in Immunology | www.frontiersin.org 8
maintenance in vivo (41). This is the reason we detected GAS6
and GAS6-AS1 genes after finding low Axl expression in HT
patients. Fortunately, we did observe variations in GAS6-AS1 in
HT patients. As the mechanistic investigations found that GAS6-
AS1 can control the expression of the GAS6 gene at the
transcriptional or translational levels by forming a RNA-RNA
duplex and promote the Axl signaling activation (28), it is
possible that the genetic variation of GAS6-AS1, instead of
GAS6, caused the abnormal expression of GAS6 at the
transcription or translation level, and therefore indirectly
caused low Axl expression.

To further investigate the potential correlation between Axl
levels and the opportunity for HT, we administered rGAS6 to
hyperglycemia-induced HT rats. This model was chosen because
hyperglycemia induced HT results in more severe damage to the
BBB compared with that induced by tissue plasminogen activator
(tPA), allowing for better evaluation of the effect of Axl on BBB
function and HT. Our results revealed that rGAS6 treatment
significantly potentiated Axl phosphorylation, reduced HT and
BBB permeability and improved neurological damages within
24 h after MCAO. We therefore considered Axl a potential
effective therapeutic strategy to reduce early HT after stroke.

In addition, we further evaluated the effect of Axl on HT 72 h
after MCAO. The results shown that rGAS6 treatment
successfully improved neurological deficits and reduced infarct
A B

C

FIGURE 3 | Recombinant GAS6 (rGAS6) treatment reduces brain edema and BBB permeability, as well as enhances Axl phosphorylation (p-Axl). Brain water
contents of each group 24 h after MCAO are demonstrated in (A) (each group, n=6). Evans blue contents of each group 24 h after MCAO plus 2 h of administration
are shown in (B) (each group, n=6; 24 h after MCAO). Western blot assays for Axl and p-Axl of each group 24 h after MCAO are shown in (C) (each group, n=6).
Relative densities of each protein have been normalized to the sham group. *P < 0.05 versus sham; †P < 0.05 versus hemorrhagic transformation (HT); ‡P < 0.05
versus contralateral hemisphere, one-way analysis of variance followed by Tukey test.
October 2021 | Volume 12 | Article 742359

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Guo et al. GAS6/Axl Signaling in Stroke
volumes 72 h after MCAO, although it did not affect HT
significantly. Meanwhile, hemorrhage volumes in the HT
group at 72 h after MCAO tended to be lower than those
observed at 24 h, indicating the hematoma clearance in
damage sites during 24~72 h after MCAO. However, no
apparent difference of hemorrhage volumes were found in the
rGAS6 group between both time points. In ICHmouse models, it
has been identified that Axl is a pivotal gene in mediating the M2
microglial polarization during the recovery phase of the ICH
brain, which promotes the efferocytosis of eryptotic erythrocytes
and accelerates hematoma clearance (42). Macrophages
significantly upregulated their cell surface expression of Axl
both at day 3 and day 7 after ICH. Our experiments suggest a
contrary result, that compared with the HT group, rGAS6
treatment might inhibit the hematoma clearance during 24~72
h after MCAO, though no statistical differences of hemorrhage
volumes between the two time points were observed in both
groups. Whether it suggested a distinctive role of GAS6 in
hematoma clearance by regulating underlying mechanisms
other than phosphorylating Axl, or if mechanisms accounting
for hematoma clearance varied between HT and ICH remains to
be found, since infarct damage is more pronounced in HT
whereas hemorrhage is induced as a secondary result.

We acknowledge that this study has several limitations. First,
the pathway for BBB integrity by GAS6 has not been fully
elucidated, though previous study has found the activation of
Axl could reduce inflammation and immune response, which
may responsible for BBB protection (31). Therefore, additional
research is needed to explore the downstream mechanism of Axl
in reducing HT and improving BBB function. Second, stroke-
induced HT may occur over a longer time, so more studies are
needed to investigate the effect of rGAS6 on delayed HT. Third,
as we chose to use the hyperglycemia-induced HT model, which
can result in more severe damage to the BBB compared to the
tPA-induced HT model. However, the downside of this choice is
that animal and human experiments are not consistent, leaving
us a still question whether rGAS6 can provide a similar
protective effect in tPA induced HT. Finally, the sample size of
our clinical study is relatively small. These findings need to be
further investigated in large-scale studies.
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSIONS

The present study suggests that lower serum Axl levels, which
may result from sequence variations of GAS6-AS1, are associated
with an increased risk of HT after intravenous thrombolysis in
AIS patients. Activation of the Axl signaling pathway by the
GAS6 protein may serve as a therapeutic strategy to reduce HT in
AIS patients.
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