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People living with HIV (PLWH) require life-long anti-retroviral treatment and often present with
comorbidities such as metabolic syndrome (MetS). Systematic lipidomic characterization and
its association with the metabolism are currently missing. We included 100 PLWH with MetS
and 100 without MetS from the Copenhagen Comorbidity in HIV Infection (COCOMO) cohort
to examine whether and how lipidome profiles are associated with MetS in PLWH. We
combined several standard biostatistical, machine learning, and network analysis techniques
to investigate the lipidome systematically and comprehensively and its association with clinical
parameters. Additionally, we generated weighted lipid-metabolite networks to understand the
relationship between lipidomic profiles with those metabolites associated with MetS in PLWH.
The lipidomic dataset consisted of 917 lipid species including 602 glycerolipids, 228
glycerophospholipids, 61 sphingolipids, and 26 steroids. With a consensus approach using
four different statistical and machine learning methods, we observed 13 differentially abundant
lipids between PLWH without MetS and PLWH with MetS, which mainly belongs to
diacylglyceride (DAG, n = 2) and triacylglyceride (TAG, n = 11). The comprehensive
network integration of the lipidomics and metabolomics data suggested interactions
between specific glycerolipids’ structural composition patterns and key metabolites
involved in glutamate metabolism. Further integration of the clinical data with metabolomics
and lipidomics resulted in the association of visceral adipose tissue (VAT) and exposure to
earlier generations of antiretroviral therapy (ART). Our integrative omics data indicated
disruption of glutamate and fatty acid metabolism, suggesting their involvement in the
pathogenesis of PLWH with MetS. Alterations in the lipid homeostasis and glutaminolysis
need clinical interventions to prevent accelerated aging in PLWH with MetS.
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INTRODUCTION

Combination antiretroviral therapy (cART) has increased life
expectancy for people living with HIV (PLWH). However, an
increase in incidences of comorbidities such as obesity, type 2
diabetes (T2D), and cardiovascular disease (CVD) related to
metabolic syndrome (MetS) (i.e., abdominal obesity, hypertension,
elevated levels of triglycerides, dyslipidemia, and altered glucose
levels), has become a growing concern in successfully treated
PLWH. In chronic HIV infection, complicated interactions between
effects of persistent low-grade immune activation, metabolic toxicity
from cART, and non-HIV-related risk factors may increase the risk of
MetS in PLWH. However, the pathophysiology of MetS in PLWH is
still incompletely understood (1-3).

cART is known to be associated with changes in fat distribution
(i.e., lipodystrophy and dyslipidemia) and metabolic abnormalities
due to side effects (4). A few studies have investigated the
association of HIV infection and cART with metabolic
abnormalities related to MetS (4, 5). These studies have focused
on conventional blood lipids, such as triglyceride and total
cholesterol. These biomarkers may not sufficiently reflect the
complex alterations of the lipid metabolism in PLWH with MetS.

Plasma lipidomics studies in the general population have
identified several lipid species within the lipidome to be
associated with features of MetS (6). In particular, HIV infection
has been recently described by our group to be independently
associated with a 1.5 fold increased risk of MetS compared to the
general population (5). In addition, obesity has been shown
to increase the content of almost all detectable diacylglyceride
(DAG) and triacylglyceride (TAG) lipid species, along with
several cholesteryl esters (CE), phosphatidylcholine (PC),
phosphatidylethanolamine (PE), and lysophosphatidylcholine
(LPC) in a general population (7). The pathophysiology and
alterations of the lipidome in PLWH with MetS are yet to be
explored and may help in the discovery of new patterns and
disease markers associated with MetS in PLWH (3). In prior work
from our group, we identified key metabolites, which influenced
and altered the metabolome of PLWH with MetS (8).

In this study, an exploratory analysis of the lipidome comparing
PLWH without MetS and PLWH with MetS was conducted to
identify a set of key lipids that define the mechanism of the lipid
abnormalities of MetS in the context of HIV infection. Also, we have
performed advanced network analysis that revealed deeper
underlying patterns within the metabolome (i.e., the polar
metabolome and lipidome) of PLWH with MetS. Additionally,
we investigated the influence of clinical demographic parameters on
integrative metabolomics and lipidomics to provide snapshots of
the biological phenotypes linked with MetS in PLWH.

MATERIALS AND METHODS

Study Designing, and Patients

We obtained data from the Copenhagen Comorbidity in HIV
Infection (COCOMO) study (9), an ongoing non-interventional,
observational, longitudinal cohort study to assess the burden of
non-AIDS comorbidities in PLWH. Sample collections and

quantifications of the COCOMO cohort have previously been
described (5, 9). Of the 1099 participants in the COCOMO study,
100 PLWH = 40 years old were included and matched according to
age, sex, duration of cART, smoking status, and current CD4+ T-
cells count to 100 PLWH without MetS (5, 9). The MetS was defined
according to the International Diabetes Federation (IDF) consensus
worldwide definition of the MetS as previously (8, 10). For each
individual, we collected clinical data from the COCOMO database
with the following 13 HIV and MetS specific variables. The MetS,
sex, age, ethnicity, immunodeficiency (i.e., lowest CD4+ T-cell
count < 200 cells/ul or previous AIDS condition), exposure to
early-generation antiretroviral therapy (ART) (i.e., medicated with
thymidine analogs, didanosine and/or indinavir), visceral adipose
tissue (VAT) [cm2], subcutaneous adipose tissue (SAT) [cm2], and
ART drugs including the active agents; nucleotide reverse
transcriptase inhibitors (NRTIs), non-nucleotide reverse
transcriptase inhibitors (NNRTIs), protease inhibitors (PIs),
integrase strand transfer inhibitors (INSTIs), and other/
unknown active agents). Furthermore, a lipidomics dataset (see
below) and a metabolomics dataset with 11 key metabolites [i.e., 1-
carboxyethylisoleucine, 4-cholesten-3-one, 4-hydroxyglutamate, o~
ketoglutarate, carotene diol(2), y-glutamylglutamate, glutamate,
glycerate, isoleucine, pimeloylcarnitine/3-methyladipoylcarnitine (C7-
DC) (PC/3-MAPC), and palmitoyl-sphingosinephosphoethanolamine
(d18:1/16:0) (PSP)] previously identified by using a combination
of standard biostatistical, machine learning and network analysis
technique, were collected (8). Ethical approval was obtained by
the Regional Ethics Committee of Copenhagen (COCOMO: H-
15017350). Written informed consent was obtained from
all participants.

Plasma Lipidomic Profiling

Untargeted lipidomic profiling was performed on plasma samples
collected at baseline in COCOMO through the Complex Lipid
Panel™ technique (Metabolon Inc, Morrisville, NC 27560, USA).
The company is ISO 9001: 2015 certified for analytical and
diagnostic testing of biological specimens. Briefly, lipids were
extracted from the bio-fluid using automated BUME extraction
followed by infusion-MS analysis (11). Lipid species were
quantified by taking the ratio of the signal intensity of each
target compound to that of its assigned internal standard, then
multiplying by the concentration of internal standard added to the
sample. Lipid class concentrations were calculated, and fatty acid
(FA) compositions were determined by calculating the proportion
of each class comprised by summation of individual FAs. All the
lipid quantifications were median-centered, and missing values
were minimum-imputed per lipid species. We further removed
variables with zero or near-zero variance from the dataset using
nearZeroVar (i.e., 5%, n = 46 of 963). The original scale lipidomics
data can be obtained from Supplementary Data File S1.

Statistics and Bioinformatics Analysis

All the analyses were carried out in R 4.0.3 (12). Clinical
characteristics between PLWH without MetS and PLWH with
MetS were compared using the Mann-Whitney U test
(continuous variables) and chi-square test (categorical
variables). Dimension reduction was carried out using
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principal component analysis (PCA). Structural interpretation of
the lipidome was carried out through lipidomeR. The normality
of the lipidomics data was tested through Kolmogorov-Smirnov
test and density plots (13). The Mann-Whitney U test was
applied to raw data and a subset of lipids with a false discovery
rate (FDR)<0.001, was derived. Log-transformed data were
tested for differential abundance using limma and significant
lipids with a FDR<0.001, were derived (14). Binary classification
modeling was carried out by partial least squares discriminant
analysis (PLS-DA) using ropls (15), where a subset of variables
with variables importance on projection (VIP) score >1 was
derived. Random forest (RF) was carried out using MUVR
[https://github.com/CarlBrunius/ MUVR]. Variables from the
optimal RF modeling performance were selected according to
rank. Model performance was evaluated by using the Q2Y and
area under the receiver operating characteristic (AUROC) for
PLS-DA and RF, respectively. Pathway enrichment was tested
from the limma output (FDR < 0.1) with Ingenuity Pathway
Analysis (IPA) (Qiagen, US) and MetaboAnalyst (16) (limma,
FDR< 0.1). The FDR was controlled for by using the Benjamin-
Hochberg (BH) method (13).

Network Analysis

Network analyses were used to build a biological network
consisting of lipids (n = 917) and previously identified key
metabolites (n = 11) (8) after Spearman’s rank correlation
across all species. Edges connecting nodes (i.e., biomolecules)
were weighted based on positive correlations. This network was
compared against a null model attained from a random network
with the same number of nodes and edges based on the Erdos-
Renyi model (17). All networks were built through the Python
module igraph (18), communities within the biological network
were detected through the Leiden algorithm (19). Communities
were characterized functionally and phenotypically through the
lipid-specific ontology web tool, LION/web (20). LION/web was

used to determine lipid ontology trends within each community,
using all lipids from the network as a background list. Separate
analyses on each network community with all lipids as
background lists were uploaded to LIPEA to identify lipid
pathway enrichment (21). The community association with
clinical parameters was determined through logistic and linear
regression in R. Network visualization was performed using
Cytoscape 3.5.1 (22).

RESULTS

Machine Learning Highlights Differences in
Key Lipids in PLWH With MetS

PLWH with MetS (n = 100) and PLWH without MetS (n = 100)
were included from the COCOMO study (Table 1). VAT and
SAT significantly differed between the two groups
(p-value<0.001). We further applied several univariate and
machine learning approaches to characterize the effect of MetS
in HIV-infected following long-term cART treatment and to
investigate the underlying biological mechanisms of MetS
(Figure 1). The lipidomic dataset consisted of 917 unique lipid
species including 602 glycerolipids, 228 glycerophospholipids, 61
sphingolipids, and 26 steroids. We observed 618 and 584
significantly differentially abundant lipids between PLWH
without MetS and PLWH with MetS (Supplementary Data
File S2, FDR <0.001), using Mann-Whitney U and limma,
respectively. Moreover, PLS-DA was used to identify variations
between the groups based on lipid concentrations, by exploiting
its ability to handle a greater number of features compared to
samples. The separation of the two groups was indicated by a
score plot, where the two first orthogonal components explained
half of the variance in the data with 45% and 5%, respectively.
We found 516 lipids with VIP values > 1, Q2Y = 0.319
(Supplementary Data File S2). To obtain a better model

TABLE 1 | Clinical and demographic characteristics compared between PLWH without MetS and PLWH with MetS.

Variables PLWH without MetS PLWH with MetS pvalue
Sample (n) 100 100
Sex, Male, n (%) 90 (90.0) 90 (90.0) 1.00*
Age, mean (sd) 54.4 (9.5) 54.6 (8.5) 0.80*
Ethnicity, n (%) 0.87**

Caucasian 88 (88.0) 86 (86.0)

Asian 3(3.0 2 (2.0

Black 4 (4.0 6 (6.0)

Other/unknown 5(56.0) 6 (6.0)
Immunodeficiency, n (%) 14 (14.0) 13 (13.0) 1.00**
Exposure to early-generation ART, n (%) 34 (34.0) 46 (46.0) 0.11*
VAT, mean (sd) 76.1 (53.6 149.4 (71) < 0.001*
SAT, mean (sd) 111.1 (71.1) 150.6 (77.1) <0.001*
ART_NRTI, n (%) 95 (95.0) 96 (96.0) 1.00"
ART_NNRTI, n (%) 54 (564.0) 45 (45.0) 0.26**
ART_PI, n (%) 37 (37.0) 47 (47.0) 0.20*
ART_INSTI, n (%) 16 (16.0) 21 (21.0) 0.47*
ART_other/unknown, n (%) 0 (0.0) 3(3.0) 0.24*

*Mann-Whitney U test and **Chi-square test.

P-values in bold indicates a significant difference in the concerned variables between the two groups. Immunodeficiency was defined as the lowest CD4+ T-cell count <200 cells/l or
previous AIDS condition and exposure to early-generation ART was defined as patients medicated with thymidine analogues, didanosine and/or indinavir.
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Key metabolites differentiating
PLWH with MetS from PLWH
without MetS (Gelpi et al. 2021)

performance we could increase the sample size. Finally, we
created three types of RF models, minimal-optimal (‘Min’),
geometric mean (‘Mid’) and all-relevant (‘Max’) models, which
represented feature selection with minimal number of
misclassifications, where we observed good performance of all
models (Figure 2A, AUC>82.9%). Then, we identified 13 lipids
as the strongest predictors of separating PLWH without MetS
and PLWH with MetS (Figure 2B, ‘Max’ MUVR model, AUC =
83%), where the glycerolipid classes DAGs and TAGs were found
to have the greatest significance in group separation. The number
of significant lipids identified by each of the four methods varied
greatly (Supplementary Data File S2). However, we observed 13
differentially abundant lipids between PLWH without MetS and
PLWH with MetS (Figure 2C) which were consistently identified
in all four methods (i.e., Mann-Whitney U, limma, PLS-DA, and
RF). These 13 key lipids and 11 key metabolites (Table 2)
indicated relatively good separation between PLWH without
MetS and PLWH with MetS on sample clustering (Figure 2D).
Furthermore, we observed higher abundance level of the key
lipids in PLWH with MetS compared to PLWH without
MetS (Figure 2E).

Structural Interpretation of Lipids
Indicates Compositional Lipid Patterns

We then examined the structural characteristics of the lipidome
by lipid class in terms of FA carbon number and saturation level
(Figure 3). We observed an increase of ceramide (CER), DAG,
dihydroceramide (DCER), lysophosphatidylethanolamine (LPE),
monoacylglyceride (MAG), PE and TAG, in PLWH with MetS
compared to PLWH without MetS, and a decrease in
hexosylceramide (HCER) and lactosylceramide (LCER)
(Figure 3, FDR<0.01 and Pearson’s r>0.7). An increased
significantly differential abundance of DAGs and TAGs was
observed, indicated by the symbol and red color. The TAGs
tended to display a higher abundance of polyunsaturated lipids
(i.e., a double-bond content between 2-5) with long-chain fatty
acids (LCFA) (i.e., C48-56) (Figure 3, FDR<0.01, Pearson’s

Patient
phenomics
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FIGURE 1 | Overview of study workflow. Analysis pipeline for characterizing the effect of MetS in HIV-infected following ART treatment and investigating the
underlying biological mechanisms of PLWH with MetS (created with BioRender.com).

r>0.7). Additionally, TAGs displayed the most significant
amount of lipid species. DAGs showed a tendency of increase
in both saturated and unsaturated lipids (i.e., a double-bond
content between 0-6) with LCFA (i.e., C30-40) (Figure 3,
FDR<0.01, Pearson’s r>0.7).

Clinical and Omics Integrated Network
Identifies Biomolecular Patterns

Seeking to test whether and how any coordinated patterns of
association were present throughout the samples, we generated
weighted lipid-metabolite networks to understand the
relationship between lipidomic profiles with those metabolites
associated with MetS in PLWH. While retaining only
informative metabolites, we examined the relationship between
key metabolites previously identified with the entire lipidome.
Briefly, we associated clinical variables with the identified
communities and within the most central community, we
identified associations between clinical variables and
each biomolecule.

The fully connected biological network comprised 18430 edges
and 917 nodes and displayed markedly distinct behavior from the
null network (Supplementary Table S1 and Supplemetary Figure
S1). A community analysis on the biological network identified
three communities of strongly interconnected lipids and
metabolites (Supplementary Table S2). Centrality properties
were evaluated identifying c1 as the most central community in
the network (Figure 4A), which captured the most coordinated
differential abundance changes. Community cl had the largest
community size (size = 339) and largest community average degree
(avg. degree = 534.63) (Supplementary Table S2).

Structural and functional characterization of these
communities (23) (Supplementary Figure S2) indicated that
glycerolipids and especially TAGs were enriched in both c1 and
c2 (Figure 4A, FDR<0.05). Interestingly, a coordinated
structural composition pattern of the glycerolipids displayed an
average lower carbon number and average lower double-bond
content in cl, compared to c2 (Supplementary Table S3).

Frontiers in Immunology | www.frontiersin.org

4 January 2022 | Volume 12 | Article 742736


https://BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Olund Villumsen et al.

System-Level Understanding of MetS in HIV-Infection

s mann Whitney

Lipid class
A o B @ Diacylglycerol @ Triaylglycerol
27 TAG(54:4)-FA16:0)- § @
S TAG(52:2)-FA(16:0)- | @
o £ TAG(54:5)-FA(16:0) - ®
o ® g
) 8 DAG(16:0/18:3)- (Y
< 3 TAG(54:3)-FA(16:0) - o
8 o 5
5 © o TAG(52:2)-FA(18:1)- )
% AUC: 83.1% 8 TAG(54:4)-FA(20:3)- ®
% ol AUC: 82.9% £ TAG(@4:0)-FA(18:0)- Y
g
ey AL 83.0% £ TAG(54:3)-FA20:2)- °
[} 2 DAG(16:0/18:1) - )
2
i<t 8 TAG(54:3)-FA20:3)- °
2
= 'Min' MUVR model = TAG(52:2)-FA(18:2)- °
== "Mid' MUVR model TAG(52:3)-FA(18:1) - )
[=F | === 'Max' MUVR model
T T T T T T . . . . .
0 20 40 60 80 100 0 100 200 300 400 500
False Positive Percentage Rank
Cc D -
396
g 400
3
5 21
§ _
| 4 =X
p s
3
RF (MUVR) g -2
PLS-DA (ropls) . [
| limma I . l -4
[ 1.

600 400 200 0 -10 -5 0 5
Set Size PC1 (55.81%)
- PLWH without MetS < PLWH with MetS
E
,. DAG(IBO/181) | DAG(150/18:3) TAG(M40)-FA(150) TAG(22)-FA(60) TAG(523)-FA(IE:) TAG(543)-FA(160) TAG(544)-FAR0:)
. .
3
2- . + ° o
. 8 : H e .
[’} 0-
8 -1-
2 " .
i ! !
8 | TAG(221-FA(E:) TAG(221-FA(18:2) TAGISH3)FA02) TAG(S4)-FAQD) TAG(S4:4)-FA(160) TAG(SAS)-FA(IG0)
s 3.
= * 3 . Condition
5 2" ) ]
[ B3 PLWH without Mets
S
0- B3 PLWH with Mets
-1- . L]
2 | 2 I !} !

FIGURE 2 | Lipidomics analyses of PLWH without MetS vs PLWH with MetS identifying key lipids differentiating the two groups. (A) Performance of random forest
(RF) models. Receiver operating characteristic (ROC) curve with area under the curve (AUC) values for the three MUVR models. (B) Important prediction variables
separating PLWH without MetS from PLWH with MetS based on lipidomics, diacylglycerol (DAG) and triacylglycerol (TAG). Variable’s importance on projection (VIP)

concentration of the identified key lipids, which consist of DAGs and TAGs.

Community ¢3 was not further addressed, as the two other
communities were interpreted to be of more importance due to
their node size and average degree (Supplementary Table §2). We
identified a positive association between community c1 with the
clinical variables MetS, VAT and exposure to early-generation ART
(Supplementary Table S4, FDR<0.12, illustrated in Figure 4A). In
turn, community c2 was positively associated with MetS, however
with a lower estimate compared to c1 (Supplementary Table S4,
FDR<0.12). Log-fold changes indicated up-regulation of lipids in
PLWH with MetS compared to PLWH in communities c1 and c2
(Figure 4B, limma, FDR<0.001).

scores plot for the ‘Max’ MUVR model, where lower rank indicates better group separation, thus better prediction variables in the model classification. (C) The
intersection of methods identifying key lipids. UpSet plot showing number of significant lipids found via four statistical methods (RF, PLS-DA, limma, and Mann-
Whitney U test). Note the 13 lipids (intersection size on the y-axis) are simultaneously identified by all four methods. (D) Separation of PLWH without MetS from
PLWH with MetS based on identified key biomolecules. Principal component analysis (PCA) on key biomolecules, where lipidomics and metabolomics data were
separated by the 13 identified key lipids and 11 identified key metabolites (Table 2). Ellipses show the 95% confidence interval of the data. (E) Boxplot of lipid

Furthermore, we observed a positive association between lipids
(i.e, DAGs and TAGs) and VAT (Supplementary Table S5,
FDR<0.01). TAGs tended to consist of polyunsaturated lipids (i.e.,
a double-bond content >2) with LCFA (i.e., C48-54). Interestingly,
we also observed that TAGs with LCFA (i.e., C42-48) and a low
double-bond content (i.e., <2) were positively associated with the
use of NNRTT (Supplementary Table S5, FDR<0.07). Additionally,
four out of the 13 key lipids [i.e., TAG(52:2)-FA(16:0), TAG(52:2)-
FA(18:1), DAG(16:0/18:1), and TAG(54:3)-FA(20:3)] were all
found to be independently associated with VAT (Supplementary
Table S5, FDR<0.01). Finally, one out of the 11 key metabolites
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TABLE 2 | Identified key lipids and key metabolites.

Key lipids Key metabolites

DAG(16:0/18:1)
DAG(16:0/18:3)
TAG(44:0)-FA(18:0
TAG(52:2)-FA(16:0

1-carboxyethylisoleucine
4-cholesten-3-one
4-hydroxyglutamate
a-ketoglutarate

TAG(54:4)-FA(20:3
TAG(54:5)-FA(16:0,

( )

(52:2)-FA(16:0)
TAG(52:2)-FA(18:1) carotene diol (2)
TAG(52:2)-FA(18:2) yglutamylglutamate
TAG(52:3)-FA(18:1) glutamate
TAG(54:3)-FA(16:0) glycerate
TAG(54:3)-FA(20:2) isoleucine
TAG(54:3)-FA(20:3) PC/3-MAPC*
TAG(54:4)-FA(16:0) PSP*

(54:4)-FA(20:3)

(54:5)-FA(16:0)

*pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC).
*palmitoyl-sphingosine-phosphoethanolamine (d18:1/16:0).

Overview of key lipids and key metabolites with significant differential abundance between
PLWH without MetS and PLWH with MetS. Listed in alphabetical order.

(ie., glutamate) was also found to be independently associated with
VAT (Supplementary Table S5, FDR<0.01).

The top 10% of most interconnected biomolecules, found
according to their degree, were all glycerolipids within the classes
DAG and TAG (Supplementary Table S6). Three out of the 13
key lipids [i.e., TAG(52:2)-FA(16:0), TAG(52:2)-FA(18:1) and
TAG(54:3)-FA(20:3)] were ranked among the top 10% most

Number of fatty-acid carbon atoms.

Coefficient

05 0 05 1
Sign of Significant Coefficient
@) Negative [l Positive

False discovey rate (FDR)

<0.01 [ <0.05 [l <0.1

[ 5
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Number of fatty-acid double bonds

FIGURE 3 | Structural differences of the lipidomic profile of PLWH without
MetS vs. PLWH with MetS. Heatmaps for each lipid class show the structural
lipid composition differences between PLWH without MetS and PLWH with
MetS. Each lipid species is shown as a rectangle and the color shows the
abundance difference (red: higher in PLWH with MetS; white: no difference;
blue: lower in PLWH with MetS), the lipids were organized by the lipid size
(y-axis) and level of saturation (x-axis). Lipids with statistically significant
differences between the two groups were highlighted with a symbol. P-values
have been FDR adjusted.

interconnected biomolecules in c1. Thus, these three lipids were
interpreted to be among those biomolecules influencing the
behavior of the global network the most. It should be noticed that
the structural composition of all three lipids are polyunsaturated
TAGs with LCFA and were all found to be positively associated with
VAT (Supplementary Table S5, FDR<0.01).

The local network of community cl included six out of the
13 key lipids (i.e., TAG(54:3)-FA(20:2), DAG(16:0/18:1), TAG
(52:2)-FA(16:0), TAG(54:3)-FA(20:3), TAG(52:2)-FA(18:1), and
TAG(44:0)-FA(18:0), Figure 4C). All of the six key lipids within
cl were glycerolipids, five TAGs and one DAG. Interestingly, we
observed that all five TAGs were polyunsaturated with a doubsle-
bond content between 2 and 4 with a FA carbon number between
C52 and C54. Moreover, the key lipids were found to be
interconnected with 6 of the 11 key metabolites within cl1. Finally,
all 13 key lipids and 7 metabolites within the global network were
found to be interconnected with each other.

DISCUSSION

The integrative plasma lipidomics and metabolomics analysis in a
large HIV cohort of PLWH with and without MetS indicated a
complex role of lipids in the link between ART and MetS in PLWH
and provided a system-level understanding of MetS in PLWH. Our
data indicated an increased abundance of the glycerolipids DAGs
and TAGs in PLWH with MetS. The comprehensive network
integration of the lipidomics and metabolomics (8) data
suggested interactions between specific glycerolipids patterns and
key metabolites involved in the glutamate metabolism. Finally, our
data also indicated a relationship between the structural
composition patterns of these specific glycerolipids with HIV and
MetS-specific clinical variables, suggesting their involvement in
driving the disease pathogenesis in PLWH with MetS.

In our study, we found 13 key glycerolipids from the classes
DAG (n =2) and TAG (n = 11) to be significantly altered between
PLWH with and without MetS. It is worth noting the structural
composition of the 13 lipids. The two DAGs [DAG(16:0/18:1) and
DAG(16:0/18:3)] consist of unsaturated LCFA (i.e., C34 and 1-3
double-bonds). Additionally, 10 out of the 11 TAGs were
polyunsaturated LCFA (ie., C52-54 and a double-bond content
of 2-5). The last TAG had a lower carbon number of C44, compared
to the others and was saturated. These findings support previous
findings of MetS in general populations that showed that lipids
(especially TAGs) with lower carbon numbers (i.e., C44-54) and
lower double-bond content (i.e., 1-4) were associated with an
increased risk of T2D. Moreover, it had been observed that an
increase in DAGs was associated with hypertension, another MetS-
related factor (24). The structure of the FAs is a useful indication of
the functionality of lipid metabolism. Increased accumulation of
LCFA such as C(16:0), C(16:1), C(18:0), and C(18:1) suggests
increased biosynthesis under MetS-conditions. Such chain
compositions are observed among our 13 identified key lipids
both in the DAGs and TAGs. Additionally, to the observed
pattern of LCFAs, another study suggests LCFAs might cause
impairment of mitochondria functions (25).
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We employed network analysis by integrating the key
metabolites previously identified (8) as biomarkers in PLWH
with MetS and the lipids with the clinical features (phenomics)
that can provide a comprehensive view of the metabolic state
related to a disease phenotype. Interestingly, we observed that
community cl contained glycerolipids with a lower carbon

number and lower double-bond content compared to c2.
Community cl was further investigated and we found that c1
positively associated with the clinical variables MetS, VAT, and
exposure to early-generation ART. Our findings are related to
previous findings that showed TAGs with a lower carbon
number and lower double-bond content play a considerable
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role in MetS (23, 26). Additionally, our results suggest that exposure
to early-generation ART (ie., thymidine analogues/didanosine/
indinavir) and increased VAT may also lead to a lower carbon
number and double-bond content in glycerolipids, suggesting a role
for polyunsaturated glycerolipids with LCFA [i.e., especially TAG
(52:2)-FA(16:0), TAG(52:2)-FA(18:1) and TAG(54:3)-FA(20:3)] in
the metabolic patterns in PLWH with MetS.

Previous studies have investigated the association of lipidomics
profiles (211 lipids) with the progression of CVD in PLWH
receiving ART treatment with carotid artery atherosclerosis,
compared to HIV-negative individuals (3). The study showed
elevation in lipid species with polyunsaturated LCFAs (ie., C13-21
and double-bond content >2) in patients with atherosclerosis, which
is also observed in PLWH with MetS in our study. Additionally, their
study suggested significant alterations in lipid species such as CE,
CER, LPC, LPE, PC, PIs, and PI. Other studies in both HIV and
HIV-negative populations also found alterations in levels of other
lipid species (i.e., different from DAG and TAG) to be associated
with MetS-factors. This includes CE, CER, LPC, PC, PE, and
sphingomyelin (SM) (5, 23). Some of these lipid species were also
altered in our study population (i.e., CE, CER, PE, and SM); however
the glycerolipids showed strongest predictive values. Our findings of
coordinated abundance shift in glycerolipids may be due to our
considerably larger amount of quantified lipid species than other
studies (3, 23, 26).

In the same cluster (i.e., c1) we observed two trends concerning
coordinated abundance shifts in glycerolipids. First, TAG species
with carbon numbers between C48-54 and double-bond content
>2, together with DAG species with carbon number between C32-
36 and double-bond content >1 associated positively with VAT
(FDR<0.01). This finding correlates with previous studies of MetS
factors in HIV-negative cohorts (23, 26). Second, TAG species
with carbon numbers between C42-48 and double-bond content
<2 positively associated with the use of ART drugs containing
NNRTIs (FDR<0.07). The latter trend supports previous findings
suggesting that the NNRTIs drug efavirenz introduces
dysfunction in the mitochondria by inducing increased levels of
lipids (27). Moreover, both exposures to early-generation ART
and the use of NNRTIs drugs have shown to cause disruption of
the mitochondrial functions in previous studies (27, 28). To our
knowledge, we present here the first evidence of association of
antiretroviral treatment with specific structural composition
lipid profiles.

The composition-specific glycerolipids correlated with some of
the previously identified key metabolites linked to the perturbations
of the glutamate metabolism in PLWH with MetS (8). This finding
correlates with previous studies of MetS in HIV-negative
populations, which found branched-chain amino acids (BCAAs)
(i.e., leucine, isoleucine, and valine) as one of the significant
metabolite groups dysregulated in obese individuals together with
increased concentrations of glutamate, which is the first step of the
BCAAs catabolism (29, 30). Additionally, the polar metabolite
acylcarnitine (abbreviated PC/3-MAPC), an essential member of
the fatty acid metabolism, was significantly down-regulated in
PLWH with MetS. This molecule facilitates the transportation of
LCFAs into the mitochondria for catabolism through S-oxidation

(31). Besides glutamate and 4-hydroxyglutamate being a part of the
glutamate metabolism, other identified key metabolites were a part
of mitochondrial processes, which have critical energetic functions
(e.g., regulating insulin secretion). These metabolites belonged to
the isoleucine metabolism (i.e., 1-carboxyethylleucine, isoleucine)
and the TCA cycle (i.e., y-glutamylglutamate, o-ketoglutarate) (8).

The present study has limitations, such as the cross-sectional
design, as no conclusions on causality could be drawn. We were
only able to assess the prevalence of the diseases in the plasma
samples. Finally, despite the largest study population conducted to
date to type comprehensive lipid profile in PLWH, the relatively
small sample size of the cohort is also considered as a limitation to
this study. However, this is the first study that includes a large, well-
characterized group of PLWH with or without MetS matched on
MetS, sex, and age. Furthermore, the use of fully quantitative
lipidomics (i.e., >900 quantified lipid species) methodology
allowed us to conduct a thorough analysis of the systematic lipid
profiling and its association with metabolites and clinical factors by
using a combination of standard biostatistical, machine learning,
and network analysis techniques.

CONCLUSIONS

In conclusion, our study suggests alterations in both fatty acid
metabolism and glutamate metabolism, which depend on well-
functioning mitochondria. A synergistic effect of different factors
(i.e., an increased pro-inflammatory state induced by HIV, age-
related pathophysiological changes, exposure to early-generation
ART, and the use of ART with the active agent NNRTIs), which
perturb the functions within the biological system of HIV-
infected, could play a part in the alterations of the identified
biological mechanisms in the phenotype PLWH with MetS. A
recent large study from India and Cameroon also reported
alterations in glutaminolysis as a common factor in PLWH in
long-term cART (32). Alterations in the lipid homeostasis, as
well as glutaminolysis in PLWH, need clinical or dietary
interventions as they might drive accelerated aging in PLWH
with MetS. A recent report indicated that the senescent cells
depend on the glutaminolysis, and inhibition of the pathway
leads to both inducing senolysis (i.e., removal of senescent cells)
as well as improved serum-free fatty acids (FFAs) in the aged
mice, which is a hallmark of the obesity-related disorders. We,
therefore, hypothesized that clearance of the senescent cells by
inhibition of the glutaminolysis and improving the lipid profile
might prevent age-associated disorders and provide healthy
aging in the PLWH with MetS. This further can aid in
developing therapeutic targets to avoid metabolic abnormalities
and accelerated aging in PLWH with MetS.
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