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Antigen-specific vaccines developed for the COVID-19 pandemic demonstrate a
remarkable achievement and are currently being used in high income countries with
much success. However, new SARS-CoV-2 variants are threatening this success via
mutations that lessen the efficacy of antigen-specific antibodies. One simple approach to
assisting with this issue is focusing on strategies that build on the non-specific protection
afforded by the innate immune response. The BCG vaccine has been shown to provide
broad protection beyond tuberculosis disease, including against respiratory viruses, and
ongoing studies are investigating its efficacy as a tool against SARS-CoV-2. Gamma delta
(gd) T cells, particularly the Vd2 subtype, undergo rapid expansion after BCG vaccination
due to MHC-independent mechanisms. Consequently, gd T cells can produce diverse
defenses against virally infected cells, including direct cytotoxicity, death receptor ligands,
and pro-inflammatory cytokines. They can also assist in stimulating the adaptive immune
system. BCG is affordable, commonplace and non-specific, and therefore could be a
useful tool to initiate innate protection against new SARS-CoV-2 variants. However,
considerations must also be made to BCG vaccine supply and the prioritization of
countries where it is most needed to combat tuberculosis first and foremost.

Keywords: gamma delta T cell, Bacille Calmette-Guérin vaccine, trained immunity, non-specific immunity,
COVID-19, innate immunity, vaccine, antiviral
INTRODUCTION

In January 2020 the WHO declared Coronavirus disease 19 (COVID-19) a Public Health
Emergency of International Concern (PHEIC), and a pandemic in March 2020. As of July 2021
this virus is responsible for nearly four million deaths worldwide (1). COVID-19 represents a broad
spectrum of clinical syndromes, from asymptomatic disease, mild flu-like symptoms, to severe
pneumonia and acute respiratory distress syndrome (ARDS). Safe and effective vaccines have now
been developed to combat COVID-19 spread. However, the highly specific nature of these vaccines
leaves them susceptible to escape mutations. This, along with additional concerns around supply,
especially in low- and middle-income countries (LMICs), justifies the search for common,
affordable and non-specific strategies to be used in combination with specific vaccines or as an
org September 2021 | Volume 12 | Article 7439241
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interim measure. Here we make the case for the Bacille
Calmette-Guerin (BCG) vaccine and its role in stimulating
gamma delta (gd) T cells, particularly the Vd2 subset.

The causative agent of COVID-19 is severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a
positive sense single stranded RNA virus, able to spread
between humans in close contact, via respiratory droplets
produced from coughs and sneezes, and probable fomites. The
virus is able to enter the respiratory epithelial cells of the
oropharynx and upper airway via its spike glycoprotein, which
targets the angiotensin converting enzyme 2 (ACE2) receptor.
Binding causes conformational changes in the spike protein,
mediating the fusion of the viral and cell membranes and the
release of the viral nucleocapsid into the cell (2). Part of the
reason SARS-CoV-2 is more transmissible than SARS-CoV is
because of structural differences on its surface proteins that allow
stronger binding to the ACE2 receptor (3, 4).

SARS-CoV-2 variants are now being identified that have a
multitude of further mutations that allow even stronger binding
of the ACE2 receptor, and therefore are spread even more easily.
An example of this is the N501Y mutation, present in the Alpha
variant, which alters an amino acid within the six key residues in
the receptor biding domain of the spike glycoprotein, which has
arisen independently in various locations including the UK,
South Africa and Australia (5). It has been shown that
additional mutations may result in lessened antibody
effectiveness (6), and there is growing concern around variants
rendering existing vaccines less efficacious. The current principal
variant of concern in the UK, the Delta variant, contains
mutations in the spike protein, including E484K and L452R,
that, in addition to strengthening ACE2 receptor binding, can
reduce the ability of vaccine stimulated antibodies to attach to
the altered spike protein (7, 8). In light of these concerns, vaccine
strategies that are able to offer a broader base of protection, and
therefore are more resistant to mutations than single target
strategies, could prove an important additional tool in our
arsenal against SARS-CoV-2 variants.

Vaccines against SARS-CoV-2 including those manufactured
by Pfizer, Moderna and AstraZeneca, are currently being used in
wealthy nations with great success. However, with production
limited and demand greatly exceeding supply, it may be some
years before LMICs are able to complete their own nationwide
COVID-19 vaccination programs. This vaccine inequality
only enhances opportunities for additional mutations to arise
that further reduce vaccine protection. Continued research
into additional strategies that could be used in conjunction
with SARS-CoV-2 antigen specific vaccines to combat COVID-19
is needed.

BCG is the most widely used vaccine in the world, and in
recent years has been used most extensively in LMICs. When it
was first introduced to Europe in the 1920s it was observed that
vaccination provided non-specific, otherwise known as off-
target, protection against a range of diseases, particularly
respiratory infections (9). Since the SARS-CoV-2 pandemic
there have been many observational studies reporting a level
of protection in BCG vaccinated adults and children (10–12).
Frontiers in Immunology | www.frontiersin.org 2
An ecological study found both cases and deaths in countries
with national BCG vaccination programs were significantly
lower in March 2020 than in countries without (10). Escobar
et al., found that with every 10% increase in BCG index (an
estimation of vaccination coverage) there was a corresponding
10.4% decrease in COVID-19 deaths (11). Additionally, in Japan,
prefectures with higher BCG vaccine coverage had fewer
COVID-19 infections (12). However, another study in Sweden
looked at people born just before or just after 1975, when
universal BCG vaccination ceased, and did not find any
statistically significant difference in COVID-19 cases and
hospitalizations (13). Twelve randomized control trials (RCTs)
studying BCG and COVID-19 are presently underway in various
countries, although results from most of these studies are still
many months away. However, the findings from one randomized
trial are now available in preprint; the ACTIVATE-2 study,
which revaccinated elderly Greek patients with BCG, found a
reduction in COVID-19 clinical and microbiological diagnoses
compared to the placebo group (14).

Recent articles have outlined how BCG is able to reprogram
the innate system, resulting in an altered innate immune
response to subsequent infections (15). This so-called ‘training’
of innate immune cells , which includes epigenetic,
transcriptional, and functional reprogramming, is thought to
be largely responsible for much of the off-target beneficial impact
of BCG on non-tuberculosis diseases, including viral diseases.
The pathways impacted by trained immunity include those that
may be important for the control of COVID-19 disease, as
reviewed by others (16–22).

Much is now known about BCG and its ‘training’ of innate
cells, but less is known about the role of gd T cells in this non-
specific action. gd T cells, of which Vd1 and Vd2 cells are the
main subtypes in humans, are unconventional T cells that bridge
the innate and adaptive immune system. They have been shown
to be a significant component of the early innate immune
response to many viral infections. Importantly, Vd2 T cells
proliferate rapidly after BCG stimulation, as well as being one
of the main producers of IFN-g in this vaccination response.
Studies have also shown they demonstrate recall responses.
These long lasting, memory-like responses, which include
rapid production of proinflammatory cytokines and cytotoxic
granules essential for viral clearance (23), indicate gd T cells
might be a key player in BCG non-specific protection to viruses,
including SARS-CoV-2.
THE HETEROGENOUS EFFECTS OF
BCG VACCINATION

BCG is an attenuated form of Mycobacterium bovis which has
been used in humans as a tuberculosis (TB) vaccine since the
1920s. BCG remains to this day a critical component of the
strategy to combat TB, with the focus on vaccinating infants
shortly after birth in endemic areas. Although there is a high
efficacy against childhood TB (24), protection wanes with age,
September 2021 | Volume 12 | Article 743924

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Morrison et al. BCG and gd T Cells in COVID-19
and the efficacy of adult BCG vaccination varies widely
in different studies from 0 – 80% (25). Revaccinating in
adolescence has been proposed as one way to boost this
protection, with Nemes et al. demonstrating revaccination
reduced the rate of sustained QuantiFERON TB Gold InTube
(QFT)-conversion, reflecting better bacterial control and
clearance (26). The REVAX clinical trial is ongoing to assess
whether revaccination of adolescence may be a useful tool for
TB control.

After BCG was introduced in the 1920s, epidemiological
studies reported that BCG vaccination greatly reduced infant
mortality, beyond that which could be explained by a reduction
in TB alone (9). These observations were confirmed by RCT
studies, including one showing that giving BCG to low birth
weight children could reduce mortality by 50% (27). The
reduction in mortality was mostly from respiratory infections,
which are for the most part viral, and sepsis. Another recent RCT
study found BCG can protect the elderly against respiratory
infections (14). Observational studies looking at BCG in humans
have demonstrated protective roles for BCG in syncytial virus
infection (28); respiratory tract infections and pneumonia in
older individuals (29, 30); and yellow fever (31). This non-
specific protective role in viral infections has also been
demonstrated in vaccinated mice, where studies as early as
the 1970s showed BCG vaccination reduced influenza virus
titer (32), and provided a level of protection against herpes
simplex virus (HSV) (33). Another study found that even the
administration of just components of the mycobacterial cell wall
was enough to provide some protection against vaccinia virus and
herpes simplex virus 2 (HSV2) (34). Now studies are showing a
similar effect with COVID-19, with one retrospective cohort
study finding an association between BCG vaccine in the five
years prior and a lower incidence of sickness and extreme fatigue
during the COVID-19 pandemic (35). Where BCG can be used
on its own to stimulate innate immunity, it has also successfully
been used as an adjuvant in more specific vaccine strategies
against SAS-CoV-2 infection (36).

The non-specific protection afforded by BCG is often referred
to as ‘trained immunity’. Although much is still uncertain
regarding how this protection comes about, it is now known to
involve long-lasting changes in cells of the innate immune
system, including monocytes, macrophages, dendritic cells
(DCs), mucosal associated invariant T (MAIT) cells, natural
killer (NK) cells and gd T cells. Most innate cells were previously
believed to be static and unchanged after encountering stimuli
(37), and therefore investigations into trained immunity have
resulted in a shift of central immune system dogma. The changes
that result in the non-specific protection BCG provides against
many viral infections are likely a combination of epigenetic,
transcriptional, and functional reprogramming, as well as the
induction of memory-like cells (15, 38).

Epigenetic changes after BCG include the upregulation of
innate cell transcripts in the bone marrow of hematopoietic cells,
as well as inducing greater DNA-accessibility around genes
associated with inflammation in existing innate cells (39).
Chemical modifications (methylation and acetylation of
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histones) allow for greater accessibility of chromatin, and
easier transcription of genes (40). This results in the rapid and
sustained upregulation of antimicrobial responses in innate cells
upon subsequent infection, of which monocytes and NK cells are
the most characterized. Kleinnijenhuis et al., demonstrated that
macrophages isolated from BCG vaccinated healthy adults
showed enhanced production of the pro-inflammatory
cytokines IL-1b, TNF-a and IL-6 when stimulated ex vivo with
unrelated bacterial and fungal antigens (41). Similar findings
have been seen in against viruses, with BCG vaccination inducing
greater protection against attenuated yellow fever virus vaccine
strain, which correlated with an increase in the upregulation of
IL-1b (31). A further RCT in Ugandan infants found that just
delaying BCG vaccination from birth to six weeks old,
significantly increased infectious disease incidence. They found
the protection afforded by BCG was related to histone
trimethylation at the promoter region of pro-inflammatory
cytokines, including TNF and IL6, indicating immune cells
were primed for pro-inflammatory responses (42). Specifically,
monocytes show a particular increase in H3K4me3 histone
modification, involved in transcriptional activation of TLR4,
TNFa, and IL6 genes (43, 44)

These responses are also longer lasting than initially thought
possible by innate cells. BCG trained monocytes were identified
in the blood three months after vaccination, when their normal
half-life in circulation may only be up to one day (39). Both NK
and gd T cells have been shown to exhibit memory-like
properties after BCG vaccination, that are sustained for several
months (38). The memory phenotype of gd T cells induced in
response to BCG was observed by Hoft et al., in 1998, after
PBMCs from BCG vaccinated humans were cultured with
mycobacterial antigens. Seven days later the cell type that had
undergone the greatest expansion in comparison to cells from
unvaccinated control cultures was the gd T cell (45). Primate
studies demonstrated the occurrence of a recall expansion by gd
T cells after Mycobacterial tuberculosis (M. tb) infection, and the
kinetics of the recall expansion was dissimilar to the M. tb
primary expansion (46). This recall expansion coincided with
protective immunity. Recently the expansion of Vd2 T cells after
BCG was confirmed in humans in vivo as well as the production
of IFN-g by Vd2 T cells after vaccination (47). Interestingly,
other donor unrestricted T (DURT) cells, such as MAIT and NK
cells were not altered after BCG vaccination or revaccination in
humans in this study.
GAMMA DELTA T CELLS

gd T cells are important players in the early immune response to
infections or malignant transformation, as well as being involved
in the adaptive response. gd T cells are powerful effector cells,
despite only representing 0.5-5% of circulating T cells in
homeostatic conditions (48). Their numbers rapidly expand in
the circulation in response to stimuli due to the non-MHC
restricted recognition of unprocessed antigens. gd T cells also
represent a much higher proportion of immune cells at barrier
September 2021 | Volume 12 | Article 743924
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surfaces such as mucosal and epithelial sites lending weight to
their role as first-line effectors. Individual T cell receptor (TCR)
variable region d (Vd) gene segments are associated with distinct
ligand recognition and anatomical location. The positioning of
these gd T cells suggests a direct role of the TCR in each of these
locations. The TCR may even be involved in retaining the cell at
these locations (49). Thus, gd T cells are usually categorized into
two main types based on Vd region: Vd1 and Vd2. In humans
Vd1 cells usually localize to tissues and are the main TCR type in
the gut and skin. Some tissues contain highly specialized Vd1
cells that are not found anywhere else in the body. For example,
Vg3Vd1 skin dendritic epidermal T cells (DETC) arise
exclusively in the epidermis, and Vg5Vd1 cells are only found
in the intestinal epithelium. Vd2 make up the largest population
of gd T cell family in the circulation of humans. The Vd2 chain
preferentially pairs with the Vg9 (called Vg2 in an alternative
nomenclature) chain (50). These Vg9Vd2 cells comprise between
70 and 90% of the peripheral blood gd T cell population.
Although they make up less than 5% of total blood lymphocytes
in healthy individuals, they can expand rapidly, up to 60% of
peripheral blood lymphocytes, in certain infectious diseases due to
their unique ligand recognition (51). This Vd2 subtype is also
responsible for the majority of the expansion in gd T cells after
BCG stimulation (45).

gd T cells are involved in the first line of defense to a number
of diseases, including cancer, bacterial infections, and viral
infections. Studies have demonstrated their rapid activation
and cytotoxicity to various viruses, including cytomegalovirus
(CMV) (52, 53), influenza A virus (54–56), human
immunodeficiency virus (HIV) (57–59), hepatitis B and C
viruses (HBV and HCV) (60–62), Epstein Bar Virus (EBV)
(63) and severe acute respiratory syndrome (SARS) virus (64),
as reviewed by others (50, 51, 65–69). Additionally, gd TCR
knockout mice show an increase in viral titer or reduced survival
when infected with West Nile virus or vaccinia virus (70, 71).
After the 2003 SARS outbreak Poccia et al., evaluated
lymphocytes in the circulation of survivors three months after
initial infection. Interestingly, the number of ab T cells did not
differ from that of healthy uninfected subjects, but the numbers
of Vd2 T cells were substantially higher (64). This expansion was
associated with higher anti-SARS-CoV immunoglobulin G
(IgG). In vitro experiments showed that stimulated Vd2 cells
could kill cells infected with SARS-CoV, and that IFN-g was
involved in this response (64). Consequently, it is highly likely
that gd T cells could also be involved in the protective immune
response to SARS-CoV-2.

Very few studies have investigated gd T cells in SARS-CoV-2
infections, and the majority of information is in the context of
severe disease. Laing et al., evaluated peripheral blood from
hospitalized patients and showed lymphocytes were depleted in
COVID-19 disease, the lymphocytes present were hyperactivated,
whereas DC andmonocyte functions were dampened. The drop in
lymphocytes included gd T cells, which were highly reduced in the
circulation compared with healthy controls, especially the Vd2
subset. This has also been reported by other studies (72–74). Lei
et al., showed that the gd T cells remaining in the blood had a
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CD25+ activated phenotype, although the very early activation
marker CD69 did not increase compared to healthy controls,
which the authors suggested may be because this marker was
expressed earlier in infection (72). Notably, PD-1 expression did
not change in these gd T cells compared with controls, which
suggests they were not exhausted. This contrasts with the finding
that CD8+ cells showed heightened expression of both PD-1 and
TIM3 related to disease severity, indicating a more exhausted
phenotype in these cells as disease advances (75). Lastly, Lei et al.,
showed a dramatic increase in the proportion of gd T cells co-
expressing CD4, suggesting a role for this cell type, which is
typically low in humans in homeostasis. Odak et al., showed a
striking reduction in effector memory cells within the gd T cell
population, and an increase in naïve cells, and suggested that the
effector memory gd T cells may be recruited to the lungs. They also
theorized that the reappearance of effector cells in the blood was
associated with recovery from COVID-19 (74).

Many features of gd T cells make them promising players in
the SARS-CoV-2 response, including their key role in
immunosurveillance of mucosal and epithelial barriers, their
recognition of viral entry via a number of different pathways,
and their functional responses that can act to kill virally infected
cells as well as their ability to stimulate the adaptive
immune system.

gd T Cell Recognition of Viral Infection
The mechanisms behind gd T cell recognition of viral infections
like SARS-CoV-2 are not as clearly understood as other cell
types. gd T cells use many different pathways to recognize foreign
antigens and stress signals, and it is likely that different
combinations of these pathways work synergistically in distinct
viral infections to initiate and amplify responses. The main
pathways include toll like receptors (TLRs), the gd TCRs, and
natural killer-like receptors.

gd T cells express a variety of TLRs which bind to pathogen
associated molecular patterns (PAMPs). Of particular
importance are TLR 2 and 4 expressed on their cell membrane,
which can recognize viral glycoprotein and glycolipids, as well as
TLR 3 and 7, expressed on endosomes, which recognize viral
RNA (76, 77). The binding of TLRs to PAMPs induces
transcription factor upregulation, leading to pro-inflammatory
cytokine production. The synergistic effects of TCR and TLR
stimulation has been demonstrated in vitro by Wesch et al.,
where IFN-g production in response to direct TCR stimulation is
dramatically increased when TLR 3 is also stimulated with a
synthetic analogue of its natural PAMP (78). TLR recognition of
SARS-CoV-2 glycolipids, glycoprotein and RNA is likely a vitally
important step in this immune response.

The Vd2 TCR can recognize small phosphoantigens in a way
that is unique, and likely responsible for its prolific responses in
cancer, mycobacterial infection, and BCG vaccination. The first
small phosphoantigen found to stimulate Vd2 cells was a
pyrophosphate intermediate of the mevalonate isoprenoid
synthesis pathway, isopentenylpyrophosphate (IPP) (79). This
pathway exists in all mammalian cells, and during normal
physiological conditions, IPP is at a low concentration inside the
September 2021 | Volume 12 | Article 743924
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cells and does not cause activation of Vd2 cells. However,
disruptions to the mevalonate pathway caused by a number of
events, including dysregulated metabolism in tumors,
pharmacological interference, or infections results in increases in
intracellular IPP. Above a certain threshold IPP bound to the
intracellular portion of butyrophilin-3A1 (BTN3A1) and BTN2A1
induces a conformational change that allows interaction of
BTN2A1 with the Vg chain of the TCR and likely also allow
BTN3A1 to interact with the Vd chain (80–82). Other small
phosphoantigens that stimulate the BTN3A1 conformation
change and subsequent Vd2 TCR responses have now been
identified. The most significant of these is produced by
mycobacteria, including BCG, called (E)-4-hydroxy-3-methyl-
but-2-enyl pyrophosphate (HMBPP). Microbial HMBPP, an
intermediate of the MEP/DOXP pathway, has been found to
activate Vd2 cells with a potency 30000 times that of IPP (83).

Studies have suggested that the phosphoantigen/BTN
mechanism of Vd2 TCR activation may also have a role in
viral infections, in addition to its importance in mycobacteria
and cancer. Blocking the mevalonate pathway upstream with
mevastatin, and therefore halting IPP synthesis, prevented the
activation and proliferation of Vd2 cells in an in vitro EBV
infection (63). A similar outcome was seen when the mevalonate
pathway was blocked in influenza A virus infection, where Vd2
IFN-g production was significantly reduced (54). It is currently
unknown to what extent this pathway is active in SARS-CoV-2
infections. However, as it is likely responsible for much of the
Vd2 cell expansion after BCG, it is an important mechanism in
the development of BCG primed anti-viral responses. Unlike
Vd2 cells, the Vd1 TCR does not recognize phosphoantigen/
BTN, and therefore Vd1 cells proliferate less in response to BCG
stimulation, although they are able to recognize BCG infected
cells through the recognition of mycobacterial lipids on CD1.
Recognition of CD1 in the context of viral infection is less
understood, as there are no known virus specific lipids that
exist in large enough quantities to be expressed on CD1.
However, there is evidence that lipids derived from the host
are presented on CD1 and can stimulate NK cells in viral
contexts (84). The differentiation of CD1 displaying host lipid
in homeostasis in comparison to viral infection, where
substantial relocation of endosomal CD1 occurs has been
hypothesized to mediate this stimulation (85). Some viruses,
including Kaposi sarcoma associated herpesvirus (KCHV) and
HIV actively induce the internalization of CD1, signifying
CD1 presentation to NK cells or gd T cells may contribute to
protection (85).

In addition to TLRs and TCRs gd T cells express other
receptors, several of which are likely to be important in the
recognition of viral infection, including NK type receptors
(NKRs), DNAX Accessory Molecule 1 (DNAM1), and the
Natural Cytotoxicity receptors (NCRs) NKp30, NK44 and
NKp46. This review focuses on the NKR natural killer group
2-member D (NKG2D) only, as other NKRs have been recently
reviewed by Caron et al. (69). NKG2D is an activating C-type
lectin originally found on Natural Killer cells, but also highly
expressed on both Vd1 and Vd2 T cells. It recognizes MHC class
Frontiers in Immunology | www.frontiersin.org 5
I polypeptide-related sequence A and B (MICA and MICB) and
UL16 binding proteins (ULBPs). MICA, MICB and ULBPs can
be expressed by the majority of cells, but are normally in very low
abundance. Expression of these ligands is induced as part of the
DNA damage response used by cells after stresses such as
infection or malignant transformation (86). Once induced,
their interaction with NKG2D on gd T cells can assist
activation and produce a powerful cytotoxic response. It is
currently unknown the extent to which SARS-CoV-2 infection
upregulates NKG2D ligands, however many ligands have been
found to be upregulated on virally infected cells (69). For
example, CMV infected cells have been shown to upregulate
MICA and ULBP1-3 (87); EBV infected cells can upregulate
MICA, MICB and ULBP4 (88, 89); and cells infected with either
influenza A or Sendai virus can upregulate MICB (90). Blockade
of NKG2D can also lead to a reduction in gd T cell anti-viral
responses (63).

gd T Cell Responses to Viral Infection
gd T cells can mediate the killing of virally infected cells through
a number of mechanisms. These include directly killing infected
cells via cytotoxic molecules, and expression of membrane
bound TNF-family members FasL and tumor-necrosis factor-
related apoptosis-inducing ligand (TRAIL), as well as indirectly
via the production of pro-inflammatory cytokines, and assisting
in DC maturation to stimulate the adaptive immune system.
These responses are important in the defense against SARS-
CoV-2 infection and COVID-19 disease progression (91).

gd T cells can secrete cytotoxic granules containing
granzymes, perforin, and granulysin. These molecules have
various effects on target cells that promote cell death. Perforin
is able to form pores in target cell membranes, disrupting the
osmotic balance, leading to an influx of Ca+ ions present at the
immune synapse and pro-apoptotic signaling. Perforin also
allows entry of granzymes. Granzyme B directly cleaves
proteins involved in the caspase pathway, resulting in caspase-
mediated apoptosis. It can also initiate the mitochondrial cell
death pathway by cleaving BH3 interacting-domain death
agonist (BID) (92). Granulysin can cause cell death in similar
ways to granzyme B, and can also interfere with the target cell’s
endoplasmic reticulum, which leads to pro-apoptotic signaling.
Additionally, it has recently been shown that the 15kDa isoform
of granulysin produced by gd T cells, previously thought to be an
inert precursor to the 9kDa isoform, can actually cause the
migration and maturation of DCs (93). Other Granzymes that
have been shown to kill virally infected cells in animal and in
vitro models include granzyme M, H and K (94–96). Of interest,
these lesser known granzymes may be able to inhibit viral
replication by directly cleaving viral proteins, without
necessarily killing the host cell, as exemplified by Granzyme M
in a murine model of CMV infection (97).

gd T cells can produce proinflammatory cytokines in response
to viral recognition, including IFN-g and TNF-a (98). These two
cytokines trigger a multitude of pathways in target cells that can
ultimately lead to the inhibition of viruses at all stages of their
replication: viral entry, viral protein synthesis, viral assembly, and
September 2021 | Volume 12 | Article 743924
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viral release, as recently reviewed (69). Many gd T cells produce
multiple pro-inflammatory cytokines simultaneously, which have
synergistic effects on virally infected cells, and are particularly
effective for viruses that have evolved escape mechanisms from
one or many of the cytokine-induced pathways.
BCG STIMULATION OF gd T CELLS TO
COMBAT NON-TUBERCULOSIS
DISEASES

BCG stimulation of the immune system to target diseases other
than TB is not a new concept, and has in fact been used for many
decades before it was known how BCG could influence cells of
the innate immune system, including gd T cells. BCG has been
used as a first line treatment for non-invasive bladder cancer
since the 1970s, and can out-perform chemotherapeutic agents
(99). BCG can also be used in the treatment of inoperable
cutaneous melanoma (100–103). Studies have provided
evidence that Vd2 cells are contributing, at least in part, to
BCG-induced regression of cancer cells, with BCG injections
causing infiltration of Vd2s into tumors and IFN-g production
(104). Other mycobacteria preparations are also in the process of
commercialization, including IMM-101, an attenuated
preparation of Mycobacterium obuense, which when used in
combination with the first line treatment for inoperable
pancreatic ductal adenocarcinoma (PDAC), the overall survival
of patients improves (105).

BCG has many antigens that are potent stimulators of the
immune system, and gd T cells in particular. For example, BCG
has a variety of cell wall lipids and proteins that are recognized by
TLRs. Lipids from internalized BCG are also known to be
displayed on CD1 molecules, that may be recognized by Vd1
cells. As mentioned earlier, mycobacteria also produce the small
phosphoantigen HMBPP, which potently stimulates Vd2 TCRs.
Therapeutics have been developed to specifically target this
activation pathway using synthetic HMBPP and similar
analogues, like Picostim (106, 107), as well as nitrogen-
containing bisphosphonates (NBPs), which block the
mevalonate pathway, leading to IPP accumulation (108, 109).
Tu et al., expanded Vd2 cells in vitro with the NBP pamidronate
(PAM) and injected them into influenza infected humanized
mice, demonstrating an improvement in disease severity and
control of viral replication (110). Studies have also shown the
NKG2D ligand MICA to be upregulated on epithelial and DCs
afterM. tb in humans (111), and mice NKG2D ligands Rae-2 and
MULT1 are upregulated after BCG infection in the murine
model (112).

Therefore, BCG can stimulate gd T cell activation through a
variety of pathways, many of which are still unknown, and these
can have synergistic effects on transcription to amplify anti-viral
responses. Anti-viral gd T cells responses that may be induced by
BCG include the production of cytotoxic molecules, including
granzyme B, granulysin and perforin (113); inflammatory
cytokines, including IFN-g and TNF-a (23); and the
upregulation of death receptor ligands (69). Activated gd T
Frontiers in Immunology | www.frontiersin.org 6
cells can also enhance the maturation and migration of DCs
and present antigens themselves, thereby stimulating the
adaptive immune system. This is summarized in Figure 1.
Although this review is focused on gd T cells due to their
potential in COVID-19, BCG also impacts biological pathways
of other cells of the immune system, as already discussed,
including macrophages, NK cells, and MAIT cells, inducing
epigenetic modifications to genes such as IL1b, TNFa, TLR4
and IL6, marking these cytokines as important and allowing for
their rapid upregulation (44). Taken together, BCG are able to
activate gd T cells in similar ways to viral infections, and induce
the production of molecules that are critical to the anti-viral
response. Therefore, it is likely that priming gd T cells with BCG
can actively contribute to SARS-CoV-2 control and moderate the
severity of the COVID-19 disease.
CONCLUDING REMARKS

The BCG vaccine is affordable, commonplace, and non-specific.
This makes it a rapid tool to implement in a pandemic such as
COVID-19. Although we are only beginning to understand the
innate mechanisms behind BCG’s broad protection, its impact
on non-tuberculosis morbidity and mortality has been noted for
a century (9). BCG vaccination can expand and prime innate and
effector cells, including gd T cells. gd T cells are of particular
interest, as BCG vaccination can induce them to direct potent
anti-viral responses against infected cells, as well as stimulate the
adaptive immune system. They have also been shown to be
activated and not exhausted after COVID-19 infection. However,
we need to remain aware of the vital role BCG already has in
protecting against TB, particularly in infants in LMICs. Neonatal
BCG vaccination remains a crucial component of TB control,
and any delay to vaccination, such as that observed by BCG
shortages in the past years, can have significant impacts on TB
meningitis rates (114) and would be a major setback to global TB
strategies. Any approach using BCG as a tool against COVID-19
should first prioritize BCG vaccines where they are needed most
in LMICs with a high incidence of TB.

Considerations should also be made to the target age group
and impacts of boosting and revaccination. BCG vaccination in
the elderly has been shown to help protect against respiratory
diseases, like COVID-19, indicating that BCG can also impact
the innate immune system later in life (14). However, the efficacy
of using BCG vaccination in adults to control TB varies widely
(25). Vaccinating adolescents could conceivably have dual effects
reducing the transmission of SARS-CoV-2 andM. tb (26). Using
this dual strategy could have the greatest impact on reducing
morbidity. The efficacy of BCG vaccination also varies globally,
thought to be due to a number of factors including strains used,
genetic and socio-economic differences, as well as interference
via prior mycobacterial exposures, called masking and blocking.
These are all factors that need to be considered in any BCG
strategy to combat COVID-19 as they may impact how long
non-specific protection lasts and as well as the requirement for
boosting vaccinations.
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Countries where TB rates are high often coincide with
countries that have seen a delay in their antigen specific SARS-
CoV-2 vaccine roll-out, and therefore are likely to be the
countries where variants have full rein to develop. This last
year has seen the rapid spread of variants across the world, and
further mutations are expected to threaten the protection
afforded by the current vaccines. BCG vaccination may provide
a measure of protection independent of specific viral antigens,
and therefore is unlikely to provide any selection pressure for
new mutations, and is in fact likely to help control against new
variants. If studies show BCG provides protection from
COVID-19, a well-considered BCG strategy could contribute
to the global effort against both COVID-19 and TB.
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FIGURE 1 | Priming Vd2 cells with BCG, and subsequent non-specific anti-viral responses. Vd2 T cells are activated after BCG vaccination through a number of
mechanisms. HMBPP produced by BCG infected host cell causes conformational changes on intercellular domains of butyrophilin (BTN) molecules, such as
BTN3A1 and BTN2A1, which allows the extracellular domain to interact with the Vd2 TCR. Mycobacteria have been shown to induce the expression of NKG2D
ligands on cells which can activate Vd2 cells through NKG2D. Vd2 cells have many TLRs that can recognize BCG PAMPs. Non-specific responses induced that have
anti-viral activity include directly killing infected cells through the secretion of cytotoxic granules containing perforin, granzymes and granulysin, or initiation of
death-inducing pathways, FASL and TRAIL. They can also indirectly contribute to killing through the production of pro-inflammatory cytokines TNF-a and IFN-g
inducing the maturation and migration of DCs, leading to induction of the adaptive immune system. Vd2 cells may also recognize virally infected cells directly via
NKG2D and Vd2 TCR. Infected cells can upregulate NKG2D ligands (e.g. MICA, MICB), and can have altered metabolisms, which induces conformation changes to
BTN molecules. Created with BioRender.com.
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in Infancy Does Not Protect Against Coronavirus Disease 2019 (COVID-
19): Evidence From a Natural Experiment in Sweden. Clin Infect Dis (2020)
72(10):501–5. doi: 10.1093/cid/ciaa1223

14. Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, Antonakos N, Kotsaki A,
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