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Cystic Fibrosis (CF) is a genetic disease that causes chronic and severe lung inflammation
and infection associated with high rates of mortality. In CF, disrupted ion exchange in the
epithelium results in excessive mucus production and reduced mucociliary clearance,
leading to immune system exacerbation and chronic infections with pathogens such as P.
aeruginosa and S. aureus. Constant immune stimulation leads to altered immune
responses including T cell impairment and neutrophil dysfunction. Specifically, CF is
considered a Th17-mediated disease, and it has been proposed that both P. aeruginosa
and a subset of neutrophils known as granulocytic myeloid suppressor cells (gMDSCs)
play a role in T cell suppression. The exact mechanisms behind these interactions are yet
to be determined, but recent works demonstrate a role for arginase-1. It is also believed
that P. aeruginosa drives gMDSC function as a means of immune evasion, leading to
chronic infection. Herein, we review the current literature regarding immune suppression in
CF by gMDSCs with an emphasis on T cell impairment and the role of P. aeruginosa in this
dynamic interaction.
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NEUTROPHIL DYSFUNCTION IN CF

Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the Cystic Fibrosis
Transmembrane Conductance Regulator (CFTR) gene (1–3). CF is primarily found in the Caucasian
population, with an estimated 70,000 individuals affected by the disease (1, 4). Disruption in CFTR
function leads to ion dysregulation, abnormal pH, mucus build-up, chronic inflammation, and
infection with pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. Symptoms in
the lungs cause most of the morbidity and mortality in CF (4–13). Neutrophils are major drivers of
chronic inflammation in CF airways (14–18). Neutrophils in general are inefficient at pathogen
clearance in CF (19–24). In CF and other diseases, it is becoming more evident that different
subpopulations of neutrophils exist that may be linked to varying forms of immune dysfunctions (25–
30). An increasing body of work exists demonstrating the negative impact of neutrophils on lung
disease outcome in CF. Excessive neutrophil recruitment to the lungs leads to increased levels of
inflammatory cytokines such as IL-1b, IL-8, IL-17 and IL-6 (6, 31, 32). As neutrophils become
activated, damaging granule components such as neutrophil elastase (NE) and metalloproteinase 9
(MMP9) are released into the extracellular space, resulting in perpetuated tissue injury and immune
cell recruitment (5, 33, 34). NE has been described to inhibit the function of other cells found in the CF
airways (epithelium, macrophages, dendritic cells) and represents a clinically highly relevant target for
the pharmaceutical industry (35–39). CF sputum PMN counts, levels of ecDNA, myeloperoxidase
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(MPO), NE and PMN chemoattractants all correlate with CF lung
disease severity (2–6). Phenotypic changes to neutrophils also
occur upon entry into the CF airway environment including
reduction in surface expression of the phagocytic markers
CD16, CD14, and CD35, as well as increased surface expression
of activation and degranulation markers CD66b and CD63 (40,
41). Additionally, changes in antigen presentation markers such as
CD80, MHCII, and CD294 indicate that CF airway neutrophils
potentially interact with T cells (40, 41).

Despite increased neutrophil recruitment to the CF airways,
chronic infections with CF-related pathogens such as P. aeruginosa
and Staphylococcus aureus suggest impairment of neutrophil-
mediated killing of these pathogens (19, 21–23, 42). Exacerbated
release of neutrophil extracellular traps (NETs) in CF airways (19,
43, 44), as well as increased NET formation in response to clinical
isolates of P. aeruginosa from CF patients have been observed (17,
19, 20, 45–47). Another study demonstrated increased TLR5 surface
expression on CF airway neutrophils compared to CF blood
neutrophils and blood and airway neutrophils from healthy and
non-CFbronchiectasis donors (48). Thiswork further demonstrated
that incubation of blood neutrophils in CF sputum supernatant
increased TLR5 surface expression (48). It was previously shown
that NETs represent a main mechanism of P. aeruginosa killing by
neutrophils in in vitro suspension co-cultures (19). Mucoid P.
aeruginosa was shown to be resistant to neutrophil-mediated
killing (19, 46). Overall, these data suggest that antimicrobial
effector functions of neutrophils are impaired in CF that could be
due to enhanced immunosuppressive functions of the cells.
MDSCs

Immunosuppressive myeloid cells have been first described
about three decades ago. While several names were proposed,
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in 2007 the term ‘Myeloid-derived suppressor cells (MDSCs)’
was coined to identify monocytes and neutrophils with powerful
immunosuppressive features (49, 50). MDSCs have been mainly
linked to pathological conditions in cancer, inflammation and
autoimmune disease and their physiological roles have also been
described (51). In general, two types of MDSCs have been
distinguished: monocytic MDSCs (mMDSCs, M-MDSCs) and
granulocytic/polymorphonuclear MDSCs (gMDSCs, also
abbreviated as G-MDSCs or PMN-MDSCs) (51). There are
several reviews that summarize current knowledge on MDSCs
and their detailed role in diseases (51). The purpose of this review
is to provide a brief summary and introduction to MDSCs and to
specifically summarize the proposed roles of gMDSCs in CF only
(Figure 1). Even though MDSCs have been studied for years,
their origin and development remain largely unclear (51). A
consensus among scientists exists related to the development of
MDSCs from myeloid cells that are in an immature state (51).
MDSCs are primarily defined by their immunosuppressive
function and myeloid origin, and do not represent a well-
defined, single cell subset (51). This is also reflected by the fact
that cell surface markers specific to MDSCs that have been
widely accepted by the scientific community have not been
identified yet.

Neutrophils were originally thought to be terminally
differentiated, proinflammatory cells, only responsible for and
capable of pathogen elimination. However, it has recently
become apparent that neutrophils represent a heterogeneous
population that differ in maturity, density and inflammatory
properties (25–28, 30, 52). The heterogeneity of neutrophils was
first discovered in cancer patients, where a portion of neutrophils
co-purified in the mononuclear cell fraction during peripheral
blood cell isolation (53). In this study, it was determined that
these lower density neutrophils (LDNs) were activated, less dense
than normal neutrophils and capable of suppressing T cell
FIGURE 1 | General and CF-specific features of gMDSCs. Surface markers and intracellular molecules are indicated that have higher expressions or activities in
granulocytic MDSCs in general (left panel) or in gMDSCs in CF (right panel).
September 2021 | Volume 12 | Article 745326

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tucker et al. gMDSCs in CF
signaling in a hydrogen peroxide-dependent manner (53).
Because of the suppressor phenotype of these LDNs, the term
granulocytic myeloid-derived suppressor cells (gMDSCs, also
called PMN-MDSCs) was coined (53). gMDSCs describe a
subset of myeloid cells expressing neutrophilic markers and are
characterized by an immunosuppressive phenotype. This is in
contrast to monocyte-derived MDSCs, which have similar
functions, but stem from a different, monocytic lineage (51).
Additional works demonstrating TGF-b-modulated polarization
of protumor and anti-tumor neutrophils added to the clear
presence of multiple neutrophil types (26). Specifically,
blockage of TGF-b signaling resulted in increased cytotoxic,
hypersegmented anti-tumor neutrophils (N1), whereas the
presence of TGF-b resulted in less aggressive protumor
neutrophils (N2) (26). Transcriptomic analyses in mice
examined normal neutrophils from healthy animals, tumor-
associated neutrophils (TANs) and splenic gMDSCs from
cancer-positive animals distinguished the phenotypic
differences of these cells (27). It was shown that while normal
neutrophils and gMDSCs likely come from the same progenitors,
they have very different mRNA profiles. Specifically, gMDSCs are
primed for antigen presentation and highly express MHC class I
and II as well as the co-stimulatory molecules CD80 and CD86
(27) (Figure 1). Enhanced antigen-presenting capacity is in line
with data demonstrating gMDSC interactions with T cells (53).
Additional changes in gMDSCs included increased expressions
of TLRs and BCL-2-related apoptotic genes (27). Lastly, the
expressions of neutrophil chemoattractants CXCL1, CXCL2 and
CCL3 were markedly higher in gMDSCs compared to normal
neutrophils (27). These studies highlight the phenotypic
variability that occurs among neutrophils within an
individual (Figure 1).

In the past decade, multiple studies have come out addressing
additional differences between normal neutrophils and gMDSCs,
and brought more questions than answers. For example, while
gMDSCs were originally considered immunosuppressive LDNs
and co-purified by density centrifugation with mononuclear cells
in cancer patients, other LDNs have been found in autoimmune
diseases such as systemic lupus erythematosus (SLE), are known
to be hyper-inflammatory and cause vascular damage (25, 52,
54). It has recently been determined that the presence or absence
of CD10 determines the maturity status of LDNs, and can
distinguish between mature cells (CD10+) which have an
immunosuppressive phenotype, and immature cells (CD10-)
with an immune-stimulatory phenotype (28, 54). Maturation
resulting in CD10 expression and immune suppression appears
to be driven by G-CSF (28).

Numerous reviews exist describing the current literature
available on the heterogeneity of neutrophils as well as
gMDSCs and LDGs (29, 30, 51). The currently accepted
characterization for gMDSCs isolated from human peripheral
blood describes these cells as low-density neutrophils expressing
CD11b, CD15, CD66b, LOX-1, and lacking CD14 (51, 53, 55). In
mice, gMDSCs are defined as CD11b+ Ly6G+ while mMDCS are
CD11b+ Ly6C+, the same way by which mature neutrophils and
monocytes are determined. Additionally, gMDSCs suppress
Frontiers in Immunology | www.frontiersin.org 3
T cell proliferation as a functional marker, and have very high
reactive oxygen species (ROS), ARG-1, PGE2, S100A8/A9, and
STAT3 activities, as well as high levels of ER stress (51, 55, 56).
Differences in signaling including strength, duration, and major
pathway play pivotal roles in the abundance and function of
gMDSCs within an individual. It is evident that chronic
conditions such as cancer, pregnancy, obesity, or persistent
infection lead to a sustained, low level immune response (52).
This constant, weak stimulation results in the increased presence
of gMDSCs that have reduced phagocytosis, increased ROS
production, and are capable of suppressing T cells (17, 18, 51,
55, 57–59). Therefore, in comparison to normal neutrophils,
gMDSCs seem to be reducing inflammation and cease the
perpetual signaling that results from chronic immune
stimulation (Figure 1).
gMDSCs IN CYSTIC FIBROSIS

It remains unclear in chronic diseases whether gMDSCs are only
generated in the bone marrow alongside normal neutrophils, or
if normal neutrophils can also develop into gMDSCs or gMDSC-
like cells at the site of inflammation. One study demonstrated
that ER stress leading to the upregulation of LOX-1 expression
resulted in neutrophils with gene expression patterns and
suppressive capabilities similar to gMDSCs (55). These data
suggest that suppressive actions of neutrophils are possibly
inducible; however, this has not been examined in CF. In the
case of CF, reports of gMDSCs are conflicting with regards to
phenotypic differences between normal neutrophils, gMDSCs
from peripheral blood, and neutrophils isolated from the lungs
(16–18).

Although the initial cause of CF is genetic, the symptoms of
reduced ASL and excessive mucus production ultimately result
in immune cell recruitment, tissue damage and perpetuated
inflammation, which is further exacerbated by chronic
bacterial and fungal infections (1, 13, 60, 61). As previously
mentioned, neutrophils are abundantly present in CF airways,
but fail to clear certain pathogens. This leads to the hypothesis
that neutrophils are playing an alternate, immunosuppressive
role in the CF airways. Given that P. aeruginosa induces T cell
suppression as well as TLR5 expression in neutrophils, it was
initially proposed that P. aeruginosa induces gMDSC production
in CF as a means to evade the T cell immune response (16). To
this end, it was demonstrated that gMDSCs, identified as
CD33high/CD66bhigh/IL-4Rainter/HLA-DRdim populations in
the PBMC fraction were higher in CF patients compared to
healthy controls (16). More importantly, gMDSCs in the PBMC
fraction were higher in P. aeruginosa-positive individuals
compared to P. aeruginosa-negative individuals (16).
Additionally, while there was no correlation between blood
gMDSCs and lung function of P. aeruginosa-negative
individuals, the number of gMDSCs positively correlated with
lung function of P. aeruginosa-positive individuals (16). It was
further demonstrated that in vitro incubation of PBMCs with
P. aeruginosa, or its flagellin alone induces gMDSCs that highly
September 2021 | Volume 12 | Article 745326
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express TLR5 and CXCR4 in a CFTR-independent manner (16).
Lastly, this report demonstrated that both CF-gMDSCs and in
vitro P.aeruginosa-induced gMDSCs suppress CD4+ and CD8+ T
cell proliferation, as well as IL-17 secretion (16). This study was
the first to link gMDSCs to CF disease pathogenesis, and to
suggest that in response to prolonged inflammation and
infection, gMDSCs may be playing an anti-inflammatory role
of reducing T cell proliferation, recruitment of other
proinflammatory cells and tissue damage in response to P.
aeruginosa infection (16) (Figure 1).

The report by Rieber et al. defined a function for gMDSCs
circulating in the blood; however, to truly understand the role of
these cells in CF, it is imperative to assess samples from the lungs
and broncheoalveolar lavage fluid (BAL) (16). It has been
demonstrated that gMDSCs can suppress T cells through the
actions of Programmed Death Ligand 1 (PD-L1), arginase-1
(Arg-1) and ROS (53, 55, 57, 59, 62–66). PD-L1-mediated
suppression, by interaction with PD-1, results in activated T
cell exhaustion and blockade of secondary signals for activation
(57, 59, 66). Arg-1 suppresses T cells by competitively binding
arginine and generating L-ornithine (62). The lack of arginine
prevents the expression of the z-chain of the T cell receptor
(TCR) complex and therefore inhibits T cell function (62). To
determine the mechanism of T cell suppression by CF-gMDSCs,
a study was performed measuring PD-L1 and Arg-1 in both the
blood and airways of CF patients (17). Here it was shown that
mature airway neutrophils, defined as CD66b+/CD63+/CXCR4+/
CD62Llo suppress T cell proliferation through the action of Arg-
1, but not PD-L1 (17). Specifically, Arg-1 activity was shown to
be higher in CF airway neutrophils compared to healthy controls.
Additionally, incubation of PBMCs with CF airway supernatant
resulted in reduced T cell proliferation that could be inhibited by
a combination treatment with excess arginine and arginase
inhibitor, but not by blockage of PD-L1 (17). Lastly, Arg-1
activity positively correlated with total airway neutrophils and
negatively correlated with lung function (17). Interestingly, a
more recent study determined that mMDSCs isolated from CF
patients, characterized as CD14+ cells inhibited T cells in a PD-
L1-dependent manner (67), suggesting that additional
mechanisms exist for immune disruption in CF. Although this
work clearly demonstrated the suppressive capabilities of CF
airway neutrophils, it did not definitively conclude that these
cells represent airway gMDSCs. That being said, the population
isolated had many features of gMDSCs from peripheral blood,
including CXCR4 expression, Arg-1 activity, and T cell
suppression, suggesting the presence of gMDSCs or gMDSC-
like cells in the CF airways (17) (Figure 1).

The data available on gMDSCs in CF airway disease suggest
contributions from both host-driven responses as well as
P. aeruginosa-mediated responses (16, 17, 40). To further
investigate the impact of gMDSCs in the CF airway in regards
to P. aeruginosa infection, animal studies using cftr-deficient
mice were performed (18). The number and percent of gMDSCs,
defined as CD11b+/Ly6Cinter/Ly6Ghigh cells as well as that of
mMDSCs CD11b+/Ly6Chigh/Ly6G- were measured in the BAL,
lungs, bone marrow, and spleens of cftr-deficient mice with or
Frontiers in Immunology | www.frontiersin.org 4
without P. aeruginosa infection (18). It was shown that P.
aeruginosa infection recruits gMDSCs capable of T cell
suppression to the lungs and BAL of cftr-deficient mice (18).
In contrast, more gMDSCs were present in the bone marrow of
uninfected mice, compared to infected animals (18). While a
similar trend was noted for mMDSCs in the lung, they were
present at a much lower percent compared to gMDSCs (18). To
further understand the role of P. aeruginosa in gMDSCs’
suppressor activity, gMDSCs were isolated from the lung,
spleen, and bone marrow of infected wild-type mice and co-
cultured with T cells in vitro. This experiment demonstrated that
gMDSCs from the lung and bone marrow were both capable of
suppressing T cell proliferation (18). Lastly, this paper examined
the role of cftr in gMDSC function, and showed a slight
impairment of T cell suppression in cftr-/- gMDSCs; however,
this impairment only occurred at very high gMDSC to T cell
ratios, suggesting that cftr is only minimally involved in T cell
suppression by gMDSCs (18, 19). Overall, this study
demonstrates that gMDSCs are intrinsic to a CF mouse model,
but that P. aeruginosa infection is also involved in gMDSC
recruitment to the lungs and T cell suppression (18).
T CELL FUNCTION IN CYSTIC FIBROSIS

Several reports demonstrate altered T cell responses in CF, with a
bias towards Th17 cell production and activity that has been
linked to and could be mediated by gMDSCs (14, 15). Th17 cells,
IL-17, and other Th17-associated cytokines have been shown to
be increased in the BAL of patients with CF (15). The same study
reported an association between high IL-17 levels in the BAL and
a greater chance of developing P. aeruginosa infection within 2
years’ time (15). A negative correlation between lung function
(FEV1%) and the number of Th17 cells in the peripheral blood
has also been demonstrated in CF, suggesting that an increased
Th17 response is associated with poorer disease outcome (68).
Disruption of regulatory T cells (Tregs) has also been reported in
CF (14). Specifically, the percent of Tregs compared to other cell
populations was significantly lower in the peripheral blood and
BAL of CF patients compared to healthy controls and non-CF
bronchiectasis controls (14). It was also demonstrated that
patients with chronic P. aeruginosa infection had even further
reduced amounts of Tregs. These data were confirmed with cftr-/-

mouse studies, showing decreased Treg numbers in the
spleen and lung, as well as a further reduction in Tregs upon
P. aeruginosa infection (14). This Treg disruption was not
correlated with any other CF-associated pathogen (14). To
further confirm the disruption of Tregs in CF, Hector et al.
showed that both CFTR inhibitors, as well as incubation with
clinically relevant P. aeruginosa reduced the percent of Tregs in
the peripheral blood isolated from healthy individuals, and that
Tregs isolated from CF patients were less suppressory than Tregs
from healthy donors (14). This reduction in suppression was
further enhanced in CF patients with chronic P. aeruginosa
infection (14). Finally, this study analyzed Tregs and memory
Tregs as a function of age and demonstrated a decline in CF
September 2021 | Volume 12 | Article 745326
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Tregs with age that was increased by chronic P. aeruginosa
infection, as well as a reduced capacity for generating memory
Tregs in these individuals (14). Taken together, these studies
demonstrate an impaired adaptive immune response in
CF (Figure 1).
CONCLUSIONS

Immune system dysregulation is a driving force in CF disease
progression and morbidity. Specifically, neutrophils in the lungs
are inefficient killers and contribute to tissue damage,
inflammation, and chronic infection. Additionally, gMDSCs or
gMDSC-like neutrophils could mediate T cell suppression in CF.
Suppression of T cells can result in systemic immune system
disruption. This interaction between gMDSCs and T cells is
further complicated by P. aeruginosa infection, which enhances
the T cell suppressor phenotype of these neutrophils, and may
enhance immune evasion by these bacteria (Figure 1). Although
additional investigation is needed to fully elucidate how the
dynamic relationship between P. aeruginosa, gMDSCs, and T
Frontiers in Immunology | www.frontiersin.org 5
cells impact disease exacerbation in CF; these interactions may
serve as therapeutic targets for immune dysregulation. Future
research into the impact of gMDSCs on T cells and other
immune responses will help to determine the multifunctional
capacity of neutrophils in CF as well as other chronic
inflammatory and infectious diseases.
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