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Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is
commonly associated with obesity and characterized by excessive lipid accumulation
and liver inflammation. The T cell immunoglobulin andmucin domain 1 (Tim-1), also known
as hepatitis A virus cellular receptor 1 (Havcr-1) and kidney injury molecule 1 (Kim-1), has
been shown to affect innate immunity-driven proinflammatory cascade in liver ischemia-
reperfusion injury. However, its contribution to obesity-related NAFLD/NASH remains
unknown. Thus, this study was designed to evaluate the role of Tim-1 in obesity-related
liver inflammation and injury in wild-type (WT) and Tim-1-deficient (Tim-1-/-) C57BL/6J
mice fed a high-fat diet (HFD) for 5-6 months. HFD feeding induced steatosis and
upregulated Tim-1 gene expression in the liver of WT mice. Surprisingly, Tim-1-/- mice
on HFD diet exhibited an exacerbation of hepatic steatosis, accompanied with an
elevation of protein levels of fatty acid translocase CD36 and sterol regulatory element
binding protein 1 (SREBP1). Tim-1 deficiency also enhanced HFD-induced liver
inflammation and injury, as evidenced by augmented increase in hepatic expression of
pro-inflammatory factor lipocalin 2 and elevated serum alanine transaminase (ALT). In
addition, gene expression of type I, III and IV collagens and liver fibrosis were greatly
enhanced in HFD Tim-1-/- mice compared with HFD WT mice. HFD-induced hepatic
expression of YM-1, a specific mouse M2 macrophage marker, was further upregulated
by deletion of Tim-1. Together, these results show that Tim-1 deficiency aggravates the
effects of HFD diet on lipid accumulation and liver fibrosis, most likely through enhanced
infiltration and activation of inflammatory cells.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver
diseases in western countries (1). The prevalence of NAFLD in the U.S. adult population is
approximately 25%, and about one-fourth of the patients with NAFLD progress to nonalcoholic
steatohepatitis (NASH) (2). Through histological examinations, NASH is characterized by steatosis,
hepatocyte ballooning, lobular inflammation, and varying degrees of liver fibrosis, which can lead to
org October 2021 | Volume 12 | Article 7477941
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scarring of the liver (3). NASH has become a major health
concern; however, there are no FDA-approved drugs for the
treatment of this disease. Thus, improving our understanding of
the functions of genes/mediators that contribute to the
susceptibility to and severity of NAFLD/NASH is of great
consequence to both the treatment and prevention of chronic
liver disease.

The liver is recognized as an innate immunity organ and the
hallmark of NASH is markedly enhanced infiltration of various
immune cells, including hepatic macrophages (liver-resident
Kupffer cells and recruited monocyte-derived macrophages),
neutrophils, monocytes, and natural killer T cells (4–6). Given
the functional role of hepatic macrophages as a master regulator
of immune homeostasis and a pivotal coordinator of liver
inflammation, it has been postulated that macrophage
activation and polarization are involved in the progression of
NAFLD to NASH. Nevertheless, it remains largely unknown
how M1 versus M2 macrophages contribute to liver
inflammation and fibrosis progression in advanced NASH.

T cell immunoglobulin and mucin domain-containing
molecule 1 (Tim-1), also known as hepatitis A virus cellular
receptor 1 (Havcr-1) and kidney injury molecule 1 (Kim-1), was
first identified in kidney cells of African green monkeys in 1996
(7). Tim-1 protein, identified in activated T cells, B cells and
dendritic cells, functions as co-stimulators and co-inhibitors of
immune responses. For example, studies using blocking or
activating antibodies have shown that the interaction between
Tim-1 and ligand can enhance the activation of T cells and
increase the production of Th2 type cytokines while blocking this
interaction can greatly inhibit the activity of Th2 cells, thus
regulating the immune response mediated by Th2 cells (8–15).
Notably, a study performed in in vivo allergic airway disease
revealed enhanced production of the Th2 cytokines (e.g., IL-4,
IL-5, and IL-13) and inflammatory responses in the absence of
Tim-1, suggesting that its primary role is to dampen, rather than
promote, Th2-type immune responses (16). This concept is also
supported by the findings that blockade of Tim-1 in low-density
lipoprotein receptor (ldlr)-deficient mice aggravates
atherosclerosis, which is likely related to the change in Th1/
Th2 balance and reduced circulating regulatory T cells (17).
Interestingly, Tim-1 signaling has been confirmed to be
necessary for liver ischemia-reperfusion injury via increasing T
cell, neutrophil, and macrophage sequestration (18, 19). High
Tim-1 expression was observed in liver graft during ischemia-
reperfusion injury development, and inhibition of Tim-1
abolished neutrophil and macrophage infiltration/activation in
liver transplantation (18, 20) and subsequently ameliorated
hepatocellular damage and improved liver function (18). Based
on these observations, we hypothesized that Tim-1 plays a role in
diet-induced NAFLD/NASH via its modulation of the
inflammatory response to metabolic stress.

In this study, we generated mice deficient in Tim-1 and
evaluated their responses to chronic high-fat diet (HFD)
treatment. We found that the Tim-1 gene was significantly
upregulated in HFD-fed wild-type (WT) livers. Tim-1
deficiency led to an exacerbation of HFD-induced steatosis
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concomitant with enhanced liver infiltration of neutrophils as
well as macrophage activation and M2 polarization.
MATERIALS AND METHODS

Animal Experiments
The Tim-1/Havcr-1/Kim-1 knockout (Tim-1-/-) mouse strain
was generated using CRISPR/Cas9 technology on a C57BL/6J
genetic background by the Gene Edit Biolab (Atlanta, GA, USA).
Tim-1-/- mice were produced through heterozygous breeding.
Tail samples were collected and genotyped. The animals were
housed in a temperature-controlled room with 12 h light/dark
regimen. All animal experiments were approved by the
Institutional Animal Care and Use Committee at the
Morehouse School of Medicine and were performed according
to strict government and international guidelines on
animal experimentation.

Male WT and Tim-1-/- mice at the age of 6 - 8 weeks were fed
with standard chow or HFD diet for 5 - 6 months. The HFD,
containing 42% fat, was purchased from the Envigo (TD.88137;
Madison, WI, USA). Mouse body weight was measured every
week, and blood glucose was monitored biweekly. The mice were
fasted for 5-6 hours before euthanasia. Blood was collected by
heart puncture. Liver and kidney tissues were harvested and
stored in 4% paraformaldehyde or quickly frozen in liquid
nitrogen and then stored at -80°C until further use.

Biochemical Analysis
Blood samples were clotted at room temperature for 2 hours and
then centrifuged at 1200xg for 20 minutes. Serum samples were
assayed immediately or split and stored at -80°C, avoiding
repeated freeze-thaw cycles. Serum insulin concentration was
measured using a kit from Thermo Fisher Scientific (Carlsbad,
CA, USA). The serum lipid levels of cholesterol and triglyceride
were measured to evaluate the relative lipid content changes via
commercially available kits provided by Wako Chemicals USA
Inc. (Richmond, VA, USA). Serum alanine aminotransferase
(ALT) concentration was determined to evaluate liver function
using an ALT activity assay kit (Thermo Fisher Scientific).

Quantitative Reverse Transcription
PCR Analysis
Total RNA from mouse liver and kidney cortex was extracted
using TRIzol (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Quantitative reverse transcription
PCR (RT-qPCR) was performed using SYBR Green PCR Master
Mix (Applied Biosystems, Foster City, CA, USA) and primers for
mouse genes (Table 1). GAPDH was used as endogenous
control. Each sample was run in triplicate, and the
comparative threshold cycle (Ct) method was used to quantify
fold increase (2-ΔΔCt) compared with controls.

Light Microscopy of Liver Sections
Ten percent formalin-fixed paraffin sections (5 µm) were stained
with hematoxylin and eosin (H&E) for histological evaluation.
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Another set of paraffin-embedded liver sections were stained
with Sirius Red to identify collagen. Neutral lipid accumulation
was determined by oil red O (ORO) staining of frozen hepatic
tissue sections, which allows detection of triglyceride and
cholesterol esters. The slides were observed and imaged by the
Olympus microscope. All histological analysis was conducted by
two observers in a blinded fashion. Sirius Red or ORO-stained
areas were quantified by ImageJ software (21).

Western Blot Analysis
Liver tissue samples were lysed with RIPA lysis buffer
(Sigma Aldrich Inc., St. Louis, MO, USA) and a protease
inhibitor cocktail (Sigma-Aldrich). Protein (30 µg)
samples were separated by 4-20% SDS-PAGE and transferred
electrophoretically to nitrocellulose membranes (GE Healthcare,
Piscataway, NJ, USA). The blots were incubated with primary
antibodies for lipocalin-2 (LCN2, 1:1000, R&D, Minneapolis,
MN, USA), fatty acid transport protein (FATP)2 (1:1000, Novus
Biologicals, Centennial, CO, USA), FATP5 (1:1000, Novus
Biologicals), CD36 (1:1000, Abcam, Cambridge, MA, USA),
sterol regulatory element binding protein (SREBP)1 (1:500,
Santa Cruz Biotechnology, Santa Cruz, CA, USA), Ly6G/6C
(1:1000; BD Diagnostic Systems, Sparks, MD, USA), F4/80
(1:1000; Bio-Rad Laboratories Inc., Irvine, CA, USA), and
GAPDH (1:6000, Sigma-Aldrich). After incubation with HRP-
conjugated secondary antibody, signals were detected using
enhanced chemiluminescence ECL reagents (GE Healthcare).
Relative band intensity was measured densitometrically by
ImageJ software with GAPDH, a housekeeping protein, as an
internal control.

Immunostaining
To examine the expression and distribution of LCN2, 5-µm
cryostat liver sections were incubated with one or two primary
antibodies overnight: goat anti-LCN2 (1:100; R&D) and rat anti-
Ly6G/6C (a marker of neutrophils; 1:100; BD Diagnostic
Systems) or goat anti-LCN2 and rat anti-F4/80 (a marker of
macrophages; 1:100; Bio-Rad Laboratories Inc.). The secondary
antibodies were Alexa Fluor 488-conjugated donkey anti goat or
rat IgG (1:200) or Alexa Fluor 555-conjugated donkey anti-goat
Frontiers in Immunology | www.frontiersin.org 3
or rat IgG (1:200) from the Jackson ImmunoResearch
Laboratories (West Grove, PA, USA). As a negative control,
the sections were exposed to nonimmune IgG (in replacement of
primary antibodies) with the same secondary antibodies, and no
specific staining was observed. After nuclear staining with DAPI,
the slides were mounted with ProLong gold antifade reagent
(Thermo Fisher Scientific). The sections were observed and
imaged by a Leica confocal microscope (Wetzlar, Germany).

Statistical Analysis
Data are expressed as means ± SEM. Student’s t-test was used for
comparison between two groups. Comparisons among multiple
groups were performed by one-way ANOVA and Tukey post hoc
test. Differences were considered statistically significant at
P < 0.05.
RESULTS

Tim-1 Gene Expression Was Upregulated
in HFD-Fed C57BL/6J Mouse Livers
Previous studies have shown that hepatic expression of Tim-1 is
increased in liver ischemia-reperfusion injury (18–20). Here, we
examined the effect of metabolic stress on Tim-1 expression in
the liver of C57BL/6J WT mice. Compared to chow control
group, HFD feeding for 5-6 months significantly increased body
weight (Figure 1A) and liver weight (Figure 1B). In addition,
real-time qPCR analysis revealed an upregulation of hepatic
Tim-1 transcript in HFD-induced obese mice compared with
chow controls (Figures 1C, D), whereas its mRNA levels were
not different in kidney tissues of chow (1.1 ± 0.2, n=5) and HFD
(0.9 ± 0.1, n=4) WT mice.

Tim-1 Deficiency Enhanced HFD-Induced
Hepatic Steatosis
To further explore the function of Tim-1 in diet-induced hepatic
steatosis, Tim-1-/- mice on C57BL/6J background were generated
by inserting a Lox-Stop-Lox cassette into intron 2 of Tim-1 using
CRISPR/Cas9 technology (Figures 2A, B). As expected, Tim-1
October 2021 | Volume 12 | Article 74779
TABLE 1 | Primer sequences for qPCR.

Mouse genes Forward (5’-3’) Reverse (5’-3’)

Tim-1 AAACCAGAGATTCCCACACG GTCGTGGGTCTTCCTGTAGC
Lcn2 CCATCTATGAGCTACAAGAGAACAAT TCTGATCCAGTAGCGACAGC
Col1a1 CCAAGAAGACATCCCTGAAGT GTGGCAGATACAGATCAAGCA
Col3a1 CGTAGATGAATTGGGATGCA ACATGGTTCTGGCTTCCAG
Col4a1 GCTGCCTGCGTAAGTTCAG CGTGGACAGCCAGTAAGAGT
Fn1 TTTGACAATGGGAAGCACTATC CAAACCAGGGCGTTGC
CD11c CTGGATAGCCTTTCTTCTGCTG GCACACTGTGTCCGAACTCA
TNF-a ACGGCATGGATCTCAAAGAC AGATAGCAAATCGGCTGACG
CD206 CATGGATGTTGATGGCTACTGGAG GTCTGTTCTGACTCTGGACACTTG
YM-1/Chil3 AGAGTGCTGATCTCAATGTGG GGGCACCAATTCCAGTCTTAG
TGF-b1 TGCTAATGGTGGACCGCAA CACTGCTTCCCGAATGTCTGA
IL-10 ATGCTCCTAGAGCTGCGGACT CCTGCATTAAGGAGTCGGTTAG
GAPDH CATCACTGCCACCCAGAAGACTG ATGCCAGTGAGCTTCCCGTTCAG
4
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mRNAwas not detectable in the liver (Figure 2C) of Tim-1-/- mice.
The Tim-1-/- mice on chow diet had normal size and displayed
normal physical behavior and activity. Moreover, deletion of Tim-1
had no effects on body weight gain and blood glucose in mice fed
with chow or HFD diet. Serum insulin levels were similarly
increased in HFD-fed WT (5.51 ± 1.29 ng/ml, n=6) and Tim-1-/-

(6.58 ± 2.24 ng/ml, n=4) compared to chow-fed WT (1.73 ± 0.18
ng/ml, n=5) and Tim-1-/- (2.29 ± 0.37 ng/ml, n=6) mice.

Serum triglyceride and total cholesterol levels were measured to
evaluate the effect of Tim-1 deficiency on mouse lipid profile in
serum. Compared to chow controls, HFD feeding led to a similar
increase in cholesterol levels inWT and Tim-1-/- mice (Figure 3A),
whereas triglyceride levels were not different among all four groups
(Figure 3B). Although Tim-1 deficiency did not alter the liver
weight and liver index (liver weight to body weight ratio) in chow-
fed mice, there was a greater increase in liver weight and liver index
in HFD-fed Tim-1-/- mice compared with HFD WT animals
(Figures 3C, D). To further confirm the effect of Tim-1 deficiency
on hepatic steatosis, we next evaluated lipid accumulation using
H&E andORO staining with liver sections. As shown in Figure 3E,
therewas no significant difference in liver histology and lipid storage
between WT and Tim-1-/- mice on chow diet. However, HFD-
induced hepatocyte ballooning and neutral lipid accumulationwere
more prominent in mice lacking Tim-1. ORO-positive area
averaged 5.8 ± 1.1% in HFD-fed WT livers, which was further
increased to 10.2 ± 1.3% (P<0.05) in HFD Tim-1-/- ones.
Frontiers in Immunology | www.frontiersin.org 4
Tim-1 Deletion Enhanced HFD-Induced
Hepatic Expression of Proteins Involved in
Lipid Uptake and Biogenesis
To understand the mechanisms by which Tim-1 deficiency
accelerates diet-induced hepatic steatosis, we next determined
the proteins involved in the transport and biogenesis of fatty
acids (FAs). Hepatic FA uptake is mainly mediated by SLC27A/
FATPs and FA translocase CD36 (22, 23). Two members of the
FATP family, FATP2 and FATP5, are robustly expressed in liver
(24) and are thought to be involved in the early steps of long-
chain FA uptake/activation (25, 26). Thus, we first compared the
protein levels of FATP2 and FATP5 in the liver of chow or HFD-
fed WT and Tim-1-/- mice. As shown in (Figures 4A, B), there
was no significant difference in hepatic FATP2 protein among
the four groups. Compared to chow controls, an upregulation of
FATP5 protein expression was observed in HFD Tim-1-/- mice
but not in HFD WT mice (Figures 4A, C). The FA translocase
protein CD36 has been shown to accelerate FA uptake and
extensive incorporation into triglycerides (27). Compared to
chow controls, CD36 protein was significantly increased in
liver tissues of HFD-fed WT mice, which was further enhanced
by Tim-1 deletion (Figures 4A, D).

As a family of transcription factors involved in the biogenesis
of cholesterol, FAs and triglycerides, SREBPs are implicated in
the pathogenesis of NAFLD/NASH and SREBP1 is the primary
subtype expressed in the liver of mice and humans (28, 29). Here,
A B

C D

FIGURE 1 | High-fat diet (HFD) feeding for 6 months led to an upregulation of hepatic Tim-1 in wild-type C57BL/6 mice. (A, B) Increased body weight and liver
weight in HFD-fed mice compared to chow controls. (C, D) Representative gel and quantitative analysis after 35 cycles RT-PCR revealed an upregulation of Tim-1
gene expression in HFD mouse liver. Values are mean ± SEM. n = 5-6 mice; **P<0.01, ***P<0.001 vs. chow control group.
October 2021 | Volume 12 | Article 747794
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we confirmed that HFD feeding increased SREBP1 protein in
WT livers (Figures 4A, E). Although Tim-1 deficiency had no
effect on SREBP1 expression in the liver of chow-fed mice, HFD-
induced upregulation of SREBP1 was greatly augmented by
deletion of Tim-1 (P < 0.001 versus HFD WT group).

Tim-1 Deletion Accelerated HFD-Induced
Liver Injury and Inflammation
In accordance with the more severe hepatomegaly and NAFLD
liver phenotype shown by H&E and ORO staining in HFD-fed
Tim-1-/- mice, HFD induced more hepatic secretion of ALT, a
useful biomarker of liver injury, in mice lacking Tim-1. As shown
in Figure 5A, HFD-fed Tim-1-/- mice showed significantly
higher serum ALT level compared to the same diet-treated WT
mice, supporting that deletion of Tim-1 promotes HFD-induced
liver damage.

Lipocalin-2 [LCN2, also known as neutrophil gelatinase-
associated lipocalin (NGAL)] is known to be expressed by a
variety of cells including neutrophils, macrophages, epithelial
cells like hepatocytes and its upregulation in liver is a reliable
indicator of liver inflammation and damage. To further confirm the
effects of Tim-1 deficiency on liver injury and inflammation, we
examined the mRNA and protein levels of LCN2 in diet-induced
fatty livers. As shown in Figure 5B, HFD feeding increased hepatic
LCN2 mRNA by 34-fold in WT and 83-fold in Tim-1-/- mice (P <
0.01 versus HFD WT group). Accordingly, Western blot analysis
Frontiers in Immunology | www.frontiersin.org 5
revealed that HFD-induced upregulation of LCN2 protein in liver
tissues was substantially enhanced in mice lacking Tim-1
(Figures 5C, D). Moreover, Tim-1 deletion accelerated HFD-
induced neutrophil infiltration. As shown in Figures 5C, E,
Ly6G protein was greatly higher in the liver of HFD Tim-1-/-

mice compared to HFD WT mice, whereas F4/80 was similarly
increased in HFD-fed WT and Tim-1-/- livers (Figures 5C, F).

Next, we determined if neutrophils and/or macrophages are
the primary cell sources of elevated LCN2 in the obese liver by
dual-labeling of the liver sections for LCN2 with Ly6G or with
F4/80. In addition to barely detectable LCN2 staining in normal
mouse livers, there were no apparent Ly6G or F4/80 signals in
chow-fed WT and Tim-1-/- mouse livers. As depicted in
Figures 6A, B, increased LCN2, Ly6G, and F4/80 were
observed in HFD WT livers, which was further enhanced by
Tim-1 deletion. Some but not all LCN2-positive cells were
stained positive for Ly6G (Figure 6A). Similarly, a subset but
not all LNC2-positive cells expressed macrophage marker F4/80.
Our results support that Tim-1 deficiency enhanced LCN2
expression in both infiltrated neutrophils and macrophages in
HFD mouse livers.

Tim-1 Deletion Accelerated HFD-Induced
Liver Fibrosis
To further determine if increased hepatic injury and inflammation
in HFD Tim-1-/- mice would enhance collagen deposition, we next
A

B

C

D

FIGURE 2 | Generation of global Tim-1 knockout mice. (A) Schematic diagram of generation of Tim-1 Lox-Stop-Lox knock-in (Tim-1-/-) mice. (B) Genotyping PCR
of tail DNA from wild-type (WT), heterozygous (Tim-1+/-), and homozygous (Tim-1-/-) mice. (C) Representative image of hepatic Tim-1 gene after 35 cycles RT-PCR in
WT and Tim-1-/- mice.
October 2021 | Volume 12 | Article 747794
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performed Sirius Red staining on paraffin-embedded liver
sections. As depicted in (Figures 7A, B), Sirius red staining
revealed that HFD feeding for 6 months induced minor to
moderate accumulation of collagen fibers in liver tissue of WT
mice. Tim-1 deficiency greatly enhanced HFD-induced fibrosis, as
shown by abundant fibrillar collagen deposition in HFD Tim-1-/-

livers. The liver expresses type I (Col1), III (Col3) and IV (Col4)
collagens with type I being the major collagen associated with
hepatic fibrosis inWestern diet-fed mice and humans with NASH.
Compared to chow controls, we found that HFD substantially
increased the expression of Col1a1, Col3a1, and Col4a1 by 24-, 10-
, and 2.6-fold, respectively in Tim-1-/- livers and 7-, 4-, and 2-fold,
respectively in WT livers (Figure 7C), while fibronectin 1 (Fn1)
transcript levels were not different among the groups.
Frontiers in Immunology | www.frontiersin.org 6
Tim-1 Deletion Enhanced M2 Macrophage
Polarization
Macrophages have been found to both promote liver fibrosis and
contribute to its resolution by reprogramming the two different
polarization states, pro-inflammatory M1 macrophages
(classically activated) and anti-inflammatory M2 macrophages
(alternatively activated), which was driven by micro-
environmental cues. To further evaluate the effect of Tim-1
deficiency on macrophage activation and polarization, we next
determined the expression levels of markers for M1 and M2
macrophages in liver tissues. Compared to chow controls, HFD
feeding caused a similar increase in mRNA levels of M1 marker
CD11c (Figure 8A) and pro-inflammatory cytokine TNF-a
(Figure 8B) in both WT and Tim-1-/- mice. As indicated in
A B

C D

E

FIGURE 3 | Tim-1 deficiency accelerated diet-induced hepatic steatosis. Serum levels of cholesterol (A) and triglyceride (B), liver weight (C), and liver weight to
body weight (LW/BW) ratio (D) in chow or high-fat diet (HFD) WT and Tim-1-dificient (Tim-1-/-) mice. (E) Representative images of H&E and Oil red O (ORO) staining
of WT and Tim-1-deficient (KO) livers (scale bar = 100 µm). Values are mean ± SEM. n=4-6 mice. Statistical differences were assessed by one-way ANOVA with
Tukey’s multiple comparisons test; *P<0.05, ***P<0.001.
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Figure 8C, hepatic expression of CD206, a well-known M2
marker for both mouse and human, was not affected by HFD
diet or Tim-1 deletion. In contrast, HFD feeding substantially
increased hepatic expression of YM-1, a specific mouse M2
marker, by 18-fold in WT and 42-fold in Tim-1-/- mice (P <
0.05 vs. HFD-WT) compared with chow controls (Figure 8D).
mRNA levels of anti-inflammatory cytokine TGF-b1 were
elevated to a similar extent in HFD-fed WT and Tim-1-/- mice
(Figure 8E). Additionally, hepatic expression of IL-10 was not
significantly modified by diet or Tim-1 deletion (Figure 8F).
DISCUSSION

This is the first study that documents the functional significance of
Tim-1 in diet-induced NAFLD/NASH. We found that Tim-1
expression was significantly upregulated in the liver of HFD-fed
WT mice. Tim-1 deficiency resulted in an exacerbation of HFD-
induced hepatic steatosis and inflammation, as evidenced by
increased hepatocyte ballooning and excessive lipid accumulation
concomitant with augmented infiltration of inflammatory cells as
well as pronounced hepatic expression of LCN2 in HFD Tim-1-/-

mice. Moreover, HFD-induced collagen deposition and hepatic
expression of fibrotic and M2 macrophage markers were
significantly enhanced by genetic deletion of Tim-1. Our results
suggest that Tim-1 functions in pathways that suppress the
recruitment and activation of inflammatory cells in the liver and
protect against NASH progression.

In agreement with previous reports (30–35), we found that
HFD-fed C57BL/6J mice gained excessive weight and developed
NAFLD/NASH as assessed by liver histology within 6 months of
HFD feeding. Interestingly, diet-induced liver steatosis was
Frontiers in Immunology | www.frontiersin.org 7
significantly exacerbated by Tim-1 deletion, as evidenced by
higher liver weight, more severe hepatocyte ballooning and
excessive lipid accumulation in HFD Tim-1-/- mice. These
results support a functional role for Tim-1 in lipid metabolism
and/or hepatic distribution in response to metabolic stress.

Hepatic steatosis develops when lipid uptake and de novo
synthesis surpass lipid oxidation and export. In NAFLD, hepatic
FA uptake and de novo lipogenesis are increased. Long-chain FAs
can be either transported directly by FATPs across the plasma
membrane or, alternatively, are first accumulated on the plasma
membrane by binding to CD36, which subsequently transfers FAs
to transport proteins. As a member of glycoprotein, FA
translocation enzyme CD36 is weakly expressed in hepatocytes
and liver tissue under physiological conditions but significantly
upregulated in animal models and NAFLD patients (36, 37).
Moreover, previous studies confirmed that overexpression of
CD36 led to steatosis in mice, and liver-specific knockout of
CD36 reduced lipid content in mice fed with HFD (23, 38). Our
finding that Tim-1 deletion greatly enhanced HFD-induced
upregulation of hepatic CD36 protein expression suggests that
Tim-1 deficiency may disrupt lipid homeostasis by increasing FA
uptake via its modulation of CD36. In addition, hepatic expression
of SREBP1 protein, an important transcriptional promoter of
lipogenesis activated by insulin signaling in the fed state, was
induced by HFD treatment in WT mice, which was further
upregulated by Tim-1 deletion. Together, our results strongly
support that Tim-1 deficiency may accelerate the severity
of hepatic steatosis by increasing both FA uptake and
de novo lipogenesis.

Next, we confirmed that Tim-1 deficiency aggravated HFD-
induced liver injury and inflammation, as evidenced by elevated
serum ALT, and increased LCN2 mRNA and protein in liver
A B C

ED

FIGURE 4 | Tim-1 deficiency increased protein levels of FATP5, CD36 and SREBP1 in HFD mouse livers. (A) Representative Western blot images of FATP2, FATP5,
CD36, and SREBP1 in the liver of chow or HFD-fed WT and Tim-1-/- mice. (B–E) Quantitative analysis of each protein. Values are mean ± SEM. n=4-6 mice.
Statistical differences were assessed by one-way ANOVA with Tukey’s multiple comparisons test; *P<0.05, **P<0.01, ***P<0.001.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


George et al. Tim-1 in Diet-Induced Steatohepatitis
tissues. One of the striking effects of Tim-1 deficiency in diet-
induced NAFLD was substantially increased hepatic expression
of LCN2 concomitant with increased infi ltration of
inflammatory cells including neutrophils and macrophages.
Moreover, confocal immunofluorescence images revealed a
partial colocalization of LCN2 with neutrophil marker Ly6G or
with macrophage marker F4/80, demonstrating both neutrophils
and macrophages as the major cell populations contributing to
Tim-1-enhanced LCN2 upregulation in diet-induced NAFLD/
NASH mouse model. LCN2, an acute protein induced in
response to bacterial infection, metabolic stress, or injury, has
been proven to be a reliable biomarker of liver injury and
inflammation. Previous studies also demonstrated that injury-
induced upregulation of hepatic LCN2 has a significant
Frontiers in Immunology | www.frontiersin.org 8
hepatoprotective effect in acute liver injury and that
hepatocytes are the major source for hepatic LCN2 (39–41).
Furthermore, these data suggest that LCN2 might act as an
intrinsic “help-me” sensor upon injury to recruit inflammatory
cells. In line with this assumption, Asimakopoulou et al.
observed that Lcn2-deficient mice showed a significantly lower
recruitment of neutrophils and leukocytes, compared to WT
animals, when fed with a methionine-choline-deficient (MCD)
diet that induces hepatic inflammation and injury (42). A recent
report also provides evidence that LCN2 is implicated in the
progression of simple steatosis to NASH by promoting
neutrophil-macrophage crosstalk (43). The authors found that
Lcn2-deficient mice on high-fat high-cholesterol (HFHC) diet
had reduced infiltration of both neutrophils and macrophages,
A B

C D

F
E

FIGURE 5 | Tim-1 deficiency enhanced HFD-induced liver injury. (A) Serum alanine aminotransferase (ALT) concentration in chow or HFD-treated WT and Tim-1-/-

mice. (B) Real-time qPCR analysis of lipocalin 2 (LCN2) transcript in chow or HFD-fed WT and Tim-1-/- mouse livers. (C–F) Representative Western blot image and
quantitative analysis of hepatic LCN2, Ly6G/C, and F4/80 proteins. Values are mean ± SEM. n=4-6 mice. Statistical differences were assessed by one-way ANOVA
with Tukey’s multiple comparisons test; *P<0.05, **P<0.01, ***P<0.001.
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and chronic LCN2 administration-induced elevation of hepatic
macrophages was abrogated by Ly6G antibody-mediated
depletion of neutrophils (43). Likewise, mice treated with
ethanol exhibited elevated LCN2 expression in neutrophils,
and Lcn2-deficient mice are protected from alcoholic
steatohepatitis (ASH) as demonstrated by reduced neutrophil
infiltration and liver injury (44). Thus, Tim-1 deficiency may
accelerate obesity-related liver inflammation and injury by
upregulating LCN2, which warrants further investigation.

Upon chronic inflammation and injury, hepatic stellate cells
(HSCs) are activated and turn into the primary source of
extracellular matrix in ASH and NASH. A recent study
provides evidence that hepatic LCN2 is also involved in the
activation of HSCs in ASH (45). The authors found that hepatic
expression of Col1a1 was elevated in ASH patients and
correlated with hepatic LCN2 expression, and Lcn2-deficient
mice were protected from liver fibrosis caused by either ethanol
or CCl4 exposure. The causal role of LCN2 in tissue fibrosis is
also supported by an in vitro study that recombinant LCN2
induced type 1 collagen protein expression in human fibroblasts
in a dose-dependent fashion (46). In the current study, we found
that mice lacking Tim-1 showed an enhanced fibrogenic
response associated with an upregulation of LCN2 expression
in the liver of HFD-fed mice.
Frontiers in Immunology | www.frontiersin.org 9
The development of fibrosing steatohepatitis is a complex
process that involves multicellular responses other than HSCs.
For example, activated macrophages can differentiate into
diverse phenotypes contributing to both the progression and
regression of the fibrotic process (47–49). Deletion of the
macrophage population either during injury or during repair/
resolution has dramatically different effects on the overall fibrotic
response (49, 50). Specifically, macrophage depletion in
progressive inflammatory injury results in amelioration of
fibrosis; in contrast, depletion during recovery results in a
failure of resolution with the persistence of cellular and matrix
components of the fibrotic response (49, 50). Using a set of
established markers, Belijaars et al. further localized and
quantified M1 (classically activated)- and M2 (alternatively
activated)-dominant macrophages in CCl4-damaged mouse
livers as well as human end-stage cirrhotic livers (47). They
found that M2 markers were present in liver fibrotic lesions but
nearly absent during the resolution of fibrosis, suggesting a more
pro-fibrotic character of M2-dominant macrophages in human
and mouse livers (47). In this study, we also quantified hepatic
gene expression of M1 and M2 markers to further determine if
Tim-1 is involved in macrophage polarization and activation, A
similar upregulation of CD11c and TNF-a gene expression was
observed in HFD-fed WT and Tim-1-/- livers, suggesting that
Tim-1 may not be required for M1 macrophage polarization. We
next determined CD206 (mannose receptor, MCR-1) and YM-1,
M2 macrophage markers, in mouse NAFLD/NASH livers.
Hepatic mRNA levels of CD206, a well-known marker for
both mouse and human M2 macrophages, was unaltered by
either HFD diet or Tim-1 deletion. While in many organs M2
macrophages specifically express CD206, in livers its expression
was found in macrophages as well as in sinusoidal endothelial
cells (47), which complicate the quantitative interpretation of
mRNA expression analysis of whole liver homogenates. Of note,
YM-1 does not have this disadvantage and acts as a specific and
useful marker for M2 macrophages in mouse liver (47, 51).
Therefore, a substantial enhancement of HFD-induced hepatic
expression of YM-1 transcript by loss of Tim-1 supports an
important role for Tim-1 in M2 macrophage polarization.

Previous studies have demonstrated that M2-dominant
macrophages, activated by Th2 cytokines (e.g., IL-4 and IL-13),
are associated with increased fibrogenesis, tissue remodeling, and
angiogenesis (52–54). When cultured with myofibroblasts, M2
macrophages promote complex matrix deposition (52, 53, 55, 56).
Although Tim-1 has been proposed to have both activating and
inhibitory effects in immune responses by studies using different
monoclonal antibodies (8–15), a recent study performed in in vivo
allergic airway disease revealed enhanced inflammatory responses
and production of the Th2 cytokines IL-4, IL-5, and IL-13 in the
absence of Tim-1, suggesting that its primary role is to dampen,
rather than promote, Th2-type immune responses (16). Here, we
found that Tim-1 deficiency enhanced HFD-induced macrophage
accumulation and M2 polarization concomitant with accelerated
fibrotic response in the mouse NAFLD/NASH model. It is likely
that Tim-1 exerts an anti-fibrotic effect by inhibiting alternative
activation of macrophages though its modulation of Th2-type
immune response.
A

B

FIGURE 6 | Tim-1 deficiency increased LCN2 expression in infiltrated liver
neutrophils and macrophages. Representative immunofluorescence images of
double staining for LCN2 with neutrophil marker Ly6G/C (A) or macrophage
marker F4/80 (B) in chow or HFD-fed WT and Tim-1-/- livers.
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Our results suggest that Tim-1 deficiency may accelerate
HFD-induced fibrosis by increasing macrophage infiltration
and M2 polarization. However, we cannot answer where the
M2-dominant macrophages come from, meaning are they
derived from bone marrow monocytes, or do they develop
from tissue-resident Kupffer cells. Previous studies showed that
monocytes do infiltrate the liver during fibrogenesis and
resolution. Moreover, during sustained Th2-type profiles,
alternatively-activated Kupffer cells may be essential
contributors in collagen synthesis, probably leading to an
active fibrogenic state (53, 57, 58). Therefore, understanding
the dynamics of all these different macrophages during
fibrogenesis as well as the interactions between immune cells
and macrophages is a subject of future research interest.

We are also aware that the use of global knockout mice, to
define the role of Tim-1 in NAFLD/NASH, does not allow to
Frontiers in Immunology | www.frontiersin.org 10
distinguish between its direct hepatic and extrahepatic effects.
It is well known that Tim-1/Kim-1 is massively induced in
damaged renal proximal tubules after acute and chronic
kidney injury (59, 60). Moreover, Tim-1/Kim-1 expression
is anti-inflammatory and reduces acute kidney injury due to
its mediation of phagocytic processes in renal tubular cells
(59, 60). There is growing evidence that NAFLD and chronic
kidney disease share common pathogenetic mechanisms and
that the fatty liver per se may promote kidney injury and vice
versa (61). In the present study, we used the C57BL/6J strain,
one of the most susceptible to obesity but relatively resistant
to kidney injury when fed high fat diets (62). Of note, we
found that HFD feeding did not alter Tim-1/Kim-1
expression in the kidney of WT mice, suggesting that renal
Tim-1 may play a minor role in diet-induced NAFLD/NASH.
To better define the role of hepatic Tim-1, however, using
A B

C

FIGURE 7 | Tim-1 deficiency accelerated HFD-induced liver fibrosis. (A) Representative images of Sirius Red staining to identify collagen deposition in liver sections
from chow or HFD-fed WT and Tim-1-/- mice. (B) Quantitative analysis of Sirius Red-stained liver tissue sections. (C) Real-time qPCR analysis of hepatic gene
expression of type I (Col1a1), type III (Col3a1), and type IV (Col4a1) collagen as well as fibronectin (Fn1) in chow or HFD-treated WT and Tim-1-/- mice. Values are
mean ± SEM. n=4-6 mice. Statistical differences were assessed by one-way ANOVA with Tukey’s multiple comparisons test; *P < 0.05, **P < 0.01, ***P < 0.001.
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tissue-specific Tim-1 knockout mouse model is warranted in
the future.

In summary, this study revealed that Tim-1 deficiency led to
an enhancement of lipid accumulation, and liver inflammation
and injury in diet-induced NAFLD/NASH mouse model. In
addition, we provide evidence that Tim-1 expression regulates
lipid metabolism in hepatocytes by targeting CD36 and SREBP1.
Our results indicate a regulatory role for Tim-1 in HFD-induced
steatohepatitis and might be considered as a target for the
prevention and treatment of chronic liver disease.
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