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Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically
important plant pollinators. High average annual losses of honey bee colonies in the US
have been partially attributed to agrochemical exposure and virus infections. To examine
the potential negative synergistic impacts of agrochemical exposure and virus infection, as
well as the potential promise of phytochemicals to ameliorate the impact of pathogenic
infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus,
deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds.
Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical
and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3)
clothianidin, a grower-applied insecticide. We determined that virus abundance was
lower in honey bees fed 0.16 ppb thyme oil augmented sucrose syrup, compared to bees
fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that
honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi
genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and
hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator,
compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed
fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to
levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had
lower virus levels, likely because consuming a near lethal dose of insecticide made them
poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey
bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and
hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants
and stressors impact the outcome of virus infection and immune gene expression in
honey bees.
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1 INTRODUCTION

Honey bees (Apis mellifera) are important pollinators of fruit,
nut, and vegetable crops that make up a large proportion of the
human diet (1–3). The value of pollination services in the United
States is $14.6 billion annually (4). Maintaining the honey bee
pollination force has been challenging in many parts of the
world, including the US, where annual colony losses averaged
38% from 2008 to 2018 (5–10). A combination of biotic and
abiotic factors impact colony health including lack of quality
nutritional resources, exposure to beekeeper and/or grower
applied chemicals, parasites, and pathogens [reviewed in (11–
13)]. The ectoparasitic mite, Varroa destructor, is responsible for
a large percentage of colony deaths in the US and Europe (14–16)
reviewed in (17). Varroa mites feed on the bee fat bodies and
hemolymph, kill brood, and vector viruses, including deformed
wing virus within and between colonies (17–21). Honey bee
pathogens, including bacteria, microsporidia, fungi,
trypanosomatids, and viruses also contribute to honey bee
colony deaths.

The largest category of honey bee infecting pathogens are
positive-sense single-stranded RNA (+ssRNA) viruses [reviewed
in (22, 23)]. Honey bee infecting viruses include members of the
Dicistroviridae family [e.g., Israeli acute paralysis virus (IAPV),
Kashmir bee virus (KBV), acute bee paralysis virus (ABPV), and
black queen cell virus (BQCV)], the Iflaviridae family [e.g.,
deformed wing virus (DWV), sacbrood virus (SBV)], chronic
bee paralysis virus (CBPV), and the Lake Sinai viruses (LSVs)
[reviewed in (22, 24)]. DWV is one of the most well-characterized,
globally distributed bee-infecting viruses (25, 26). In temperate
climates, the prevalence and/or abundance of DWV typically
increases throughout the beekeeping season (15, 27–29). High
levels of DWV have been associated with honey bee colony deaths
(15, 30–34). Honey bees infected with DWV during development
may have wing deformities, whereas DWV infection in adult bees
may result in asymptomatic infections or symptomatic infections
characterized by shortened abdomen, cuticle discoloration, and
reduced lifespan (15, 25, 35, 36).While other factors may influence
the severity of virus infections, the effectiveness of honey bee
antiviral defense mechanisms is the greatest determinant of the
outcome of viral infection.

Honey bee immune defense mechanisms include NF-kB
mediated Toll and Imd (Immune Deficiency), Jak/STAT (Janus
Kinase/Signal Transducer and Activator of Transcription), JNK
(c-Jun N-terminal kinase), MAPK (Mitogen-Activated Protein
Kinases), and RNA interference (RNAi) pathways [reviewed in
(22, 37)]. The antiviral role of NF-kB mediated Toll and Imd
pathways in response to specific viruses has, in part, been
determined by examining the expression of antimicrobial
peptide encoding genes, including abaecin and hymenoptaecin,
in conjunction with quantifying virus abundance (37–41). RNA
viruses produce long dsRNA molecules as they replicate within
cells. These viral associated molecule patterns (VAMPS) are
recognized as non-self and trigger antiviral responses. In honey
bees and bumble bees dsRNA-mediated antiviral responses
include both sequence-specific RNA interference (RNAi) and a
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non-sequence specific virus reducing response (42–47). RNAi
mediated antiviral defense is initiated by the recognition of long
double stranded RNAs (dsRNAs) by endoribonuclease, Dicer,
which cleaves these dsRNAs into 21-23 nucleotide long small
interfering RNAs (siRNAs) (48). These siRNAs are incorporated
into the RNA-induced silencing complex (RISC), the non-target
binding passenger strand is released, and the remaining strand in
the RISC targets cognate RNAs, including viral genomes and
transcripts, for Argonaute mediated cleavage, thereby lowering
viral abundance (49–55). Although, the functions of these
proteins have been best-characterized in other organisms,
including Drosophila melanogaster (52, 55, 56), the antiviral
role of the RNAi pathway has been demonstrated in vivo in
adult honey bees and larvae. Transcriptome analyses of virus-
infected honey bees revealed that the expression of dicer-like and
ago2 was increased in response to SINV-GFP or IAPV infection,
but not in response to DWV (34, 42, 43, 45, 57–59).

In addition to the immune pathways described above, the
heat shock response is involved in antiviral defense in fruit flies
and honey bees (60, 61). The heat shock response pathway is
induced by various stressors including heat-stress (62). In the
context of viral infection, the role of the heat shock response
must be assessed for individual host-virus pairs, since heat shock
proteins can both positively negatively affect viral replication
(62–65). In honey bees, the expression of several heat shock
protein encoding genes including heat shock protein 90 (hsp90),
and heat shock 70-kDa protein cognate 4 (hsc70-4) are induced by
SINV-GFP infection and/or heat-shock, and the expression of
protein lethal (2)essential for life-like (pl2), which encodes a
protein with an Hsp20-domain, is modulated in honey bees
infected with several viruses (i.e., IAPV, DWV, and SINV-GFP)
(43, 57, 61, 66). Similar to the heat shock response genes, another
honey bee gene that is involved in multiple functions including
immunity, nutrition, stress resistance, behavioral development,
ageing, oxidative stress, and longevity is vitellogenin (vg) (67–76).
Therefore, vg expression is often utilized as a proxy for either or
both honey bee age and health status [reviewed in (77)] (78–80).

Studies aimed at better characterizing the impact of viruses on
honey bee health and the mechanisms of honey bee antiviral
defense have involved the use of naturally-infected bees, which
often have varying levels of infections, or bees experimentally
inoculated with honey bee viruses (e.g., DWV, IAPV, or mixed
virus stocks) or model viruses (43, 45, 61, 81). In this study, we
carried out experiments using a panel of viruses. Specifically, we
utilized DWV, and two model viruses [i.e., Flock House virus
(FHV) and Sindbis virus tagged with green fluorescent protein
(SINV-GFP)]. While it is important to carry out studies with
known honey bee infecting viruses, honey bee virus preparations
obtained from pupae may include co-purifying viruses, as well as
other proteins, and they are not a standardized source of
infectious material. The recent development of infectious
clones of honey bee viruses is promising, but they have not
been utilized for studies in laboratories beyond those in which
they were developed (82–84).The use of model viruses
circumvents the problems associated with analyzing data
obtained from studies impacted by pre-existing/confounding
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infections, enables preparation of standardized viral stocks from
cultured cells, and also facilitates comparative studies across
different insect species. Flock House virus (FHV) naturally
infects grass grubs (Costelytra zealandica), and is extensively
utilized model virus that infects a wide range of other insects
including mosquitoes, fruit flies, tsetse flies, and honey bees (85–
91). FHV has evolved a mechanism to counter the host immune
response; it encodes for protein B2, a viral suppressor of RNAi
[reviewed in (92)]. SINV-GFP is another well-characterized
model virus that has been extensively utilized to investigate
antiviral defense mechanisms in a wide range of insects
including fruit flies, mosquitos, and honey bees (42, 43, 61,
93). SINV-GFP is easily trackable both visually using
microscopy, and at the protein level via Western blot analyses.
Unlike FHV, Sindbis virus does not encode a viral suppressor of
RNAi (94–96). Overall, the use of a panel of viruses to examine
the impact of abiotic factors on the honey bee antiviral response
and the outcome of virus infection is important to ensure that
results are robust and potentially generalizable.

The honey bee immune system, and in turn the outcome of
virus infections in individual bees is influenced by nutritional
status and environmental factors (97–100). Honey bees gather
pollen and nectar from flowering plants which provision the
colony with nutrients including proteins, lipids, carbohydrates,
vitamins, and phytochemicals (101). In addition, honey bees
gather plant resins, which are the primary component of propolis
(102). Recent research efforts have focused on interaction of
phytochemicals and pathogens, since plant-derived compounds
can either be toxic or medicinal depending on the administered
dose (103). There is precedence in the literature that honey bee
diets supplemented with phytochemicals increase longevity and
prime the immune system by increasing the expression of
antimicrobial peptide encoding genes, for example, in honey
bees fed p-coumaric acid, the expression of antimicrobial
peptides defensin and abaecin was two-fold higher compared
to control bees (104–107). For the studies described herein, we
investigated the impact of phytochemical containing thyme oil
on the outcome of honey bee virus infections. Honey bees forage
on common thyme plants (Thymus vulgaris), which produce
thymol, a phytochemical that has shown promise in reducing
DWV loads in honey bees (104). Thymol, a terpene found in
pollen and nectar of Thymus vulgaris, is a major component of
thyme oil. T. vulgaris nectar contains 5.2 - 8.2 ppm thymol, while
thymol concentrations in bee-collected pollen samples range
between 0.0263 to 55.8 ppm (108–110). Thymol has also been
detected in honey (i.e., 0.27 ppm, 4-weeks post colony treatment
with 8 grams per week for 4 weeks) (111). Thyme oil contains
10% - 64% thymol depending on the plant species, geographical
sources, and harvest season, which may affect the volatile
composition of the plant (112–118). Thymol is widely used as
an acaricide and is an active ingredient in commercial Varroa
control formulations such as Apiguard® and ApiLife VAR®,
which contain 25% and 74% thymol respectively (119, 120).
Thymol treatments, ranging from 0.16 ppb - 120 ppm, have also
shown promise in reducing levels of honey bee pathogens
including Crithidia bombi, Nosema ceranae, a microsporidial/
Frontiers in Immunology | www.frontiersin.org 3
fungal pathogen, and DWV (104, 121–124). Previous research by
Palmer-Young et al., determined that newly emerged honey bees
that were fed a mixture DWV and 0.16 ppb thymol and released
back in the colony, had 26-fold decrease in DWV levels 7 days
post infection compared to bees exposed to DWV (104).
However, in parallel studies the natural occurring DWV-levels
in young bees that were maintained in laboratory and fed thymol
(0.16 ppb) for 10 days had similar DWV levels to untreated bees.
This study also determined that a higher concentration of thymol
(16 ppm) was toxic to honey bees. Overall, the results described
by Palmer-Young et al., were intriguing, but somewhat difficult
to interpret due to the lack of quantification of DWV inoculum,
which was hemolymph obtained from symptomatic bees; the
high degree of variation in DWV abundance in individual bees
(i.e., DCt ranged from -20 to 12); and the results describing
similar DWV levels in virus-inoculated bees and control bees
that were not fed thymol, indicating a high level of pre-existing
DWV abundance in the honey bees utilized for their
studies (104).

In addition to phytochemicals, honey bees are exposed to
neonicotinoid insecticides, fungicides, acaricides, and herbicides
(125, 126). Neonicotinoids, including clothianidin, are utilized
by growers to reduce the number of insects including aphids,
whiteflies, leafhoppers, and planthoppers that damage crops
(e.g., canola, corn, canola, cotton, soybeans) (127).
Neonicotinoids are neurotoxins that disrupt the insect nervous
system by irreversibly binding to nicotinic acetylcholine
receptors that transmit nerve signals. This prevents signal
transduction from the neurotransmitter acetylcholine, leading
to paralysis and death (128, 129). Although honey bees are not
the target insect, clothianidin is highly toxic to honey bees at
doses near the median lethal dose (LD50) of 3 ppb for oral
exposure and 22 ppb for contact exposure (130–134).
Clothianidin concentrations of up to 2.6 ppb have been
detected in pollen samples and concentrations ranging from 1
to 14 ppb, with most ranging between 0.3 to 5.4 ppb, in the nectar
of treated crops (133, 135–140). In addition to potential lethal
impact of clothianidin, sublethal doses have been shown to
negatively affect honey bee immunity, grooming and hygienic
behavior, neural gene expression, flight activity and homing
behavior (141–152). Furthermore, honey bees exposed to
pesticides including chlorpyrifos, thiamethoxam, thiacloprid,
and clothianidin have greater viral loads, indicating that
chemical exposure in conjunction with virus infection have a
negative synergistic impact (153–157). Higher virus abundance
in individual bees is in part due to dampened immune responses
(154). For example, young bees exposed to clothianidin had
greater DWV loads due to negative modulation of the NF- kB
pathway (154).

Honey bee colonies are also to exposed chemicals utilized as in-
hive treatments against honey bee pathogens, including Nosema
ceranae and Nosema apis. Nosema infections are treated at the
colony level with fumagillin dicyclohexyl ammonium (i.e.,
Fumagilin-B®), a compound derived from Aspergillus fumigatus
(158–160). Beekeepers typically treat nosemosis with the
manufacturer’s recommended concentration of 25 ppm
October 2021 | Volume 12 | Article 747848
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fumagillin, albeit field studies have recorded the use of higher
concentrations (161–164). In fact, detectable levels of fumagillin
residues (0.002 ppm- 0.066 ppm) persist inside the hives after
treatment (159, 165). While fumagillin is generally considered safe
for honey bee colonies, and that potential negative impacts may be
negligible in comparison to nosemosis, reports of higher mortality
in honey bee queens and workers fed fumagillin containing
sucrose syrup led to the recommendations that bees should not
be treated during the foraging season, and that treatments should
be restricted to one time in the spring and fall (166–168).

To better understand the impact of a phytochemical (i.e.,
thymol) and agrochemicals, including a grower-applied
insecticide (i.e., clothianidin) and a beekeeper applied fungicide
(i.e., fumagillin), on the outcome of virus infection in honey bees,
we carried out laboratory-based experiments on individual virus-
infected honey bees that were fed chemical containing diets. For
these studies, we utilized a panel of RNA viruses, including two
model viruses FHV and SINV-GFP, and one honey bee virus,
DWV. We hypothesized that thymol would act as an
immunostimulant and reduce virus infection levels. In
contrast, we hypothesized that virus-infected honey bees
exposed to fumagillin or clothianidin would harbor more
severe virus infections as a result of immunosuppressive effects.
We determined that virus-infected honey bees fed thyme oil
augmented sucrose syrup harbored lower virus levels, likely due
to greater expression of key immune genes including dcr-like,
ago2, abaecin, hymenoptaecin, and vitellogenin. Conversely, we
determined that fumagillin and clothianidin exposure had a
negative impact on honey bee immunocompetence with
reduced expression of key immune genes including dcr-like,
ago2, abaecin, hymenoptaecin, and vitellogenin, which resulted
in higher virus abundance in chemical-fed bees than virus levels
in bees fed only sucrose syrup. Together our results indicate that
thyme oil acts as an immune stimulant and thus reduces viral
burden, whereas other chemicals (i.e., fumagillin or clothianidin)
negatively impact honey bee immune gene expression, and in
turn result in more severe virus infections.
2 RESULTS

2.1 Impact of Chemicals on Virus
Infections in Honey Bees
2.1.1 Virus Abundance Reduced in Honey Bees Fed
Thyme Oil Augmented Sucrose Syrup
To further investigate the potential of thyme oil augmented diets
to reduce viral burden, aged-matched adult bees were infected
with FHV, SINV-GFP or DWV. Viruses were administered via
injection, which mimicked Varroa destructor mite-mediated
virus transmission and ensured that individual bees received
equivalent doses. In these assays, virus-inoculated honey bees
were fed 0.16 ppb thyme oil (~ 60 ppb thymol) augmented
sucrose syrup and virus abundance was assessed at 72 hpi in
three independent experiments. The 72 hpi timepoint was
selected since previous studies documented readily detectable
levels of disseminated virus (i.e., SINV-GFP and DWV) and
Frontiers in Immunology | www.frontiersin.org 4
corresponding host immune gene expression changes at that
time point (42, 43, 57, 61, 66). To ensure that 72 hpi was also
appropriate time to assess FHV infection levels, honey bees were
inoculated with FHV (3.5 x 108 FHV RNA copies per bee), and
virus abundance was quantified by RT-qPCR at 6, 48, 72, and 96
hpi (Supplemental Figure S1 and Supplemental Table S2).
FHV abundance increased from 0 hpi to 72 hpi and decreased
from 72 hpi to 96 hpi. Since FHV abundance peaked at 72 hpi,
this timepoint was selected to assay for FHV infection levels.

Honey bees fed sucrose syrup augmented with thyme oil
harbored less virus (i.e., FHV, DWV, SINV-GFP) compared to
virus-infected bees fed sucrose syrup only (Figure 1 and
Supplemental Figure S2). Specifically, the total FHV abundance
was 52% lower in honey bees fed thyme oil (0.16 ppb) augmented
sucrose syrup compared to bees fed sucrose syrup only (n = 10
bees per treatment) (p < 0.001, Wilcoxon Rank Sums test with a
Benjamini–Hochberg correction for multiple comparisons)
(Figure 1A). Similar levels of reduction were observed in two
additional experimental replicates with 48% and 35% reduction in
FHV loads respectively (Supplemental Figure S2, p < 0.001).
Similarly, DWV abundance was 72% lower in DWV-infected bees
fed thyme oil (0.16 ppb) augmented sucrose syrup compared to
bees fed sucrose syrup only (Figure 1B, p < 0.001). DWV
abundance in two additional biological replicates was reduced
by 48% and 25% in DWV-infected bees fed thyme oil augmented
sucrose syrup compared to bees fed sucrose syrup only
(Supplemental Figure S2, p < 0.01). Lastly, SINV-infected bees
fed thyme oil augmented sucrose syrup had 87% less virus relative
to SINV-infected bees fed sucrose syrup only (Figure 1C, p <
0.001). In two additional biological replicates of this experiment,
SINV levels were reduced by 49% and 42% in SINV-infected bees
fed thyme oil augmented sucrose syrup relative to bees fed sucrose
syrup only (Supplemental Figure S2, p < 0.001). Together these
results demonstrate that virus abundance was lower when virus-
infected bees were fed 0.16 ppb thyme oil containing sucrose syrup
compared to levels in bees fed non-augmented syrup and suggest
that this dose of thyme oil is beneficial to honey bees.

2.1.2 Greater Virus Abundance in Honey Bees Fed
Fumagillin or Clothianidin Containing Sucrose Syrup
To examine the potential impact of other chemicals, including a
beekeeper applied fungicide and a commonly used neonicotinoid
insecticide on the outcome of virus infections, virus-infected
honey bees were fed sucrose syrup containing fumagillin and
clothianidin. Specifically, virus-infected honey bees were fed
sucrose syrup containing 25 ppm or 75 ppm fumagillin, or a
sublethal (1 ppb) or a near lethal dose (10 ppb) of clothianidin,
and virus abundance was quantified at 72 hpi. We hypothesized
that virus abundance would be greater in bees exposed to virus
infection and chemical exposure. We determined that, in general,
virus abundance was greater in honey bees that were exposed to
chemicals in their diet. Specifically, FHV abundance in bees fed
sucrose syrup containing 25 ppm or 75 ppm fumagillin was 15%
(p = 0.006) and 30% higher (p < 0.001), respectively (Figure 2A).
FHV-infected bees fed clothianidin (1 ppb) containing sucrose
syrup had 94% more FHV relative to sucrose syrup fed bees (p <
October 2021 | Volume 12 | Article 747848
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0.001), whereas unexpectedly virus abundance was reduced by
15% in FHV-infected bees fed sucrose syrup containing 10 ppb
clothianidin relative to FHV-infected bees fed sucrose syrup only
(p < 0.001) (Figure 2A). Similarly, in DWV-infected bees, virus
abundance was 53% higher in bees fed sucrose syrup containing
25 ppm fumagillin (p < 0.001), 11% higher in bees fed 75 ppm
Frontiers in Immunology | www.frontiersin.org 5
fumagillin sucrose syrup (p < 0.01), and 291% higher in bees fed
1 ppb clothianidin containing sucrose syrup (p < 0.001)
(Figure 2B). DWV abundance was 21% lower in DWV-
infected bees fed 10 ppb clothianidin containing sucrose syrup
compared to DWV-infected bees fed sucrose syrup only (p =
0.04) (Figure 2B). Honey bees infected with SINV and fed 25
A CB

FIGURE 1 | Lower virus abundance in honey bees fed thyme oil augmented sucrose syrup. Virus abundance in individual honey bees that were either fed sucrose
syrup only or sucrose syrup augmented with 0.16 ppb thyme oil was assessed at 72 h post-infection by qPCR (n = 9-12 per treatment group) and the relative virus
abundance is presented as ranked fold-changes. Together, these data illustrate that virus-infected bees fed thyme oil augmented sucrose syrup harbored less virus
than virus-infected bees fed only sucrose syrup. (A) Flock House virus (FHV)-infected bees fed sucrose syrup augmented with thyme oil (0.16 ppb) had 52% less
FHV (0.48 mean fold change) than bees fed sucrose syrup alone (p = 2.1 x 10-5). (B) In deformed wing virus (DWV)-infected bees, virus abundance was 72% less in
bees fed sucrose syrup augmented with thyme oil (0.28 mean fold change) compared to bees fed only sucrose syrup (p = 0.00016). (C) Sindbis virus (SINV)-infected
bees fed thyme oil augmented sucrose syrup had 87% less SINV (0.13 mean fold change) than bees fed sucrose syrup. Data were analyzed by a pairwise Wilcoxon
Rank Sums with a Benjamini–Hochberg correction for multiple comparisons. Asterisks indicate a significant difference in virus abundance; significance levels: ***p <
0.0005. This figure includes results from one representative biological replicate for each virus (i.e., rep1). The data for all three biological replicates are presented in
Supplemental Figure S2 and raw data are in Supplemental Tables S3, S4.
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FIGURE 2 | Honey bees fed sucrose syrup containing fumagillin or clothianidin had greater virus levels than bees feed only sucrose syrup. Virus abundance in individual
honey bees that were either fed sucrose syrup only or fungicide or insecticide containing sucrose syrup was assessed at 72 h post-infection by qPCR (n = 9-12 per
treatment group) and the relative virus abundance is presented as ranked fold-changes. Data from virus infected honey bees fed sucrose syrup mixed with fumagillin (25
ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb) illustrate that bees fed sucrose syrup containing 25 ppm fumagillin, 75 ppm fumagillin, and 1 ppb clothianidin harbored
more virus than virus-infected bees fed sucrose syrup only, whereas bees fed sucrose syrup containing 10 ppb clothianidin had lower virus levels (A) Flock House virus
(FHV)-infected bees fed 25 ppm fumagillin (p = 0.006), 75 ppm fumagillin (p = 0.0009) or 1 ppb clothianidin (p = 8.2 x 10-5) containing sucrose syrup had greater virus
levels than bees fed sucrose only syrup. Whereas, FHV-infected bees fed sucrose syrup containing 10 ppb clothianidin had lower virus levels than bees fed only sucrose
syrup (p = 0.0009). (B) Deformed wing virus (DWV)-infected bees fed sucrose syrup containing 25 ppm fumagillin (p = 8.2 x 10-5), 75 ppm fumagillin (p = 0.0022) or 1
ppb clothianidin (p = 8.2 x 10-5) harbored more virus than DWV-infected bees fed only sucrose syrup. DWV-infected bees fed 10 ppb clothianidin containing sucrose
syrup had less virus compared to bees fed sucrose syrup (p = 0.04). (C) Sindbis virus (SINV) abundance was higher in bees fed sucrose syrup containing 25 ppm
fumagillin (p = 6.2 x 10-5), 75 ppm fumagillin (p = 6.2 x 10-5) or 1 ppb clothianidin (p = 6.2 x 10-5) compared to SINV-infected bees fed only sucrose syrup. In contrast,
SINV-infected bees fed sucrose syrup containing 10 ppb clothianidin had lower levels of virus infection than bees fed sucrose only syrup (p = 6.8 x 10-5). Data were
analyzed by a pairwise Wilcoxon Rank Sums with a Benjamini–Hochberg correction for multiple comparisons. Asterisks indicate a significant change in virus abundance;
significance levels: *p < 0.05; **p < 0.005; ***p < 0.0005. This figure includes results from one representative biological replicate for each virus (i.e., rep3). The data for all
three biological replicates are presented in Supplemental Figure S3. Raw data are included in Supplemental Tables S5, S6.
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ppm fumagillin containing sucrose syrup harbored 53% more
virus (p < 0.001), SINV-infected bees fed 75 ppm fumagillin
containing sucrose syrup harbored 41% more virus (p < 0.001),
while SINV infected bees fed 1 ppb clothianidin containing
sucrose syrup had 50% more virus relative to sucrose only (p <
0.001). SINV-infected bees fed 10 ppb clothianidin containing
sucrose syrup harbored 48% less SINV compared to bees fed
sucrose syrup only (p < 0.001) (Figure 2C). Data obtained from
two additional biological replicates resulted in similar changes in
virus abundance when virus-infected bees (i.e., FHV, DWV, or
SINV-GFP) were fed sucrose syrup containing fumagillin or
clothianidin (Supplemental Figure S3, p < 0.05). Together these
data indicate that virus-infected bees fed recommended (25
ppm) or higher (75 ppm) doses of fumagillin or 1 ppb
clothianidin had greater viral loads, whereas bees fed 10 ppb
clothianidin in sucrose syrup ad libitum had slightly lower virus
levels at 72 hpi. This may be indicative of the poor overall health
status of the host to support virus replication.
2.2 Impact of Chemicals on Honey Bee
Immune Gene Expression
2.2.1 Expression of Key RNAi Genes Is
Higher in Thyme Oil Fed Bees, Reduced in
Fumagillin and Clothianidin Fed Honey Bees
To investigate whether the changes in virus abundance in honey
bees fed sucrose syrup containing additives were reflective of
modulations in the expression of key RNAi genes, the
expression of argonaute-2 (ago2) and dicer-like (dcr) were
assessed at 72 hpi. In general, the expression of dcr-like and
ago2 were higher in virus-infected honey bees fed thyme oil
containing sucrose syrup, and modestly reduced in virus-
infected honey bees fed fumagillin or clothianidin containing
sucrose syrup (Figure 3). Specifically, FHV-infected bees fed
thyme oil exhibited 1.57 fold (p < 0.001) higher dcr-like
expression and 1.23 fold higher ago2 expression, compared to
virus-infected bees fed sucrose syrup only (p = 0.001). Whereas
FHV-infected bees fed sucrose syrup containing either 25 ppm or
75 ppm fumagillin exhibited reduced expression of dcr-like (i.e.,
0.40 fold, p = 0.006, and 0.34 fold, p < 0.001, respectively) and ago2
(i.e., 0.82 fold, p = 0.002 and 0.69 fold, p < 0.001, respectively).
Similarly, FHV-infected bees fed clothianidin containing sucrose
syrup expressed less dcr-like (i.e., 1 ppb - 0.81 fold, p < 0.001 and
10 ppb - 0.49 fold, p = 0.0031) and ago2 (i.e., 1 ppb - 0.86 fold, p =
0.023 and 10 ppb - 0.74 fold, p < 0.01) (Figure 3). These results
were consistent in two additional biological replicates of this
experiment (Supplemental Figure S4, p < 0.05) except, in rep2,
ago2 expression in FHV-infected bees fed 1 ppb clothianidin was
not reduced.

DWV-infected bees fed thyme oil (0.16 ppb) augmented
sucrose syrup had 1.66 fold higher dcr-like expression relative
to DWV-infected bees fed sucrose syrup only (p < 0.001).
However, dcr-like expression in DWV-infected bees fed
fumagillin was reduced (i.e., 25 ppm - 0.58 fold, p < 0.001 and
75 ppm - 0.49 fold, p < 0.001). A reduction in dcr-like expression
was also observed in DWV-infected bees fed 1 ppb clothianidin
(0.67 fold, p = 0.04), but dcr-like expression levels were not
Frontiers in Immunology | www.frontiersin.org 6
changed in bees fed 10 ppb clothianidin containing sucrose syrup
(Figure 3A). The expression of ago2 in DWV-infected bees fed
thyme oil containing sucrose followed a similar trend with 1.16
fold higher expression (p = 0.035), and reduced expression in
bees fed sucrose syrup containing 25 ppm fumagillin (0.72 fold, p
= 0.024), 75 ppm fumagillin (0.43 fold, p < 0.001), and 1 ppb
clothianidin (0.81 fold, p < 0.001), whereas ago2 expression was
not changed in DWV-infected bees fed sucrose syrup containing
10 ppb clothianidin (Figure 3B). These results were consistent in
two additional biological replicates of this experiment
(Supplemental Figures S4, S5, p < 0.05).

Comparably, SINV-infected bees fed thyme oil augmented
sucrose syrup had higher levels of dcr-like expression than SINV-
infected bees fed sucrose syrup only (i.e., 1.68 fold, p < 0.001)
(Figure 3A). Whereas the combination of virus infection and
chemical exposure resulted in reduced dcr-like expression (i.e., in
SINV-infected bees fed 25 ppm fumagillin (0.81 fold, p = 0.014),
75 ppm fumagillin (0.66 fold, p = 0.018), 1 ppb clothianidin (0.74
fold, p < 0.01), and 10 ppb clothianidin containing sucrose syrup
(0.79 fold, p < 0.001) compared to SINV-infected bees fed
sucrose syrup only) (Figure 3A). Likewise, SINV-infected bees
fed thyme oil containing sucrose syrup had 1.17 fold higher ago2
expression (p = 0.002), whereas expression was slightly lower in
bees fed sucrose syrup containing 25 ppm fumagillin 0.77 fold,
(p < 0.001), 75 ppm fumagillin (0.75 fold, p < 0.001), 1 ppb
clothianidin (0.9 fold, p < 0.01), and 10 ppb clothianidin (0.89
fold, p = 0.002) (Figure 3B). The majority of these results were
consistent in two additional biological replicates of this
experiment (Supplemental Figures S4, S5, p < 0.05) except
dcr-like expression in SINV-infected bees fed 10 ppb clothianidin
in rep3, and ago2 expression in SINV-infected bees fed 25 ppm
fumagillin in rep2 were similar to expression levels in virus-
infected bees fed only sucrose syrup (p > 0.05). Together these
results demonstrate that the expression of dcr-like and ago2 were
greater in virus-infected honey bees fed thyme oil (0.16 ppb)
containing sucrose syrup, whereas expression of these genes was
modestly reduced in virus-infected bees fed pesticide containing
sucrose syrup.

To disentangle the gene expression results obtained from
honey bees simultaneously impacted by two stressors (i.e.,
virus-infection and oral exposure to chemicals), gene
expression was measured in non-virus infected honey bees
(i.e., mock-infected). These analyses determined that the
expression of both dcr-like and ago2 were higher in thyme
oil fed bees by 1.86 fold and 1.75 fold higher respectively (p <
0.001) (Figure 3). Whereas the expression of dcr-like and ago2
in bees fed fumagillin or clothianidin was reduced, albeit to a
lesser degree compared to the increase observed with thyme oil
(Figure 3). Specifically, mock-infected bees fed fumagillin in
sucrose at 25 ppm and 75 ppm concentrations had 0.77 fold (p
< 0.001) and 0.77 fold lower dcr-like expression levels (p <
0.001), and 0.59 fold (p < 0.001), and no appreciable change
in ago2 expression, respectively. Likewise, mock-infected
bees fed clothianidin in sucrose syrup at 1 ppb and 10 ppb
concentrations had 0.75 fold (p < 0.01) and 0.72 fold (p <
0.001) dcr-like expression levels, and 0.69 fold (p < 0.001) and
0.81 fold (p < 0.001) ago2 expression levels, respectively.
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2.2.2 Expression of Heat Shock Protein
Encoding Genes Is Higher in Thyme Oil,
Fumagillin, and Clothianidin Fed Honey Bees
The heat shock response may be induced by a variety of stressors;
therefore, we examined the expression of a subset of heat shock
response genes (i.e., pl2, hsp90, and hsc70-4) in the context of
virus infection and/or chemical exposure. In general, the
expression of heat shock protein encoding genes was higher in
virus and mock-infected bees fed sucrose syrup containing
thyme oil (0.16 ppb), fumagillin (25 ppm or 75 ppm) or
clothianidin (1 ppb or 10 ppb), indicating that the expression
of these genes is also induced in response to chemical stressors
(Figure 4 and Supplemental Figure S6).

In this study, pl2 exhibited the highest induction in response
to virus-infection (i.e., FHV, DWV, and SINV) and chemical
stress (Figure 4A). In FHV-infected bees, pl2 expression in bees
fed thyme oil augmented sucrose syrup was similar to bees fed
non-augmented sucrose syrup, but pl2 expression was greater in
bees that ingested sucrose syrup containing 25 ppm fumagillin
(1.42 fold, p < 0.001), 75 ppm fumagillin (2.26 fold, p < 0.001), 1
ppb clothianidin (2.69 fold, p < 0.001), and 10 ppb clothianidin
(1.55 fold, p < 0.01) compared to FHV-infected bees fed only
Frontiers in Immunology | www.frontiersin.org 7
sucrose syrup. Similarly, DWV-infected bees exhibited higher pl2
expression when fed sucrose syrup containing 0.16 ppb thyme oil
(3.32 fold, p < 0.001), 25 ppm fumagillin (2.7 fold, p < 0.001), 75
ppm fumagillin (2.65 fold, p < 0.001), 1 ppb clothianidin (1.69
fold, p < 0.001), and 10 ppb clothianidin (3.74 fold, p < 0.001)
relative to DWV-infected bees fed sucrose syrup only
(Figure 4A). In SINV-infected bees, pl2 expression was higher
in bees fed sucrose syrup containing thyme oil (2.3 fold, p < 0.01),
25 ppm fumagillin (3.63 fold, p < 0.01), 75 ppm fumagillin (4.57
fold, p < 0.01), 1 ppb clothianidin (3.97 fold, p = 0.023), and 10
ppb clothianidin (3.58 fold, p < 0.01) compared to bees fed
sucrose syrup only (Figure 4A). The expression level of pl2 was
higher in mock-infected bees fed sucrose syrup containing 25
ppm fumagillin (1.27 fold, p < 0.001), 75 ppm fumagillin (1.35
fold, p < 0.01), and 1 ppb clothianidin (2.04 fold, p < 0.001)
relative to sucrose only fed bees (Figure 4A). Whereas pl2
expression in mock-infected bees fed sucrose syrup containing
thyme oil or 10 ppb clothianidin was similar to levels in mock-
infected bees fed only sucrose syrup (p > 0.05). In two additional
biological replicates, pl2 expression was greater in virus or mock-
infected bees fed sucrose syrup containing thyme oil (0.16 ppb),
fumagillin (25 ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb),
A

B

FIGURE 3 | Expression of key RNAi genes was higher in honey bees fed thyme oil augmented sucrose syrup and lower in bees fed sucrose syrup containing
fumagillin or clothianidin. Expression of dicer-like and argonaute-2 in honey bees that were either mock- or virus-infected (i.e., FHV, DWV, SINV) and fed sucrose
syrup only or syrup containing either thyme oil (0.16 ppb), fumagillin (25 ppm or 75 ppm), or clothianidin (1 ppb or 10 ppb) was assessed by qPCR. The DDCt
method with normalization to rpl8 in mock or virus-infected bees fed sucrose syrup diet was utilized to determine the relative gene expression. (A) Dicer-like (dcr-like)
expression was higher in virus-infected (i.e., FHV, DWV, SINV) and mock-infected bees fed thyme oil containing sucrose syrup, and lower in bees fed sucrose syrup
containing fumagillin (25 ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb) relative to bees fed sucrose syrup. (B) Argonaute-2 (ago2) expression was higher in virus-
infected (i.e., FHV, DWV, SINV) or mock-infected bees fed thyme oil augmented sucrose syrup and reduced in bees fed diets containing fumagillin (25 ppm or 75
ppm) or clothianidin (1 ppb or 10 ppb), except in mock-infected bees fed 75 ppm fumagillin, ago2 expression was similar to expression levels in bees fed sucrose
only. Data were analyzed by a pairwise Wilcoxon Rank Sums with a Benjamini–Hochberg correction for multiple comparisons. Asterisks indicate a significant change
in gene expression compared to sucrose only control; significance levels: *p < 0.05; **p < 0.005; ***p < 0.0005. This figure shows representative biological replicate
for each gene (i.e., rep2 for dcr-like and rep3 for ago2). The data for all three biological replicates are presented in Supplemental Figures S4, S5. Raw data are
included in Supplemental Tables S7–S10.
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except in a few treatment groups that exhibited pl2 levels similar
to those observed in honey bees fed sucrose syrup alone [i.e., in
rep2, DWV-infected bees fed 25 ppm fumagillin; in rep3, FHV-
infected bees fed 0.16 ppb thyme oil augmented sucrose syrup
and DWV-infected bees fed 75 ppm fumagillin containing
sucrose syrup (Supplemental Figure S6)].

The expression of heat shock protein 90 (hsp90), which
encodes a protein chaperone that is involved in RISC assembly
and siRNA loading, was greater in several treatment groups (169,
170) (Figure 4). Specifically, hsp90 expression was higher in
FHV-infected bees fed sucrose syrup containing thyme oil (1.26
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fold, p = 0.037), 25 ppm fumagillin (1.36 fold, p < 0.001), 75 ppm
fumagillin (1.54 fold, p < 0.001), 1 ppb clothianidin (1.5 fold, p =
0.004), and 10 ppb clothianidin (1.26 fold, p = 0.003) compared
to expression levels in bees fed only sucrose syrup (Figure 4B).
Likewise, the expression of hsp90 in DWV-infected bees was
higher in bees fed sucrose syrup containing thyme oil (1.38 fold,
p < 0.001), 25 ppm fumagillin (2.02 fold, p < 0.001), 75 ppm
fumagillin (1.49 fold, p < 0.001), 1 ppb clothianidin (1.63 fold, p <
0.001), and 10 ppb clothianidin (1.33 fold, p < 0.001), relative to
sucrose syrup fed bees (Figure 4B). While in SINV-infected bees
fed sucrose syrup augmented with 0.16 ppb thyme oil, hsp90
A

B

C

FIGURE 4 | Expression of heat shock protein encoding genes was higher in honey bees fed sucrose syrup containing thyme oil, fumagillin, or clothianidin. The
relative expression of three genes encoding heat shock proteins (pl2, hsp90, hsc70-4) was assessed using qPCR in mock or virus-infected bees fed sucrose syrup
only or sucrose syrup containing additivities (i.e., thyme oil, fumagillin, or clothianidin). The DDCt method with normalization to rpl8 in mock or virus-infected bees fed
sucrose syrup diet was utilized to determine the relative gene expression. (A) Protein lethal(2)essential for life-like (pl2) expression in virus-infected bees (i.e., FHV,
DWV, SINV) fed sucrose syrup containing thyme oil, fumagillin (25 ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb) was higher compared to expression in bees fed
sucrose only. In mock-infected bees, pl2 expression in bees fed sucrose syrup containing stimulant (0.16 ppb thyme oil) or 10 ppb clothianidin was similar to
expression levels in bees fed sucrose only, whereas pl2 expression was higher in bees fed sucrose syrup containing fumagillin (25 ppm or 75 ppm) or 1 ppb
clothianidin. (B) Heat shock protein 90 (hsp90) expression was higher in majority of the treatment groups, including virus- or mock-infected infected bees fed
augmented sucrose syrups compared to bees fed non-augmented sucrose syrup except in SINV-infected bees fed thyme oil or 75 ppm fumagillin, which had similar
hsp90 expression levels to bees fed sucrose only. (C) Heat shock 70-kDa protein cognate 4 (hsc70-4) expression was higher in the majority of treatment groups
including mock and virus-infected bees fed sucrose syrup containing either thyme oil (0.16 ppb), fumagillin (25 ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb),
except in SINV-infected bees fed sucrose syrup containing thyme oil, which had hsc70-4 expression levels similar to the controls. Data were analyzed by a pairwise
Wilcoxon Rank Sums with a Benjamini–Hochberg correction for multiple comparisons. Asterisks indicate a significant change in gene expression compared to
sucrose only control; significance levels: *p < 0.05; **p < 0.005; ***p < 0.0005. This figure shows representative biological replicate for pl2 expression (i.e., rep1). The
data for all three biological replicates for pl2 are presented in Supplemental Figure S6 and raw data are included in Supplemental Tables S11–S16.
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expression was similar to bees fed only sucrose syrup. The
expression of hsp90 was higher in SINV-infected bees fed
sucrose syrup containing 25 ppm fumagillin (2.15 fold, p =
0.001), 75 ppm fumagillin (1.44 fold, p = 0.017), 1 ppb
clothianidin (2.24 fold, p = 0.001), and 10 ppb clothianidin
(1.81 fold, p = 0.001), relative to sucrose syrup fed bees
(Figure 4B). Expression of hsp90 was also greater in mock-
infected bees fed sucrose syrup containing thyme oil (1.45 fold,
p < 0.001), 25 ppm fumagillin (1.2 fold, p = 0.001), 75 ppm
fumagillin (1.31 fold, p = 0.017), 1 ppb clothianidin (1.48 fold, p <
0.001), and 10 ppb clothianidin (1.14 fold, p < 0.001), compared
to sucrose syrup fed bees (Figure 4B).

Heat shock protein 70 kDa cognate 4 (hsc70-4) is a
constitutively expressed molecular chaperone and functions
with the cooperation of co-chaperones. It is involved in RISC
assembly and maintenance of cellular protein homeostasis,
including protein folding, assembly, disassembly, and
degradation (171–173). Expression of hsc70-4 was higher in
FHV-infected bees fed sucrose syrup containing thyme oil (1.12
fold, p < 0.001), 25 ppm fumagillin (1.23 fold, p < 0.001), 75 ppm
fumagillin (1.79 fold, p < 0.001), 1 ppb clothianidin (2.01 fold, p <
0.001), and 10 ppb clothianidin (1.32 fold, p = 0.016) relative to
sucrose syrup fed bees (Figure 4C). DWV-infected bees fed
sucrose syrup containing either stimulant (thyme oil) or
stressors (fumagillin or clothianidin) exhibited greater hsc70-4
expression than bees fed sucrose syrup only i.e., thyme oil- 1.42
fold; 25 ppm fumagillin- 2 fold; 75 ppm fumagillin- 1.69 fold; 1
ppb clothianidin- 1.65 fold; and 10 ppb clothianidin-1.21 fold (p <
0.001) (Figure 4C). While SINV-infected bees fed thyme oil
augmented sucrose syrup had similar hsc70-4 expression relative
to SINV-infected bees fed only sucrose syrup, SINV-infected bees
fed chemical stressors exhibited greater hsc70-4 expression i.e., 25
ppm fumagillin (2.07 fold, p = 0.001), 75 ppm fumagillin (1.4 fold,
p = 0.024), 1 ppb clothianidin (2.1 fold, p = 0.001), and 10 ppb
clothianidin (1.79 fold, p = 0.001) (Figure 4C).Hsc70-4 expression
was greater in mock-infected honey bees fed either augmented
diets, compared to those fed only sucrose syrup i.e., thyme oil-
1.76 fold; 25 ppm fumagillin- 1.5 fold; 75 ppm fumagillin- 1.39
fold; 1 ppb clothianidin- 1.94 fold; and 10 ppb clothianidin- 1.87
fold relative to sucrose syrup fed bees (p < 0.001) (Figure 4C).
Since analyses of hsp90 and hsc70-4 expression in one biological
replicate was similar to pl2 expression data indicating that in
general honey bee heat shock protein encoding genes exhibited
higher expression in response to all chemicals, including thyme
oil, fumagillin, and clothianidin, additional biological replicates
were not analyzed for hsp90 and hsc70-4 expression.

2.2.3 Greater Expression of Antimicrobial Peptide
Encoding Genes in Thyme Oil Fed Bees, Reduced in
Fumagillin and Clothianidin Fed Bees
The honey bee genome encodes a suite of antimicrobial proteins
(AMPs) that are expressed in response to microbial pathogens.
Although the role of these genes in the context of virus infections
in insects has not been well-characterized, increased expression
is commonly used as a hallmark of active immune signaling
pathways including the Toll, Imd, and Jak/STAT pathways
Frontiers in Immunology | www.frontiersin.org 9
[reviewed in (37, 40, 41)]. Therefore, we examined the
expression of two honey bee AMP encoding genes abaecin and
hymenoptaecin as an indicator of immune pathway status in
virus-infected bees fed chemically augmented sucrose syrup.
Abaecin is an effector molecule expressed as a result of an
immune challenge that triggers the induction of Toll and Imd
pathways (174–176). Abaecin expression in FHV-infected honey
bees fed sucrose syrup supplemented with thyme oil was 1.28
fold higher relative to those fed only sucrose syrup (p = 0.001)
(Figure 5A). In contrast, abaecin expression in FHV-infected
bees fed either fumagillin or clothianidin was slightly lower than
expression in FHV-infected bees fed plain sucrose syrup (i.e., 25
ppm fumagillin, 0.61 fold, p = 0.001; 75 ppm fumagillin, 0.59
fold, p < 0.001; 1 ppb clothianidin, 0.75 fold, p = 0.002; and 10
ppb clothianidin, 0.63 fold, p < 0.001) (Figure 5A). DWV-
infected bees fed thyme oil augmented sucrose syrup had 1.58
fold greater abaecin expression than sucrose syrup fed bees (p =
0.029). Whereas chemically stressed DWV-infected bees
exhibited reduced abaecin expression than DWV-infected bees
fed sucrose syrup alone (i.e., 25 ppm fumagillin, 0.88 fold, p <
0.001; 75 ppm fumagillin, 0.76 fold, p = 0.003; 1 ppb clothianidin,
0.3 fold, p < 0.001; and 10 ppb clothianidin, 0.4 fold, p < 0.001)
(Figure 5A). Likewise, SINV-infected honey bees fed thyme oil
augmented sucrose syrup had 1.4 fold higher abaecin expression
compared to sucrose syrup fed bees (p = 0.01). Whereas SINV-
infected bees fed chemical stressors exhibited reduced abaecin
expression (i.e., 25 ppm fumagillin, 0.87 fold, p = 0.01; 75 ppm
fumagillin, 0.45 fold, p = 0.001; 1 ppb clothianidin, 0.85 fold, p =
0.01; and 10 ppb clothianidin, 0.41 fold, p = 0.001) (Figure 5A).
The same trend was also observed in mock-infected bees, which
exhibited 1.33 fold higher abaecin expression in bees fed thyme
oil augmented sucrose syrup compared to levels in bees fed non-
augmented sucrose syrup (p < 0.001). Whereas abaecin
expression was reduced in mock-infected bees fed sucrose
syrup containing 25 ppm fumagillin (0.36 fold, p < 0.001), 75
ppm fumagillin (0.47 fold, p < 0.001), 1 ppb clothianidin (0.92
fold, p < 0.001), and 10 ppb clothianidin (0.47 fold, p < 0.001)
(Figure 5A). In general, similar trends in abaecin expression was
observed in one additional biological replicate except abaecin
expression in FHV-infected bees fed sucrose syrup containing 75
ppm fumagillin or DWV-infected bees fed 1 ppb clothianidin
was similar to expression levels in bees fed sucrose syrup
(Supplemental Figure S7, p > 0.05).

Hymenoptaecin is an antimicrobial peptide encoding gene
that is induced via the nuclear factor kappa B (NF-kB) signaling
in Imd pathway (175). In the previous study by Palmer-Young
et al., expression of hymenoptaecin in laboratory contained bees
fed 0.16 ppb thymol for 7 days exhibited 12.9 to 61-fold greater
expression than control bees (104). In our study, the overall
trend in hymenoptaecin expression in bees that were either
mock- or virus-infected and fed sucrose syrup containing
thyme oil was higher, whereas in bees fed fumagillin, or
clothianidin were lower relative to bees fed sucrose syrup
(Figure 5B). FHV-infected bees fed thyme oil containing
sucrose syrup had 1.48 fold higher expression of
hymenoptaecin compared to bees fed sucrose syrup (p = 0.002).
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FHV-infection coupled with fumagillin or clothianidin
containing sucrose syrup resulted in lower levels of
hymenoptaecin expression compared to levels in bees fed plain
sucrose syrup (i.e., 25 ppm fumagillin, 0.72 fold, p = 0.019; 75
ppm fumagillin, 0.7 fold, p = 0.002; 1 ppb clothianidin, 0.83 fold,
p = 0.027; and 10 ppb clothianidin, 0.76 fold, p < 0.001)
(Figure 5B). Likewise, DWV-infected honey bees fed thyme oil
augmented sucrose syrup had 1.62 fold higher hymenoptaecin
expression relative to bees fed sucrose syrup only (p = 0.002).
However, hymenoptaecin expression was lower in DWV-infected
bees fed sucrose syrup containing 25 ppm fumagillin (0.34 fold,
p < 0.001), 75 ppm fumagillin (0.36 fold, p < 0.001), 1 ppb
clothianidin (0.69 fold, p = 0.001), and 10 ppb clothianidin (0.62
fold, p = 0.006) than levels in bees fed only sucrose syrup
(Figure 5B) . SINV-infected bees fed sucrose syrup
supplemented with 0.16 ppb thyme oil exhibited 1.51 fold
greater expression of hymenoptaecin, relative to bees fed
sucrose syrup only (p = 0.001). Bees infected with SINV and
fed fumagillin or clothianidin containing sucrose syrup had
lower levels of hymenoptaecin expression compared to bees fed
sucrose syrup alone (i.e., 25 ppm fumagillin, 0.37 fold; 75 ppm
fumagillin, 0.51 fold; 1 ppb clothianidin, 0.48 fold; and 10 ppb
Frontiers in Immunology | www.frontiersin.org 10
clothianidin, 0.58 fold; all with p < 0.001) (Figure 5B). Similar
trends in hymneoptaecin expression were observed in mock-
infected bees fed thyme oil, which exhibited 1.8 fold greater
expression relative to bees fed sucrose syrup (p < 0.001), whereas
mock-infected bees exposed to chemical stressors had reduced
hymenoptaecin expression levels (i.e., in 25 ppm fumagillin, 0.66
fold, p = 0.004; 75 ppm fumagillin, 0.68 fold, p < 0.001; 1 ppb
clothianidin, 0.52 fold, p = 0.004; and 10 ppb clothianidin, 0.78
fold, p = 0.004) (Figure 5B). Similar trends in hymenoptaecin
expression were observed in one additional biological replicate of
this experiment except in rep1, hymenoptaecin expression in bees
fed thyme oil and either infected with FHV or SINV exhibited
similar levels of expression to bees fed only sucrose syrup
(Supplemental Figure S8).
2.2.4 Greater Vitellogenin Expression in
Thyme Oil Fed Bees, Reduced in
Fumagillin and Clothianidin Fed Bees
In honey bees, vitellogenin (vg) has numerous functions including
roles in immunity and stress resistance [reviewed in (77)]. Overall,
the trends in vg expression were similar to the trends observed for
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FIGURE 5 | Expression of antimicrobial peptides encoding genes was greater in bees fed thyme oil augmented sucrose syrup and lower in bees fed fumagillin or
clothianidin containing sucrose syrup. The expression of two antimicrobial peptides (abaecin and hymenoptaecin) was assessed in mock and virus-infected bees fed
sucrose syrup containing additives. (A) In virus- and mock-infected bees (i.e., FHV, DWV, SINV), abaecin expression was higher in bees fed sucrose syrup containing
thyme oil and lower in bees fed sucrose syrup containing fumagillin (25 ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb) compared to bees fed sucrose only. (B) In
virus-infected bees (i.e., FHV, DWV, SINV), hymenoptaecin expression was higher in bees fed sucrose syrup containing thyme oil and lower in bees fed sucrose
syrup containing fumagillin (25 ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb). Hymenoptaecin expression was higher in mock-infected bees fed sucrose syrup
augmented with 0.16 ppb thyme oil, but lower in mock-infected bees fed either fumagillin (i.e., 25 ppm or 75 ppm) or clothianidin (1 ppb or 10 ppb) containing
sucrose syrup. Data were analyzed by a pairwise Wilcoxon Rank Sums with a Benjamini–Hochberg correction for multiple comparisons. Asterisks indicate a
significant change in gene expression compared to sucrose only control; significance levels: *p < 0.05; **p < 0.005; ***p < 0.0005. This figure shows representative
biological replicate for the expression of each gene (i.e., rep1 for abaecin and rep3 for hymenoptaecin). The data for one additional biological replicate is presented in
Supplemental Figures S7, S8. Raw data are included in Supplemental Tables S17–S20.
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other honey bee immune genes including dcr-like, ago2, abaecin,
and hymeptaecin. Virus infection in conjugation with thyme oil
augmented diets resulted in higher levels of vg expression
compared to virus-infected bees fed sucrose only (i.e., FHV-
1.47 fold, p = 0.023; DWV- 1.42 fold, p < 0.001; SINV- 1.23
fold, p = 0.01). The expression of vg was highest for 0.16 ppb
thyme oil fed, mock-infected bees, which exhibited 2.71 fold
greater expression than bees fed sucrose only (p = 0.0001).
Whereas virus-infected bees fed either fumagillin or clothianidin
containing diets had lower expression of vg. Specifically, in FHV-
infected bees fed chemical containing sucrose syrup resulted in
reduced vg expression (i.e., 25 ppm fumagillin, 0.86 fold, p = 0.023;
75 ppm fumagillin, 0.62 fold, p = 0.002; 1 ppb clothianidin, 0.77
fold, p < 0.001; and 10 ppb clothianidin, 0.74 fold, p = 0.002)
compared to bees fed sucrose syrup (Figure 6). Analogously, dual
stressed bees resulted in reduced vg expression in DWV-infected
bees fed sucrose syrup containing 25 ppm fumagillin (0.84 fold, p
= 0.013), 75 ppm fumagillin (0.42 fold, p < 0.001), 1 ppb
clothianidin (0.8 fold, p = 0.001), and 10 ppb clothianidin (0.68
fold, p < 0.001) compared to bees fed sucrose syrup (Figure 6).
Vitellogenin expression was reduced in SINV-infected bees fed
with sucrose syrup containing 25 ppm fumagillin (0.51 fold, p <
0.001), 75 ppm fumagillin (0.34 fold, p < 0.001), 1 ppb clothianidin
(0.73 fold, p < 0.0001), and 10 ppb clothianidin (0.77 fold, p =
0.002) compared to bees fed sucrose syrup (Figure 6). In general,
similar trends in vg expression were observed in mock-infected
bees exposed to a single stressor, i.e., in bees fed sucrose syrup
containing 25 ppm fumagillin (0.81 fold, p = 0.001), 75 ppm
fumagillin (0.85 fold, p = 0.001), 1 ppb clothianidin (0.83 fold, p <
0.001), and 10 ppb clothianidin (0.82 fold, p = 0.001) compared to
bees fed sucrose syrup (Figure 6). The expression of vg as analyzed
in one additional biological replicate followed similar trends
except in rep1, FHV-infected bees fed 10 ppb clothianidin and
SINV-infected bees fed 25 ppm fumagillin, vitellogenin expression
was constant relative to bees fed sucrose syrup (Supplemental
Figure S9).
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3 DISCUSSION

Honey bee health is impacted by numerous factors including
pathogens and chemical stressors. These stressors impact honey
bee health at the colony, individual bee, and cellular levels.
Honey bees have evolved various strategies to mitigate these
threats (97, 177–179). However, the impact of multiple,
simultaneous biotic and abiotic stressors on honey bee health
and longevity is currently not well understood, and difficult to
assess at the colony level due to the large number of confounding
variables (e.g., weather, colony management, pathogen exposure,
co-infections). Therefore, we performed laboratory-based
experiments to examine the impact of virus infection in the
context of putative chemical stimulant (i.e., thyme oil) and
stressors (i.e., fumagillin and clothianidin), while limiting the
effects of additional compounding variables. The results
described herein demonstrate that honey bees fed sucrose
syrup supplemented with 0.16 ppb thyme oil harbored 25-87%
less virus than bees fed only sucrose syrup. This trend was
consistent for a panel of viruses including FHV, SINV-GFP,
and DWV. Honey bees fed thyme oil exhibited greater
expression of genes involved in antiviral defense including the
RNAi pathway (i.e., ago2 and dcr-like) and antimicrobial peptide
genes regulated by Toll and Imd pathways (i.e., abaecin and
hymenoptaecin), as well as a gene involved in immune competence
and a marker of the overall bee health, vitellogenin. Together these
results indicate that thyme oil stimulates honey bee immune
responses and mitigates virus infections.

This is in line with previous studies that have documented
modulation of honey bee gene expression in response to
phytochemicals. Specifically, in the context of natural DWV
infections, Palmer-Young et al. demonstrated greater
hymenoptaecin expression (12.9 to 61-fold) in honey bees fed 0.16
ppb thymol relative to controls (104). Likewise, Mao et al.
demonstrated that honey bees fed p-coumaric acid, a common
pollen phytochemical, had greater expression of two other
FIGURE 6 | Vitellogenin expression was higher in bees fed sucrose syrup containing thyme oil and lower in bees fed sucrose syrup containing fumagillin or
clothianidin. Vitellogenin expression was assessed using qPCR and the relative gene expression was analyzed using the DDCt method with normalization to rpl8 and
relative to expression in mock or virus-infected bees fed sucrose syrup only. In virus-infected (i.e., FHV, DWV, SINV) and mock-infected honey bees vitellogenin
expression was greater in bees fed sucrose syrup containing thyme oil and reduced in bees fed sucrose syrup containing fumagillin (25 ppm or 75 ppm) or
clothianidin (1 ppb or 10 ppb) relative to sucrose only fed bees. Asterisks indicate a significant change in gene expression compared to sucrose only control;
significance levels: *p < 0.05; **p < 0.005; ***p < 0.0005. This figure shows representative biological replicate for vitellogenin expression. The data for one additional
biological replicate is presented in Supplemental Figure S9. Raw data are included in Supplemental Tables S21, S22.
October 2021 | Volume 12 | Article 747848

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Parekh et al. Virus Infection in Chemically Treated Bees
antimicrobial peptide encoding genes (i.e., 1.2 fold defensin and 1.9
fold abaecin), as well as genes involved in detoxification (107). Our
results, coupled with previous studies are promising and may
indicate that thyme oil augmented diets, either naturally acquired
or fed could be used to enhance individual bee immunocompetence
and, in turn, mitigate virus-associated colony deaths. However,
further investigation is required to determine the range of thymol
concentrations that positively impact honey bee health, since
exposure to higher doses of thymol (i.e., 16 ppm) were lethal in
previous studies (104). Additional studies are also required to
further investigate the precise mechanisms of action, while results
to date suggest thymol stimulates the expression of key honey bee
immune genes. The signal transduction cascades, sensors,
transcription factors, and effector proteins involved have yet to be
fully elucidated.

The impact of agrochemicals, including neonicotinoid
insecticides on honey bee health and colony longevity is an
important area of research that includes a large body of literature
including numerous studies that have examined field relevant
exposure, colony longevity, and the impacts on individual bees in
laboratory-based experiments (139, 180–182). While acute
toxicity is easy to measure in laboratory-based studies,
sublethal impacts are more difficult to assess. Furthermore, the
impact of sublethal doses of chemicals, including clothianidin, on
the immune response and in turn the outcome of virus infection
is even more difficult to discern. Previous studies demonstrated a
negative impact of clothianidin (10 ppb) on the activation of Toll
(NF-kB/Dorsal) pathway in honey bee larvae (154, 183).
Clothianidin exposure enhances the transcription of the NF-kB
inhibitor and suppresses the immune response. This eventually
results in higher DWV replication (154). Similar to previous
results, we determined that honey bees fed sucrose containing
clothianidin (1 ppb) had reduced expression of key immune
genes (i.e., ago2, dcr-like, abaecin, hymenoptaecin, and
vitellogenin), which resulted in more severe virus infections,
using virus abundance as a proxy for infection severity for a
panel of viruses. Together our results coupled with those from
previous studies, suggest that sublethal doses of clothianidin may
increase the overall virus burden in a colony. However, honey
bees fed sucrose syrup containing 10 ppb clothianidin had virus
levels that were similar to, or lower than, levels in bees fed only
sucrose syrup. Although additional studies are needed, we
hypothesize that bees fed 10 ppb clothianidin may have been
less suitable hosts for viruses, which are obligate intracellular
pathogens and, thus, rely on healthy host cells for replication. An
alternative hypothesis, which is not well supported by the data
described herein is that reduced virus abundance in 10 ppb
clothianidin fed bees is due to hormesis (i.e., a dose-dependent
beneficial biological response to a chemical stressor) (184, 185).
Insecticide-induced hormesis has been reported to have ‘positive’
effects on survival, reproduction, and immunity in bees and other
insects and is involved in various life stages and different
insecticide active ingredients (184–187). The possibility of
virus reduction due to hormetic effects was mentioned in
another study that found DWV-infected honey bees fed 0.12 -
0.35 ng clothianidin per bee (~ 1.2 - 3.5 ppb) had lower DWV
Frontiers in Immunology | www.frontiersin.org 12
levels than bees fed 0.05 ng clothianidin per bee (~ 0.5 ppb)
(143). However, in our study, the beneficial virus limiting
response in bees fed 10 ppb clothianidin did not correspond
with greater immune gene expression, therefore the hormetic
effect hypothesis is not well-supported.

Beekeepers use in-hive chemical treatments as part of integrated
pest management (IPM) strategies to maintain health honey bee
colonies. These beekeeper-applied treatments include miticides and
the antifungal compound fumagillin, which is used to mitigate
Nosema spp. infections. Previous studies indicated that fumagillin
treatments may negatively impact bee health, therefore a limit of
two treatments per colony is included as a label advisory. To further
investigate the impacts of fumagillin treatment on the honey bee
immune system and the outcome of virus infection, honey bees
were fed sucrose containing the recommended dose of 25 ppm, or a
greater dose of 75 ppm. We determined that virus abundance was
higher in bees fed sucrose syrup containing 25 ppm or 75 ppm
fumagillin, relative to bees fed sucrose syrup only. The greater virus
abundance is likely due to immune suppression, as the expression of
select honey bee immune genes (i.e., ago2, dcr-like, abaecin,
hymenoptaecin, and vitellogenin) were reduced in fumagillin fed
bees. Although future studies are warranted before adjusting
recommendations for honey bee colony management, our results
suggest that beekeepers should consider trade-off of reducing
Nosema infections, but increasing virus abundance. This
consideration may be more important at the end of the
beekeeping season in temperate climates (i.e., late autumn), since
DWV infections are usually greater at that time of year (15, 27, 28).
While the focus of our experiments was to evaluate the impact of
dual stressors on individual honey bee health, we determined that
honey bees exposed to a single stressor, i.e., fumagillin (25 ppm or
75 ppm) or clothianidin (1 ppb) had reduced levels of key immune
genes (i.e., ago2, dcr-like, abaecin, hymenoptaecin, and vitellogenin)
compared to bees fed sucrose syrup alone. The reduced expression
of vitellogenin in fumagillin or clothianidin (1 ppb) fed bees
indicates poor health status of the host while the reduced
expression of key immune genes suggests hindered
immune responses.

Collectively, the results described herein indicate that 0.16
ppb thyme oil acts as an immunostimulant in honey bees and
results in reduced levels of virus infection. Additional studies that
further examine the kinetics of immune stimulation and the
impact of multiple treatments on virus infections over a longer
time frame are required to help move these studies beyond the
laboratory and towards colony level investigations that may
benefit beekeeping operations. It will also be important to
examine the impact of simultaneous exposure to putative
immune system stimulants including thyme oil, in the context
of varying doses of chemical stressors (fungicide and/or
insecticide) on the outcome of honey bee virus infections. In
addition, chemical adjuvants can negatively impact the outcome
of virus infections in the context of other chemical stressors, and
therefore their impact also requires further investigation (188).
Studies that more clearly mimic the real-world multifactorial and
variable biotic and abiotic stressors encountered by honey bees,
and other beneficial insect pollinators, will be instrumental to the
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development of strategies aimed at mitigating their losses (11, 79,
133, 189–192).
4 MATERIALS AND METHODS

4.1 Honey Bees
Honey bee colonies were originally established as packages
containing naturally mated Apis mellifera carnica queens and
maintained in Langstroth hives in an apiary located at Montana
State University’s Horticulture Farm in Bozeman, MT, USA.
Frames of capped brood with emerging bees were obtained from
established colonies one day prior to each experiment and kept at
32°C and in a laboratory incubator overnight. Age-matched (~24
h post-emergence) adult female, worker bees were collected and
housed in modified deli-containers and randomly assigned into
treatment groups. Honey bees in each treatment group were
maintained in laboratory incubators at 32°C and ~ 20% relative
humidity and fed 50% sucrose solution ad libitum with or
without additives including thyme oil, fumagillin, and
clothianidin as described below. Experiments described herein
were carried out using honey bees collected from three separate
colonies obtained during May-August 2020, designated as rep1,
rep2, and rep3.

4.2 Virus Preparation
4.2.1 Flock House Virus
Flock House virus (FHV) was propagated in Drosophila
melanogaster Schneider 2 (S2) cells derived from D.
melanogaster embryos. S2 cells were grown as monolayers in
Schneider’s Drosophila medium supplemented with 10% heat-
inactivated fetal bovine serum (Life Technologies) and 1%
penicillin-streptomycin as per manufacturer’s instructions. To
generate FHV particles, 4 x 107 S2 cells/ml were seeded in a
sterile T75 flask (Thermo Scientific). An aliquot of FHV was
kindly provided by Dr. Anette Schneemann (The Scripps
Research Institute, La Jolla, California). S2 cells were infected
with FHV at a multiplicity of infection of 1 pfu/cell and
incubated at 28°C for 48 h as previously described (193). After
incubation, the cells were lysed by addition of 10% (vol/vol)
Nonidet P-40 and incubated on ice for 10 min with periodic
swirling. Cell debris was pelleted in a Sorvall LYNX 4000
Centrifuge (Thermo Fisher) at 13,800x g for 10 min at 4°C and
the clarified supernatant was transferred to a fresh tube. Virus
was pelleted through a 1 mL volume of 30% (wt/wt) sucrose in 50
mM HEPES (pH 7) at 40,000 rpm for 2.5 h at 11°C in a SW41 Ti
Swinging-Bucket Rotor (Beckman Coulter). The pellets were
resuspended in 0.5 mL 50 mM HEPES (pH 7) and centrifuged
at 10,000 rpm for 10 min to remove any insoluble material. The
clarified supernatant was layered on continuous sucrose
gradients (40%, 35%, 30%, 25%, 20%, 15% and 10% (wt/wt))
and centrifuged at 40,000 rpm for 1.5 h at 11°C to sediment the
virus halfway down the tube. The sedimented virus was further
pelleted in 10 mM Tris HCl buffer (pH 7.5) at 40,000 rpm for 2.5
h at 11°C for injections in honey bees. RNA was isolated from
Frontiers in Immunology | www.frontiersin.org 13
100 μL virus preparations (as described below) and FHV
abundance was quantified by RT-PCR and copy number was
based on a standard curve. The dose utilized for laboratory-based
honey bee infection studies was 3.5 x 108 FHV RNA copies per
bee. FHV RNA 2 plasmid standards were used as templates, with
concentrations ranging from 103 to 109 copies per reaction to
create a linear standard curve, with a limit of detection of 103

copies of FHV cDNA using primers FHV-FW and FHV-REV
(Supplemental Table S1). The linear equation for the plasmid
standard for FHV was Ct = -3.240x + 40.138 (R2 = 0.980,
efficiency = 103%) where ‘x’ is the log (FHV RNA copies).

4.2.2 Deformed Wing Virus
DWV was propagated in white eyed pupae collected from a
frame of capped brood. Specifically, honey bee pupae were
injected with 3.41 x 107 DWV RNA copies in 2 mL between
the 2nd and 3rd integuments of the abdomen using microcapillary
glass needle and a Harbo syringe (Honey bee Insemination
Service). Post-injection, pupae were held at 30°C in a humid
incubator for the course of infection. Infection progression was
tracked by the eye color to ensure the pupae were alive. Live
pupae were harvested at 10 days post infection and place in a 2
mL safe-lock Eppendorf tube with 1 mL PBS (pH 7.4) and
homogenized using a Tissue Lyser II (Qiagen) at 30 Hz for 2 min.
The homogenate was centrifuged at 14,000x g for 15 min at 4°C
and the clarified supernatant was transferred to a fresh tube.
DWV RNA copies were quantified using qPCR to be 3.41 x107

DWV RNA copies/μL. The inoculum was tested for copurifying/
contaminating viruses (ABPV, BQCV, CBPV, IAPV, KBV, LSVs,
and SBV) via PCR. No other viruses except DWV were detected
via PCR. (Supplemental Figure S11). The dose utilized for
laboratory-based honey bee infection studies was 3.5 x 108

DWV RNA copies per bee. DWV plasmid standards were used
as templates, with concentrations ranging from 103 to 109 copies
per reaction to create a linear standard curve, with a limit of
detection of 103 copies of DWV cDNA using primers DWV-F
1170 and DWV-R 1364 (Supplemental Table S1). The linear
equation for the plasmid standard for DWV was Ct = -3.469x +
40.803 (R2 = 0.999, efficiency = 94.5%) where ‘x’ is the log (DWV
RNA copies).

4.2.3 Sindbis-Green Fluorescent Protein Tagged
We utilized a recombinant model virus, Sindbis virus expressing
green fluorescent protein (42, 93, 194). We and others have used
SINV to investigate honey bee, fruit fly, and mosquito antiviral
defense mechanisms (42, 43, 61, 93). SINV was propagated in
Baby Hamster Kidney fibroblast (BHK-21) cells. BHK-21 cells
were grown as a monolayer in Eagle’s Minimum Essential
Medium with 10% fetal bovine serum. A 90% confluent flask
was infected with a multiplicity of infection of 0.001 as previously
described (94). Infected cells were incubated at 37°C with 5%
carbon dioxide for 24 h. Cells were collected, and the cell debris
was removed by centrifugation at 1000x g for 10 min. The
clarified supernatant was quantified using a standard plaque
assay (93). Each bee was injected with 3,750 plaque forming units
(PFUs) SINV. SINV-GFP plasmid standards were used as
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templates, with concentrations ranging from 103 to 109 copies
per reaction to create a linear standard curve, with a limit of
detection of 103 copies of SINV-GFP cDNA using primers
qSindbisFW4495 and qSindbisREV4635 (Supplemental Table
S1). The linear equation for the plasmid standard for SINV-GFP
was Ct = -3.335x + 40.137 (R2 = 0.993, efficiency = 99.5%) where
‘x’ is the log (SINV-GFP RNA copies).

4.3 Honey Bee Virus Infection
Age-matched (~24 h post-emergence) adult female, worker bees
were cold anesthetized at 4°C for 10 min prior to intrathoracic
injection of virus or buffer (mock-infection). Intra-thoracic
injections were performed using a Harbo syringe (Honey Bee
Insemination Service) and microcapillary glass needles, made by
pulling borosilicate glass capillary tubes (100 mm long, 1 mL
capacity, Kimble-Chase) with a coil temperature of 61°C on the
PC-10 Dual-Stage Glass Micropipette Puller (Narishige). Honey
bees were infected with 3.5 x 108 FHV RNA copies/bee in 10mM
Tris HCl buffer pH 7.5, 3.5 x 108 DWV RNA copies/bee in
10mM Tris HCl buffer pH 7.5 or 3,750 PFUs SINV-GFP. Mock-
infected bees were injected with 2 μL buffer (10mM Tris HCl,
pH 7.5).

4.4 Honey Bee Diet Preparation
Post-injection, honey bees were housed inmodified deli containers
for the duration of the study. Bees in the control group were fed
50% sucrose syrup only, whereas bees in treatment groups were
fed sucrose syrup containing one of the following additives: 0.16
ppb thyme oil (Body wonders), Fumagilin-B®, fumagillin
dicyclohexyl ammonium (Medivet Pharmaceuticals Ltd.) at
manufacturer’s recommended dose of 25 ppm or a higher dose
of 75 ppm, or clothianidin at the field relevant sublethal
concentration of 1 ppb or near lethal dose of 10 ppb (130, 195,
196). Thyme oil contains 10% - 64% thymol (~37% average)
depending on the plant species, geographical sources, and harvest
season, whichmay affect the volatile composition of the plant (113,
116–118). We estimate that 0.16 ppb thyme oil used in this
experiment may contain approximately 0.06 ppb (60 ppb)
thymol (37% thymol in 0.16 ppb thyme oil corresponds to ~ 60
ppb). For clothianidin treatments we utilized the commercially
available Poncho® 600, which contains 48% of the active
ingredient clothianidin. A working stock of 1000 ppb
clothianidin was prepared by 1:10 serial dilutions in 50%
sucrose solution, which was further diluted in 50% sucrose to
prepare 1 ppb (i.e., 10 ul of 1000 ppb Poncho® 600) and 10 ppb
(i.e., 100 ul of 1000 ppb Poncho® 600) clothianidin solutions.
Honey bees were fed sucrose solution either alone or with
additives using cage feeders that were made by putting two
holes on each side of a 1.5 mL centrifuge tube; sucrose solution
was checked daily and refilled as needed throughout the study.

4.5 RNA Isolation
Individual honey bee sample was dissected into head, thorax, and
abdomen. The abdomen was utilized for further analysis since it
is distal to the injection site and thus virus infection naturally
spread into that tissue, and it contains the immune cell
Frontiers in Immunology | www.frontiersin.org 14
generating fat body. Honey bee abdomens were transferred
into 2 mL Eppendorf safe-lock tubes and homogenized in 300
μL deionized water with a sterile steel ball (5 mm) using a Tissue
Lyser II (Qiagen) at 30 Hz for 2 min. An equal volume (300 μL)
of TRIzol reagent (Invitrogen) was added to homogenate and
then samples were vortexed for 15 s followed by a 5 min
incubation at room temperature. Next, 100 μL chloroform was
added and each sample was shaken by hand for 15 s and
incubated at room temperature for 2 min. Samples were then
centrifuged at 12,000x g at 4°C for 15 min and the aqueous phase
was transferred to a fresh 1.5 mL centrifuge tube. An equal
volume of isopropanol was added to the aqueous phase,
vortexed, and incubated at room temperature for 10 min to
precipitate the nucleic acid. The nucleic acid was pelleted by
centrifugation at 12000x g at 4°C for 10 min. Supernatant was
carefully removed and the pellets were washed with 75% ethanol
by centrifugation at 7500x g at 4°C for 5 min. The resulting
supernatant was discarded, and the pellets were air dried for
10 min at room temperature, then dissolved in 50 μL deionized
water. RNA concentrations were assessed on Nanodrop 2000
spectrophotometer (Thermo Fisher). All RNA samples were
stored in -80°C until further analysis.

4.6 Reverse Transcription/cDNA Synthesis
Reverse transcription reactions were carried out to synthesize
complimentary DNA (cDNA) by incubating 2,000 ng of RNA
with M-MLV reverse transcriptase (Promega) and 500 ng
random hexamer primers (IDT) for 1 h at 37°C according to
manufacturer’s instructions. The resulting cDNA was diluted 1:2
with sterile distilled water.

4.7 Polymerase Chain Reaction
Polymerase chain reaction (PCR) was used to test mock-infected
bees in all experimental replicates for pre-existing infections with
honey bee infecting viruses, since bees were obtained from honey
bee colonies that may have varying levels of naturally prevalent
bee infecting viruses (i.e., BQCV, CBPV, ABPV, DWV, IAPV,
KBV, SBV, LSVs 1–4). To reduce the number of individual PCR
tests, individual bee cDNA samples (n= 11-12) were pooled,
resulting in three pooled samples per treatment. Each pool was
tested for pre-existing virus infections using pathogen-specific
primers (Supplemental Table S1 and Supplemental Figure
S10). PCR was performed according to standard methods
(197). In brief, 2 μL cDNA template was combined with 10
pmol of each forward and reverse primer, and amplified with
Denville ChoiceTaq polymerase (Thomas Scientific) according
to the manufacturer’s instructions using the following cycling
conditions: 95°C for 5 min, 95°C for 30 s, 57°C for 30 s, 72°C for
30s, 35 cycles, followed by final elongation at 72°C for 4 min.

4.8 Quantitative PCR
Quantitative PCR was used to quantify relative abundances of
viruses and honey immune gene transcripts using the primers
listed in Supplemental Table S1. All qPCR reactions were
performed in triplicate with 2 mL of cDNA template. Each 20
mL reaction contained 1× ChoiceTaq Mastermix (Thomas
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Scientific), 0.4 mM each forward and reverse primer, 1× SYBR
Green (Life Technologies), and 3 mM MgCl2. A CFX Connect
Real Time instrument (BioRad) was used to carry out reactions
with the following thermo-profile: pre-incubation at 95°C for 1
min followed by 40 cycles of 95°C for 10 s, 60°C for 20 s, and
72°C for 15 s; final extension at 72 °C for 1 min, followed by melt
curve analysis. Reactions without template were carried out as
negative controls. The qPCR specificity was verified through melt
point analysis and gel electrophoresis of select samples. The
sequence amplicons were previously verified by chain-
termination sequencing. As described above in section 4.2 for
virus stock quantification, virus abundance in individual bee
samples was determined relative to a standard curve that was
generated by the use of virus amplicon specific plasmids, with
concentrations ranging from 103 to 109 copies per reaction, as
templates to create linear standard curves. The linear equations
for each virus amplicon are included in section 4.2 above. The
qPCR and mortality data for individual samples is included in
Supplemental Tables S3, S5. The virus fold change for dead and
live virus-infected honey bees fed chemical treatments was
plotted for each treatment group and no significant difference
in fold change was recorded in dead vs. live bees. Thus, in our
analyses, data from dead and live bees was combined
and presented.

To assess the relative expression of honey bee genes including
immune genes (i.e., argonaute-2, dicer-like, abaecin,
hymenoptaecin, heat shock protein 90, heat shock protein 70
cognate 4, protein lethal (2) essential for life-like), and
vitellogenin, relative to the expression of a reference gene (i.e.,
ribosomal protein L8) was carried out using the gene-specific
primer sets in Supplemental Table S1 and the DDCt method
(198). Specifically, the relative expression of host genes was
determined by a ranked DDCt method in which the DCt was
calculated by subtracting the rpl8 Ct value from the Ct of the
gene of interest. Then, the within-group DCt values were ranked
from highest to lowest, and the relevant corresponding control
DCt value was subtracted from the treatment group DCt to obtain
the DDCt. The fold-change in cDNA abundance was calculated
by the equation 2−DDCt. Efficiency of each primer set was
evaluated using cDNA dilution series and calculated by
plotting log10 of the concentration versus the crossing point
threshold (C(t)) values and using the primer efficiency equation
(10(1/Slope)-1) x 100). The efficiency equations of the primers
utilized for honey bee immune genes are- ago-2 Cp= -3.36x +
30.28, R² = 0.99; dcr-like Cp = -3.56x + 31.22, R² = 0.99; abaecin
Cp = -3.37x + 29.8, R² = 0.99; hymenoptaecin Cp = -3.44x +
30.50, R² = 0.99; hsp90 Cp = -3.43x + 32.98, R² = 0.99; hsc70-4
Cp = -3.36x + 31.52, R² = 0.99; pl2 Cp = -3.16x + 30.12, R² = 0.99;
vitellogenin Cp = -3.04x + 29.44, R² = 0.99.

4.9 Statistical Analysis
All data were analyzed using R v4.0.2 in RStudio V1.3.1073.
Pairwise comparisons for virus abundance and gene expression
were evaluated using the pairwise.wilcox.test function in the base R
Frontiers in Immunology | www.frontiersin.org 15
stats package to perform a Wilcoxon Rank Sums test with
Benjamini-Hochberg correlation for multiple comparisons (199).
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