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7 Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, Indlia, 2 Faculty of Life Sciences &
Biotechnology, South Asian University, New Delhi, India

The mechanisms underlying Mycobacterium fortuitum-induced mycobacteriosis remain
unexplored. Using head kidney macrophages (HKM) from catfish (Clarias gariepinus), we
report that Ca®" surge across mitochondrial-Ca®* uniporter (MICU), and consequent
mitochondrial ROS (mtROS) production, is imperative for mycobactericidal activity.
Inhibition of MtROS alleviated HKM apoptosis and enhanced bacterial survival. Based
on RNA interference (RNAI) and inhibitor studies, we demonstrate that the Toll-like
receptor (TLR)-2—endoplasmic reticulum (ER) stress—store-operated calcium entry
(SOCE) axis is instrumental for activating the mt-Ca®*/mtROS cascade in M. fortuitum-
infected HKM. Additionally, pharmacological inhibition of mtROS attenuated the
expression of CHOP, STIM1, and Orail, which suggests a positive feedback loop
between ER-stress-induced SOCE and mtROS production. Elevated tumor necrosis
factor alpha (TNF-a) levels and caspase-8 activity were observed in HKM consequent to
M. fortuitum infection, and our results implicate that mtROS is crucial in activating the TNF-
mediated caspase-8 activation. Our results for the first time demonstrate mitochondria as
an innate immune signaling center regulating mycobacteriosis in fish. We conclude that
M. fortuitum-induced persistent SOCE signaling leads to mtROS production, which in
turn activates the TNF-o/caspase-8 axis culminating in HKM apoptosis and
bacterial clearance.

Keywords: M. fortuitum, head kidney macrophage, TLR-2, ER stress, SOCE, mtROS, apoptosis

INTRODUCTION

Mpycobacterium fortuitum, atypical, rapidly growing, acid-fast mycobacteria, is one of the causative
agents of mycobacteriosis. The occurrence of multidrug-resistant strains (1) along with its impact
on aquaculture and zoonosis (2) makes it a pathogen of concern. Incidences of M. fortuitum
infections in humans have also been reported (3). Even though the bacterium is known to infect a
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diverse range of hosts, there are very few reports that detail the
molecular mechanisms of M. fortuitum-induced pathogenesis.
Toll-like receptors (TLRs) are a class of pathogen recognition
receptors that recognize conserved molecular patterns expressed
by pathogens triggering innate immune responses and inducing
subsequent adaptive immune responses (4). Several TLRs have
been reported to play critical roles in host immunity to
mycobacterial pathogenesis, among which the involvement of
TLR-2 is well studied (5, 6). The role of TLR-2 in mycobacterial
immunity is contentious. It was observed that TLR-2 signaling
contributes to mycobacterial immunity by secreting antibacterial
molecules and proinflammatory cytokines, which recruit various
immune effector cells to the site of infection (1, 7). TLR-2 knockout
mice are more susceptible to M. tuberculosis, implicating the
importance of TLR-2 signaling in mycobacterial immunity.
Conversely, there are also reports suggesting that virulent
mycobacteria utilize the TLR-2-MyD88 pathway for escaping
from the phagosome and replicating in the cytosol (8).
Prolonged stimulation of TLRs by persistent M. tuberculosis or
its components render macrophages unresponsive to interferon
gamma (IFN-Y) besides downregulating major histocompatibility
complex (MHC) II expression and stimulating anti-inflammatory
IL-10, thereby skewing the immune responses towards the pro-
mycobacterial TH2 pole. Granuloma formation plays a major role
in mycobacterial pathology, and it has also been observed that
mycobacteria exploit TLR-2 signaling for facilitating granuloma
formation and in the activation of peroxisome proliferator-
activated receptor, which regulates lipid droplet accumulation
inside macrophages together aiding in its survival in the host
(9). Based on these studies, it is quite evident that the cross-talk
between mycobacteria and TLR-2 has a profound impact in
modulating host immunity and establishing chronicity in the host.
TLR-2 signaling impacts several downstream molecules
including Ca**, in response to bacterial pathogens (10, 11) and
triggers ER stress; a condition characterized by depletion of Ca®*
inside ER-lumen and enhanced phosphorylation of eukaryotic
translation initiation factor 2o (eIF2ct), expression of glucose-
regulated protein 78’ (GRP78 or BiP) and CCAAT/enhancer-
binding homologous protein (CHOP) (8). Protracted ER stress
triggers apoptosis, and CHOP plays a major role in this process
(12). The role of ER stress in mycobacterial pathogenesis is well
documented. It has been observed that mycobacteria-induced ER-
stress results in macrophage apoptosis helping in the elimination
of intracellular bacteria (11, 13). Previously, we had reported that
TLR-2 plays an important role in the recognition and
phagocytosis of mycobacteria by head kidney macrophages
(HKM) (11). Fish possess a well-developed immune system that
comprises both innate and adaptive components. The fish
immune system exhibits remarkable resemblance with the
mammalian immune system (14)m and the fish model has been
successfully used to unravel molecular pathogenesis and
immunology of several diseases including tuberculosis (15). The
head kidney is a major immunocompetent organ in fish that
houses different immune cell types including macrophages.
Recently, we observed that TLR-2 impacts cytosolic-Ca*"
[(Ca*"),] levels by altering the expression of store operated

calcium entry (SOCE) channels (16). Complementing this,
TLR-2 activation has also been demonstrated to trigger mtROS
production against Salmonella typhimurium by mammalian
macrophages (7). However, the involvement of TLR-2 in
modulating Ca®" entry inside the mitochondrial matrix and
subsequent mtROS production has not been explored in M.
fortuitum infection.

SOCE, consisting of two key proteins, stromal interaction
molecule 1 (STIM1) and ORALI calcium release-activated calcium
modulatorl (Orail), gets activated in response to ER stress and
plays a critical role in maintaining long-term Ca®" signals in
addition to the replenishment of ER-Ca®" [(Ca®")gg] stores (17).
STIMLI is a type I transmembrane bi-functional protein localized
on the ER membrane, which senses Ca>* levels inside the ER
lumen and activates Orail expression in response to ER-Ca®*
depletion (18). Orail is a membrane-spanning protein with four
transmembrane helices localized on the plasma membrane (19),
which mediate Ca®" influx when activated by STIM1 (20). The
involvement of TLR-2-ER stress—STIM1/Orail axis-dependent
cytosolic (Ca®"), surge in M. fortuitum-induced pathogenesis has
been evidenced (16). However, reports indicating the
participation of STIM1/Orail signaling in mitochondrial
dysfunction are obscure in fish.

Mitochondria are major sites of ATP production through
oxidative phosphorylation. Transfer of electrons through a series
of enzymatic donors and acceptors leads to the reduction in O,
to water and the consequent production of ATP. However,
leakage of electrons during the respiratory process induces
superoxide anions, major contributors of mtROS (21). Under
normal cellular conditions, mtROS is produced in small
amounts, which play an important role in cellular signaling
and homeostasis. However, sustained production of mtROS
under stress creates an imbalance between oxidant generation
and antioxidant systems of mitochondria. Increased levels of
Ca*" inside the mitochondrial lumen [(Ca®"),,,] is a key factor for
the production of mtROS (22). ER stress triggers transport of
Ca" inside mitochondria (mt-Ca®") through SOCE across the
mitochondrial calcium uniporter (MICU) (23, 24), and buffering
of Ca®" inside mitochondria sustains Ca** influx by preventing
Ca**-dependent slow deactivation of STIM1-Orail complex
(24, 25). mtROS has been linked to bactericidal activity,
although the exact mechanism linking mtROS generation with
innate immunity remains obscure (7, 26). Additionally, mtROS
has also been reported to trigger apoptosis of innate immune
cells (27, 28). However, the role of mtROS in M. fortuitum
pathogenesis is not yet reported.

The proinflammatory cytokine TNF has a major role in
mounting effective host immunity, and TLR-2 signaling plays a
primal role in inducing its production (13). Interestingly, unlike
mammals, several TNF orthologs, bearing the TNF family
signature [LV]-x-[LIVM]-x3-G-[LIVMF]-Y-[LIMVMFY]2-x2-
[QEKHL], have been reported in teleosts (29), suggesting the
cytokine to be evolutionarily conserved. It has also been observed
that several fish species possess multiple TNF-a. isoforms (30).
Both in vitro and in vivo studies have confirmed that the fish
TNF-o. isoforms confer proinflammatory effects (31, 32) and
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serve as prototype M1 macrophage markers in fish (33). The
connection between TNF production and apoptosis of
macrophages in response to mycobacterial infection along with
reduction in the bacterial load has also been demonstrated (11,
13). There are also reports that suggest the involvement of SOCE
in TNF production (34). However, the same has not been
reported in M. fortuitum-induced pathogenesis.

Fish are the natural host for M. fortuitum (35). We have
previously established HKM as an alternate model to study the
molecular mechanisms of M. fortuitum-induced pathogenesis
(16, 36, 37). Our study implicated the role of TLR-2/Myd88
signaling in regulating M. fortuitum pathogenesis. We also
reported that TLR-2-induced (Ca®*). imbalance triggers ER
stress and STIM1/Orail expression in infected HKM; the
coordinated participation of STIMI1-Orail and superoxide is
critical in inducing NO-mediated apoptosis of HKM (16). In
the present study, we investigated the role of STIM1/Orail
signaling on mtROS generation consequent to M. fortuitum
infection. We report that STIM1/Orail signaling augments
mtROS production, which in turn incites TNF-o-mediated
apoptosis of HKM and the clearance of M. fortuitum.

MATERIALS AND METHODS

Bacterial Strain and Growth Conditions

M. fortuitum (Strain 993) was purchased from Microbial Type
Culture Collection and Gene Bank (MTCC), Chandigarh, India.
The strain is sensitive to amikacin and resistant to ampicillin as
suggested by the antibiogram. For infection studies, bacteria were
grown to mid-log phase (120 h) in Middlebrook 7H9 broth
(HiMedia), supplemented with 0.05% Tween-80, 0.50% glycerol,
and 100 pg/ml ampicillin in a shaking incubator (120 rpm) at
30°C. Before infection, M. fortuitum clumping was removed
by repeatedly passaging through a 26-G needle. Stocks were
maintained at —80°C in 10% glycerol and in Lowenstein Jensen
media (HiMedia) at 4°C for further use.

Fish Maintenance

Catfish, Clarias gariepinus (Siluriformes: Clariidae, 100-150 g),
were procured from local fish farms and maintained in 50-L glass
tanks (2-3 fish per tank) under natural photoperiod. Prior to
initiating the study, fish were acclimatized to laboratory
conditions for 15 days, and fish health was monitored at
regular intervals by morphological and pathological
examinations (38).

Isolation of HKM and Infection Studies

Head kidneys were aseptically removed and placed in Roswell
Park Memorial Institute (RPMI)-1640 (Gibco-Invitrogen) with
phenol-red indicator supplemented with 25 mM HEPES (Gibco-
Invitrogen) containing 1% penicillin-streptomycin. Single-cell
suspensions of each pair of head kidney were prepared using
100-mm wire mesh. The cell suspension was centrifuged at
400xg for 10 min at 4°C, the supernatant was discarded and
the pellet resuspended and then layered on a discontinuous

Percoll density gradient (34/51) and centrifuged at 400xg for
20 min at 4°C. The phagocyte-rich fraction appearing above the
34/51 interface was collected, washed, and incubated overnight at
30°C under 5% CO, for adherence to sterile Petri dishes (Nunc).
The non-adherent cells were removed carefully, and the adherent
macrophages were obtained by incubation with 1% cell
dissociation medium (59418C, Sigma) at 30°C for 20 min. The
purity of the HKM was checked by staining with Wright Giemsa
Stain (>90% pure), and viability was determined using 0.4%
trypan blue dye exclusion method (>95% viable) (39, 40).

For infection, the HKM were washed in antibiotic-free RPMI
supplemented with 10% fetal bovine serum (FBS) (Gibco-
Invitrogen) and infected with M. fortuitum at a multiplicity of
infection (MOI) of 1:10 (HKM/bacteria). The number of HKM
used for different experiments is mentioned in the corresponding
section. A short spin of 5 min was given to facilitate bacteria-
HKM interactions, the cells were distributed in six-well tissue
culture plates and incubated for 4 h at 30°C. Subsequently,
amikacin (50 pg/ml, HiMedia) was added and the cells further
incubated for 1 h to kill the extracellular bacteria. The
concentration of amikacin effectively killed extracellular
bacteria without affecting HKM viability (data not shown).
Finally, the infected HKM were washed and resuspended in
RPMI supplemented with 10% FBS containing amikacin (5 pug/
ml) and incubated at 30°C for further studies (36, 37).

Reagents

TLR-2 inhibitor (CUCPT-22, 1 uM), ER-stress inhibitor (4-
phenyl butyric acid, 4-PBA, 10 pM), mtROS inhibitor
(YCGO063, 10 pM), mtROS inducer (antimycin A, Ant A, 50
uM), TNF-o biosynthesis inhibitor pentoxifylline (Pentox, 1
mM), and mt-Ca** uniporter blocker (Ru360, 10 uM) were
purchased from Sigma. Caspase-8 inhibitor (Z-IETD-FMK, 10
uM) was purchased from Biovision. (Ca**). monitoring dye
(Fluo-3/AM, 2 pM) and mt-Ca** monitoring dye (Rhod-2/AM,
5 uM) were purchased from Invitrogen. Mitochondrial
superoxide indicator (Mitosox, 5 UM) was purchased from
Molecular Probes. HKM were pretreated with specific
inhibitors for 1 h prior to infection with M. fortuitum. The
doses of different inhibitors were selected on the basis of
inhibitor specificity and cytotoxicity. The HKM treated with
the indicated concentrations of the inhibitors remained as viable
as control HKM at all-time points as determined by the trypan
blue (0.4%) dye exclusion method and were maintained during
the entire course of the experiment (16, 36, 37).

RNA Isolation, cDNA Synthesis, and
Real-Time qPCR

HKM (2 x 107/ml) pretreated with or without inhibitors or
transfected with scrambled (sc-) or specific small-interfering
RNAs (siRNAs) were harvested at indicated time points p.i.,
total RNA isolated using TRIZOL (Sigma), and dissolved in
diethyl pyrocarbonate (DEPC) water. One microgram RNA was
used as a template using first-strand complementary DNA
(cDNA) synthesis kit (MBI fermentas). Primers for CHOP,
STIM1, Orail, TNF-, and B-actin genes were already available
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in our laboratory (Table 1). Fold change in CHOP, STIMI,
Orail, and TNF mRNA expression levels were studied using
SYBR green PCR Master Mix (Applied Biosystems) by RT-qPCR
(ABI ViiA, Applied Biosystems). cDNA (1:100 dilution), forward
and reverse primers (0.20 uM each), and 5 ul SYBR green PCR
master mix (Applied Biosystems) were used (total volume, 10 pl)
for each assay. Expression levels of different genes were analyzed
by the comparative AACT method wherein S-actin was taken as
the endogenous control and uninfected HKM (0 h) was used as
the calibrator (16).

siRNA Transfection

siRNA (Table 2) transfection was done using HiPerFect
Transfection Reagent (Qiagen). Briefly, 5 pl each of siRNA and
HiPerFect complex were mixed gently, added to 90 pl Opti-Mem
(Invitrogen), and incubated for 20 min at 30°C to allow complex
formation. The complex was then added to the HKM cultures
maintained in Opti-MEM, mixed properly (total volume, 1 ml),
and incubated at 30°C with 5% CO, for 16 h during which HKM
viability was continuously monitored. Thereafter, HKM were
infected with M. fortuitum and processed for subsequent studies.
Targeted gene knockdown was confirmed by real-time
quantitative PCR (RT-qPCR) using target-specific siRNAs.
Scrambled or sc-siRNA (Sigma, 5 nM) was used as universal
negative control in this study.

Measurement of mt-Ca>*

HKM (2 x 10%ml) pretreated with or without inhibitors or
transfected with sc- or targeted siRNAs were incubated with cell-
permeable mt-Ca** dye Rhod-2/AM for 20 min at 30°C under
dark conditions. Excess dye was removed by washing with

TABLE 1 | Real-time primer sequences.

Gene Accession no. Real-time primers
STIM1 KU962938 FP 5'-TGGGCCAGATGATGAAAGACC-3’
RP 5’-CACCTTTTCCACCTCCACTGA-3’
Orait KX765881 FP 5'-CTCTGCTGGGTCAAGTTCCT-3’
RP 5’-ACGATGATGCAGGTGGAGG-3’
CHOP LK054407 FP 5-GTTGGAGGCGTGGTATGAAG-3’
RP 5’-GAAACTCCGGCTCTTTCTCG-3’
TNF-a KM593875 FP 5’- TCTCAGGTCAATA- CAACCCGC-3’
RP 5’-GAGGCCTTTGCGGAAAATCTTG -3’
B-actin AF057040 FP 5'-CGAGCAGGAGATGGGAACC-3’

RP 5'-CAACGGAAACGCTCATTGC-3’

TABLE 2 | siRNA sequences.

Gene siRNA’s

STIM1 Sense 5'-GGGACCACAUGGGCCAGAUITAT-3’
Anti-sense 5’-AUCUGGCCCAUGUGGUCCCATdT-3’

Orait Sense 5-GCCUACGCCUCCACCUGCAdTAT-3’
Anti-sense 5’-UGCAGGUGGAGGCGUAGGCATAT-3’

CHOP Sense 5'-AUGAAGACUUGCAAGAUAU- 3’
Anti-sense 5’-AUAUCUUGCAAGUCUUCAU-3’

TNF-o Sense 5’-GCAAAGGCCUCUACUUCGU-3’

Anti-sense 5’-ACGAAGUAGAGGCC UUUGC-3’

phosphate-buffered saline (PBS) (1) and HKM infected with M.
fortuitum. The changes in fluorescence intensity were measured
at indicated time points p.i. in a fluorimeter (Spectramax,
Molecular Devices) at excitation—emission of Ass, and Asg,
respectively, and changes in mt-Ca®" levels were plotted as the
relative increase in fluorescence values.

Measurement of mtROS

HKM (2 x 10%ml) pretreated with or without inhibitors or
transfected with sc- or targeted siRNAs were infected with M.
fortuitum. HKM were collected at indicated time point p.i. and
incubated with MitoSOX for 20 min at room temperature under
dark conditions. Excess dye was removed by washing with PBS
(1), and the changes in fluorescence intensity were measured at
excitation-emission of As;o and Asgg, respectively (Spectramax,
Molecular Devices). The changes in mtROS levels were plotted as
the relative increase in fluorescence values.

TNF-a Quantification

HKM (2 x 10%ml) pretreated with or without inhibitors or
transfected with sc- or targeted siRNAs were infected with M.
fortuitum. Cell-free culture supernatant was collected at
indicated time points p.i. and TNF-o levels measured with
fish-specific TNF-o. ELISA kit (MyBioSource, MBS704369).
Briefly, 100 ul of culture supernatant was loaded to the
antibody precoated wells and incubated at 37°C for 90 min.
The supernatant was removed, and 100 pl biotinylated detection
antibody was added followed by incubation at 37°C for 1 h.
Wells were washed and 100 pl horseradish peroxidase (HRP)
conjugate was added, and the plates were incubated at 37°C for
30 min. Following incubation, the wells were washed, and 90 pl
substrate was added and incubated at 37°C for 15 min. Fifty
microliters of stop solution was added to terminate the reaction
and absorbance read at A5 (Spectramax, Molecular Devices).
The concentration of TNF-o in each sample was interpolated
from the standard curve (11).

Enumeration of Intracellular Bacteria

HKM (2 x 10°/ml) pretreated with specific inhibitors or
transfected with sc-siRNA or targeted siRNAs, respectively,
were infected with M. fortuitum. The cultures were terminated
at indicated time point p.i., lysed with 0.1% Triton X-100, serially
diluted, plated on 7 H11 Middlebrook agar plates supplemented
with 0.05% Tween-80, 0.50% glycerol, and 100 pg/ml ampicillin.
Intracellular bacteria (CFU) were enumerated following
incubation at 30°C (16).

Caspase Assay

HKM (2 x 10%/ml) pretreated with or without specific inhibitors
or transfected with sc-siRNA or targeted siRNAs were infected
with M. fortuitum. Caspase-8 (Elabscience) and caspase-3
activity (Biovision) were studied using specific assay kits.
Briefly, HKM collected at indicated time points p.i. were lysed,
and to the cell lysate (50 pl), equal volume of 2 reaction buffer
and caspase-8/caspase-3-specific substrate (5 pul) was added to
separate wells and mixed gently, avoiding bubble formation. The
plates were incubated at 37°C for 2 h, absorbance was measured
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at Ayos (Spectramax, Molecular Devices), and relative fold
changes in caspase-8 and caspase-3 activity were plotted.

Statistical Analysis

Mean *= SE were calculated using pairwise comparison by
employing t-test: two samples using unequal variances to
determine the statistical significance between the groups. A
value of p < 0.05 was considered as statistically significant.
Individual assays were done in triplicates, and the vertical bars
represent mean * SE of three independent observations (n = 9).

M. fortuitum-Induced mt-Ca®* Surge
Triggers mtROS in HKM

The role of mt-Ca®"-induced mtROS as an innate immune factor
has been reported previously (7, 41). In absence of prior
knowledge, our aim was to study this in M. fortuitum
pathogenesis. HKM were infected with M. fortuitum, and mt-
Ca”" levels were monitored at indicated time points p.i. using
mt-Ca®*-specific dye Rhod-2/AM. We observed a significant
increase in mt-Ca®" levels with maximum levels recorded at
2 h p.i. (Supplementary Figure 1), and selected this time interval
for subsequent studies. The mitochondrial uniporter MICU
mediates the influx of (Ca*"), inside mitochondria, triggering
mtROS production (42). To look into this, HKM were pretreated
with MICU inhibitor Ru360 and then infected with M. fortuitum,
and mt-Ca®* levels were monitored at 2 h p.i. It was observed
that mt-Ca** levels were significantly downregulated in the
presence of Ru360 (Figure 1), suggesting the involvement of
MICU in the dynamics of mt-Ca®" in M. fortuitum infection.
Furthermore, we pre-treated the HKM with TLR-2 and ER-stress
inhibitors (CUCPT-22 and 4-PBA) followed by infection with
M. fortuitum and measured the mt-Ca** levels (Figure 1). Our
results affirmed the involvement of TLR-2-ER-stress-STIM1-
Orail axis in triggering mt-Ca** elevation p.i. Additionally, we
also measured mt-Ca®" levels in the absence of STIM1 and Orail
signaling. For that, the HKM were transfected with STIM1 and
Orail siRNA, respectively, and then infected with M. fortuitum
and the changes in mt-Ca®" levels monitored. The significant
reduction in mt-Ca*" levels led us to conclude the involvement of
SOCE in triggering mt-Ca*" influx in M. fortuitum-infected
HKM (Figure 1).

Our next step was establishing the link between mt-Ca**
dynamics and mtROS production. To study this, we used the
specific dye MitoSOX (43). Mycobacterium fortuitum-infected
HKM were stained with MitoSOX, and the changes in mtROS
levels were monitored at indicated time points p.i. We observed
maximum mtROS levels at 4 h p.i. (Supplementary Figure 2)
and selected this time interval for subsequent studies. In our next
step, we pretreated the HKM with Ru360 and measured mtROS
in infected HKM. We observed a significant reduction in mtROS
levels in the presence of Ru360 (Figure 2A). Based on our
kinetics and inhibitor studies, it is evident that the influx of
mt-Ca®" through MICU leads to downstream mtROS generation
in M. fortuitum-infected HKM. Additionally, we also checked
whether inhibition of mtROS is having any impact on the mt-
Ca®* levels. To this, we pretreated the HKM with mtROS
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FIGURE 1 | M. fortuitum-induced SOCE triggers mt-Ca®* elevation. HKM

(2 x 10%ml) pretreated separately with or without specific inhibitor or
transfected with sc-siRNA or targeted siRNA were infected with M. fortuitum
and mt-Ca®* elevation measured at 2 h p.i. using Rhod-2/AM. Individual
assays were done in triplicates, and the vertical bars represent mean + SE of
three independent observation (n = 9). *p < 0.05 compared to HKM; #p <
0.05 compared to HKM+B; ¥p < 0.05 compared to HKM+Sc; $p <0.05
compared to HKM+Sc+B. HKM, uninfected HKM; HKM+B, HKM infected
with M. fortuitum; HKM+Ru-360+B, HKM+CUCPT-22+B, HKM+4-PBA+B,
HKM+YCG063+B, HKM pretreated with CUCPT-22, 4-PBA, Ru-360,
YCGO063, respectively, and infected with M. fortuitum. HKM+Sc, HKM
transfected with sc-siRNA; HKM+Sc+B, HKM transfected with sc-siRNA and
infected with M. fortuitum; HKM+STIM1 siRNA+B; HKM+Orai1 siRNA+B,
HKM transfected with STIM1 and Orai1 siRNA, respectively, and infected with
M. fortuitum (Ru-360, MICU inhibitor; CUCPT-22, TLR-2 inhibitor; 4-PBA,
ER-stress inhibitor; YCG063, mtROS inhibitor).

inhibitor (YCG063) and measured the mt-Ca*" levels. Our
results suggested the existence of a positive feedback loop
between mt-Ca>" and mtROS elevation (Figure 1).

mtROS Is Proapoptotic and
Mycobactericidal

mtROS is reported to trigger apoptosis of host immune cells (44).
However, the same is not well reported in fish. Our previous
studies demonstrated that M. fortuitum induces caspase-3-
dependent HKM apoptosis (36). Here, we hypothesized that
mtROS generated in response to M. fortuitum infection induces
HKM apoptosis. To begin with, HKM were pretreated with the
mtROS inhibitor YCGO063 (45) and then infected with M.
fortuitum and mtROS levels monitored at 4 h p.i. We noted
that pretreatment with YCGO063 significantly downregulated
mtROS levels in infected HKM (Figure 2A). Next, HKM
pretreated with YCGO063 were infected with M. fortuitum and
apoptosis studied by caspase-3 assay at 24 h p.i. Pretreatment
with YCGO063 attenuated caspase-3 activity (Figure 2B).
Antimycin A (Ant A), an inhibitor of complex III of the ETC,
was used as positive control, which very predictably led to the
production of measurable quantities of mtROS in HKM
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respectively, and infected with M. fortuitum (YCG063, mtROS inhibitor; Ant A, mtROS inducer; Ru360, MICU inhibitor).

(Figure 2A) and triggered caspase-3 activity (Figure 2B). Thus,
our results confirmed that mtROS plays a proapoptotic role in M.
fortuitum pathogenesis.

We concluded investigating the role of mtROS in regulating
M. fortuitum growth. HKM pretreated with YCG063 were infected
with M. fortuitum, and the growth of intracellular bacteria
was studied at 24 h p.i. We observed that inhibiting mtROS
production by YCGO063 led to a significant increase in the
number of intracellular M. fortuitum (Figure 2C). Furthermore,
pretreatment with mtROS-inducer Ant A also resulted in a
significant reduction in the number of intracellular M. fortuitum
(Figure 2C). Collectively, our results implicate that mtROS induces
HKM apoptosis and helps in the clearance of M. fortuitum.

The Crosstalk Between TLR-2-ER Stress-
SOCE Axis and mtROS Is a Key Event in
M. fortuitum Pathogenesis

We wanted to explore the upstream signaling events triggering
mtROS production in infected HKM. Based on our own study
(16) and previous reports (7), we hypothesized the primal role of
the TLR-2-ER-stress axis in the process. To test this, HKM were
treated separately with the TLR-2-specific inhibitor, CUCCPT-
22 (46), or transfected with TLR-2-siRNA, then infected with M.
fortuitum, and the changes in mtROS production (4 h p.i.) were
monitored. We observed that inhibiting the TLR-2 signaling
resulted in the downregulation of mtROS production in infected
HKM. We followed this by pretreating the HKM with the
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ER-stress ameliorator, 4-PBA (47), or transfecting the HKM with
CHOP-siRNA and monitoring the changes in mtROS levels. It
was observed that inhibiting ER stress resulted in significant
downregulation in the production of mtROS in M. fortuitum-
infected HKM (Figure 3A). YCG063 was used as the control.

We had previously reported the proapoptotic role of SOCE in
M. fortuitum pathogenesis (16). Here, we questioned the
involvement of SOCE in mtROS generation in M. fortuitum-
infected HKM. Towards that direction, we silenced STIM1 and
Orail expression with specific siRNAs and measured mtROS
levels in M. fortuitum-infected HKM. We observed that the
silencing of STIMI and Orail interfered with mtROS production
in the infected HKM (Figure 3A). Based on these observations,
we suggest that signaling via TLR-2-ER stress—SOCE axis
induces mtROS generation in M. fortuitum-infected HKM.

We extended the study by pretreating HKM with the mtROS
inhibitor, YCG063, and monitored the expression of CHOP,
STIM1, and Orail, respectively at 2 h p.i (16, 37). It was observed
that inhibiting mtROS production downregulated CHOP, STIM],
and Orail mRNA expression in M. fortuitum-infected HKM
(Figure 3B). However, pretreatment with mtROS inducer Ant A
resulted in a significant increase in CHOP, STIMI, and Orail
mRNA expression levels in M. fortuitum-infected HKM. To this,
we concluded that the cross-talk between TLR-2-ER stress-SOCE
axis and mtROS production potentiates M. fortuitum-induced
HKM pathology.

STIM1-Orai1/mtROS Crosstalk Triggers
TNF-a Production in Infected HKM

mtROS is reported to induce the production of proinflammatory
TNEF-o. with apoptotic implications (48). However, evidence of
any link between ER stress-SOCE-mtDNA axis-dependent
mtROS production and TNF-a synthesis remains unexplored
to date. To begin with, HKM were infected with M. fortuitum
and TNF-oo mRNA expression studied at indicated time points
p-i. We observed maximum TNF-o mRNA expression at 6 h p.i.
(Supplementary Figure 3A). Complementing this, the changes
in TNF-o protein levels were also studied using a specific assay
kit. Maximum TNF-o production was observed at 24 h p.i. and
selected for subsequent studies (Supplementary Figure 3B).

Next, HKM pretreated with YCG063 were infected with M.
fortuitum, and changes in TNF-ot mRNA expression and protein
levels were monitored at 6 and 24 h p.i. respectively (Figures 4A,
B). We observed that inhibiting mtROS production resulted in a
significant decline in TNF-o. mRNA expression and protein
concentration. In addition to this, treatment with Ant A led to
significant upregulation in TNF-oc mRNA expression, which led
us to conclude that M. fortuitum infection in fish triggers
mtROS-dependent TNF-o. production.

We extended our study wherein HKM pretreated with
CUCPT-22, 4-PBA, or transfected separately with TLR-2-,
CHOP-, STIMI-, and Orail-siRNA were infected with M.
fortuitum and the changes in TNF-o levels monitored. It was
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FIGURE 3 | TLR-2-ER stress-SOCE axis triggers mtROS production and vice versa. (A) HKM (2 x 106/ml) pretreated separately with or without specific inhibitors
or transfected with scrambled siRNA (sc-siRNA) or targeted siRNAs, respectively, were infected with M. fortuitum and mtROS levels measured at 4 h p.i. using
MitoSOX. (B) HKM (2 x 107/ml) pretreated separately with or without specific inhibitors were infected with M. fortuitum and CHOP, STIM1, and Orail mRNA
expression quantified by RT-gPCR at 2 hr p.i. using SYBR green PCR master mix. Individual assays were done in triplicates, and the vertical bars represent mean +
SE of three independent observation (n = 9). *p < 0.05 compared to HKM; #P < 0.05 compared to HKM+B; *P < 0.05 compared to HKM+Sc; ®p < 0.05 compared
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M. fortuitum (CUCPT-22, TLR-2 inhibitor; 4-PBA, ER-stress inhibitor; YCG063, mtROS inhibitor; Ant A, mtROS inducer).
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observed that silencing of TLR-2 signaling, ameliorating ER
stress, inhibiting STIM1/Orail expression, and mt-Ca>* influx
led to significant downregulation in TNF-o. mRNA and protein
expression (Figures 4A, B) in the infected HKM. Pentox was
used as a control for the study. Collectively, these results
implicated the critical role of mtROS in inducing TNF-o
production in M. fortuitum-infected HKM and that TLR-2/ER
stress/SOCE-mt-Ca”" axis plays a primal role in the process.

TNF-o Affects HKM Apoptosis and
Clearance of M. fortuitum
TNF-a. is well known to induce the activation of caspase-8 under
various conditions of stress (49, 50). We had previously observed
that M. fortuitum triggers caspase-8-mediated apoptosis of HKM
(36). We questioned the role of TNF-a. in activating caspase-8 in
M. fortuitum-infected HKM. For that, HKM pretreated with
TNF-a. inhibitor pentox or transfected with TNF-a siRNA were
infected with M. fortuitum, and the changes in caspase-8 levels
were studied 24 h p. i (36). It was observed that inhibiting TNF-o.
led to a significant decrease in caspase-8 activity (Figure 5A),
which clearly suggested that TNF triggers caspase-8 activation in
M. fortuitum-infected HKM. Caspase-8 inhibitor Z-IETD-FMK
was used as a control in the study.

Caspase-8 activation leads to both caspase-3-dependent and
caspase-3-independent apoptosis (51). To study this, HKM
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FIGURE 4 | TLR-2-ER stress-STIM1/Orai1 signalosome induces TNF-o. production. (A) HKM (2 x 107/ml) pretreated separately with or without specific inhibitors or
transfected with scrambled siRNA (sc-siRNA) or targeted siRNAs, respectively, were infected with M. fortuitum and TNF-oe mRNA expression quantified by RT-gPCR
at 6 h p.i. (B) HKM (2 x 108/mi) pretreated separately with or without specific inhibitors or transfected with scrambled siRNA (sc-siRNA) or targeted siRNAs,
respectively, were infected with M. fortuitum and TNF-o. production was quantified at 24 h p.i. using specific assay kit. Individual assays were done in triplicates, and
the vertical bars represent mean + SE of three independent observations (n = 9). *p < 0.05 compared to HKM; b < 0.05 compared to HKM+B; *p < 0.05 compared
to HKM+Sc; $p < 0.05 compared to HKM+Sc+B. HKM, uninfected HKM; HKM+B, HKM infected with M. fortuitum; HKM+YCG063+B, HKM+Ant A+B, HKM
+CUCPT-22+B, HKM+4-PBA+B, HKM+Pentox+B, HKM pretreated with YCG063, Ant A, CUCPT-22, 4-PBA, Pentox, respectively, and infected with M. fortuitum;
HKM+Sc, HKM transfected with sc-siRNA; HKM+Sc+B, HKM transfected with sc-siRNA and infected with M. fortuitum; HKM+TLR-2 siRNA+B, HKM+CHOP siRNA
+B, HKM+STIM1 siRNA+B, HKM+Orai1 siRNA+B, HKM transfected with TLR-2, CHOP, STIM1, Orail-siRNA, respectively, and infected with M. fortuitum (YCGOB3,
mtROS inhibitor; Ant A, mtROS inducer; CUCPT-22, TLR-2 inhibitor; 4-PBA, ER-stress inhibitor; Pentox, TNF-a. inhibitor).

pretreated with caspase-8 inhibitor Z-IETD-FMK were infected
with M. fortuitum, and caspase-3 activity was monitored at 24 p.i
(36). We observed that inhibiting caspase-8 activation resulted in
significant downregulation in caspase-3 activity. Furthermore,
pretreatment with pentox or transfection with TNF-o siRNA
also markedly inhibited caspase-3 activation in M. fortuitum-
infected HKM (Figure 5B). Based on these results, it is evident
that the activation of the TNF-0//caspase-8 axis leads to caspase-
3-mediated apoptosis of M. fortuitum-infected HKM.

Next, we investigated the role of TNF in deciding the fate of
intracellular M. fortuitum. To achieve this, HKM pretreated with
TNF inhibitor pentox and TNF siRNA were infected with M.
fortuitum and intracellular bacteria (CFU) enumerated at 24 p.i.
Inhibition of TNF production led to significant improvement in
intracellular bacterial number (Figure 5C), implicating the
bactericidal role of TNF in M. fortuitum pathogenesis. Taken
together, our findings established that TNF-induced HKM
apoptosis aids in the clearance of M. fortuitum.

DISCUSSION

Mpycobacterium fortuitum induces apoptosis of host macrophages,
but the underlying mechanisms remain unexplained. In the
present study, we examined the role of mtROS in intracellular
survival and pathogenesis of M. fortuitum using HKM as a model.
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Our present findings suggest mtROS as an important host innate
immune attribute in regulating M. fortuitum pathogenesis.
Among several signaling molecules that regulate
mycobacterial pathogenesis, Ca** is important (36, 52). Under
stress, ER releases Ca”", a significant portion of which enters the
mitochondria through MICU. The balanced uptake of Ca®" is
crucial for mitochondrial metabolism, but the sustained
accumulation of Ca®" is detrimental for a cell. It amplifies the
production of toxic mtROS (22), which interferes with
mitochondrial functions, inducing apoptosis (53). We noted
that M. fortuitum infection led to a significant rise in mt-Ca®"

levels, which coincided with heightened mtROS production,
suggesting a positive correlation between mt-Ca** levels and
mtROS production in infected HKM. Although mtROS
generation has been observed in other mycobacteria (54, 55),
this is the first report demonstrating M. fortuitum altering mt-
Ca®" dynamics triggering mtROS generation in infected
macrophages. Our next step was studying the role of mtROS in
M. fortuitum pathogenesis. We had earlier observed that
inhibiting mtROS production restored mitochondrial
membrane potential (37). Extending that in the present study,
we noted that inhibiting mtROS production attenuated caspase-3
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activity and interfered with HKM apoptosis, thereby favoring
intracellular M. fortuitum growth, while augmenting mtROS
production had the opposite effects, suggesting a role of
mtROS in M. fortuitum pathology. The role of mtROS in
mycobacterial pathogenesis is contentious. It has been reported
that mtROS repress proinflammatory responses and facilitates
the survival of M. abscessus in macrophages (55). mtROS has also
been suggested to be a virulence attribute aiding in phagosome
rupture and escape of mycobacteria to the cytosol where it
replicates efficiently, triggering necrosis and spreading to
adjacent cells (55, 56). Additionally, the implication of
apoptosis in mycobacterial pathogenesis is also not clear (57,
58). Our results distinctly establish the proapoptotic and
bactericidal role of mtROS in M. fortuitum infection. These
findings are in accord with the bactericidal role of mtROS
reported previously against several microbial pathogens (7, 59,
60). Based on these findings, we propose that mtROS generation
is pro-host against M. fortuitum infection in fish. The ability to
mount effective immunity against a particular pathogen is host
centric, and at this stage, we are not sure whether this
proapoptotic bactericidal role of mtROS is a fish-specific innate
response against mycobacteria or conserved in other vertebrates,
too. We previously recorded increased intracellular ROS in M.
fortuitum-infected HKM (36). Extending our previous findings,
we propose that mtROS contributes to total cellular ROS
produced in infected HKM, thereby compounding M.
fortuitum pathogenesis.

Identifying the upstream molecules that influence mtROS
production in M. fortuitum infection was our next step. We
recently demonstrated that TLR-2 augments (Ca’")c surge
triggering ER stress with proapoptotic implications in M.
fortuitum-infected HKM (16). Here, we studied the
involvement of TLR-2 in initiating mtROS axis and observed
that in the absence of TLR-2 signaling, there was a marked
reduction in mtROS levels. These results support previous
studies suggesting that TLR-2 activation elicits mtROS
generation in bacteria-infected cells (7, 59, 60). mtROS
generation is intimately linked with the assembly and
functioning of ETC. Previous studies have suggested that the
interaction of TLR-2 adaptor molecule tumor necrosis factor
receptor-associated factor 6 (TRAF-6) with evolutionarily
conserved signaling intermediate in Toll pathways (ECSIT)
impacts ETC assembly, triggering mtROS generation (7).
Identifying the downstream adaptor molecules and kinases of
TLR-2 cascade influencing mtROS generation in fish
macrophages will help in understanding the molecular
underpinnings of M. fortuitum pathogenesis and associated
therapeutics. Based on these results, we extend our previous
findings to suggest that besides functioning as an immune
sensor, TLR-2 also aids in linking M. fortuitum stimuli with
antibacterial mtROS generation. Our findings firmly establish the
role of mitochondria in fish innate immunity and suggest that
TLR-2 functions as a conduit between them.

Once we observed the primal role of TLR-2 in mtROS
generation, we asked how TLR-2 induces mtROS during M.
fortuitum infection. Several mechanisms have been proposed

linking TLR-2 with mtROS generation under varying conditions
of pathogen stress (7). Prolonged ER stress is harmful to cells,
and our own findings suggested the role of TLR-2 in triggering
prolonged ER-stress and mitochondrial dysfunction in
mycobacteria-infected HKM (11, 37). The contribution of
SOCE in activating the mt-Ca**/mtROS axis has been reported
(61). However, the role of SOCE in the alteration of
mitochondrial homeostasis was not studied in mycobacterial
infection. A comparable decline in mt-Ca®" on inhibiting
STIM1/Orail signaling led us to conclude that SOCE
contributed towards the mt-Ca** surge in infected HKM. Our
earlier studies with cytochalasin D, which inhibits mitochondrial
movement (37) coupled with MICU inhibitor Ru-360 here,
suggest persistent SOCE sustains mt-Ca®" across MICU, and
the temporal association between ER and mitochondria is critical
for the transport of Ca** between the two organelles triggering
mtROS generation. What determines mitochondrial movement
propelling it towards ER in M. fortuitum-infected HKM is not
clear from this study. Mitochondrial adaptor proteins act as Ca**
sensors and play a major role in mitochondrial motility through
their interactions with different motor proteins and cytoskeletal
proteins (62). It has also been observed that mt-Ca** content per
se influences mitochondrial mobility in neurons, and MICU
regulates the process by gating Ca®>* influx into the organelle
(63). Future studies aimed towards examining the mechanism by
which mt-Ca®" influx through MICU affects the interactions of
mitochondrial adaptor proteins and motor proteins in infected
HKM will help in understanding mitochondrial dynamics
following M. fortuitum infection and ensuing pathogenesis
induced by the bacterium.

ER stress and SOCE are intimately linked. Complementing
this, we observed a positive correlation between mtROS and the
expression of CHOP, STIMI, and Orail, respectively. This
finding suggests that a positive feedback loop is activated
between ER-stress-dependent SOCE and mtROS production
consequent to M. fortuitum infection. Since the three events
are inherently cytotoxic in nature, we propose that the trio plays
a non-redundant and complementary role in HKM apoptosis.

We intended to study how mtROS influences M. fortuitum-
induced HKM apoptosis. Proinflammatory cytokines induce
macrophage apoptosis, and mtROS has been reported to
trigger the synthesis of proinflammatory cytokines (64). SOCE
has also been linked to the synthesis of proinflammatory TNF-o.
(65). To the best of our knowledge, there are no reports that
demonstrate the involvement of the SOCE-mtROS axis in
inducing TNF-o synthesis in mycobacterial infection. The role
of TNF-a. is contentious in fish with reports suggesting that it
mediates both susceptibility and resistance to mycobacterial
pathogens (11, 66, 67). Additionally, the nature of cell death
induced by TNF-« is debatable with reports suggesting its role
both in apoptosis (11) and necrosis (67) of mycobacteria infected
fish macrophages. TNF-o. induces macrophage apoptosis by
activating caspase-8 (68). Notably, the proapoptotic role of the
TNEF-o-caspase-8 axis is not well narrated in piscine
mycobacteriosis. We observed that inhibition of TLR-2-ER
stress—SOCE-mediated mtROS generation repressed TNF-o
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FIGURE 6 | Overview of the work. TLR-2-ER stress—SOCE axis triggers mtROS production in M. fortuitum-infected HKM. Crosstalk between SOCE and mtROS
amplifies TNF-o. production, which culminates in caspase-8/3-dependent HKM apoptosis and M. fortuitum clearance.

production in the infected HKM, which clearly established TNE-
o activation as a downstream target of the axis. Furthermore,
RNA interference (RNAi) and inhibitor studies demonstrated
that inhibiting TNF-o. interfered with caspase-8 activity, revoked
HKM apoptosis, and aided M. fortuitum growth, which clearly
suggested that (1) mtROS exerts its proapoptotic effects via TNE-
o in M. fortuitum-infected HKM and (2) TNF-a-induced HKM
apoptosis helps in pathogen clearance, thereby containing the
persistence of M. fortuitum in fish.

To conclude, the TLR-2-ER stress-SOCE axis triggers mtROS
generation in M. fortuitum-infected HKM. Furthermore, the
crosstalk between SOCE and mtROS amplifies proinflammatory
TNF-o production leading to caspase-8/3 mediated HKM apoptosis
and the clearance of M. fortuitum. Our findings elucidate the role of
mitochondria in innate immunity to M. fortuitum, which can be
used for controlling mycobacteriosis (Figure 6).
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Supplementary Figure 1 | M. fortuitum induces mt-Ca* elevation. HKM (2 x 10°%/
mL) were infected with M. fortuitum and mt-Ca®* levels measured at indicated time
points p.i. using Rhod-2/AM. Individual assays were done in triplicates and the

vertical bars represent mean + SE of three independent observation (n=9). *P< 0.05
compared to HKM. HKM, uninfected HKM; HKM+B, HKM infected with M. fortuitum.
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