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Plasmacytoid dendritic cells (pDCs) are a special subtype of dendritic cells with the
morphology of plasma cells. pDCs produce massive amounts of type I interferon (IFN-I),
which was originally found to play an extremely pivotal role in antiviral immunity.
Interestingly, accumulated evidence indicates that pDCs can also play an important role
in tumorigenesis. In the human body, most of the IFN-a is secreted by activated pDCs
mediated by toll-like receptor (TLR) stimulation. In many types of cancer, tumors are
infiltrated by a large number of pDCs, however, these pDCs exhibit no response to TLR
stimulation, and reduced or absent IFN-a production. In addition, tumor-infiltrating pDCs
promote recruitment of regulatory T cells (Tregs) into the tumor microenvironment, leading
to immunosuppression and promoting tumor growth. In this review, we discuss recent
insights into the development of pDCs and their roles in a variety of malignancies, with
special emphasis on the basic mechanisms.
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INTRODUCTION

Plasmacytoid dendritic cells (pDCs) are a unique subgroup of dendritic cells (DCs) with plasma cell
morphology and have been extensively studied in recent years. The main function of pDCs is the
production of IFN-I following recognition of viruses or nucleic acids through TLR7 and TLR9 (1, 2).
Therefore, pDCs play a pivotal role in antiviral immunity. Previous studies have shown that DCs are
critical in mounting effective immune responses to cancer (3–6). However, pDCs have received less
attention in tumor immunity than other DC subgroups. In fact, similar to cDCs, pDCs link the
innate and adaptive immune responses by regulating the biological function of lymphocytes,
myeloid DCs and NK cells through producing two kinds of pro-inflammatory cytokines including
tumor necrosis factor (TNF)-a and interleukin (IL)-6 (1, 7), and play an important role in
cancer immunity.

pDCs are continuously produced from hematopoietic stem cells in the bone marrow (BM) and
emerge as mature cells into the periphery (8). Under steady state conditions, the pDC precursor cells
in the bone marrow enters the blood circulation, and then enters the secondary lymphatic tissue
through the lymphatic circulation. In addition, a small amount of pDCs are also observed in the
peripheral tissues such as liver, lung and gut, while they are believed to be absent in the skin (9).
Interestingly, previous publications reported that pDCs infiltrate various types of solid tumors,
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including head and neck, liver, breast, colorectal, ovary, stomach,
lung and skin cancers (10–17). Depending on the
microenvironment and the type of stimulus, pDCs are capable
of exerting either immunogenic or tolerogenic functions (18–20).
In this review, we summarize current knowledge about the role
of pDCs in different malignancies.
PDCS DEVELOPMENT AND
IDENTIFICATION

The development of pDCs depends on multiple factors including
Flt3 ligand (Flt3L) (21), transcription factor Spi-B (22, 23), and
the basic helix-loop-helix protein E2-2 (24, 25). Among them,
Flt3L together with Flt3 activate transcription factor E2-2 in a
STAT3-dependent manner to control the expression level of
transcription factors necessary for the development and function
of pDC (18, 26). Spi-B regulates human plasmacytoid dendritic
cell survival through direct induction of the antiapoptotic gene
BCL2-A1 (27), and plays a key role in pDC differentiation,
whereas BCL11A activation is shown to direct CDP
commitment to pDC lineage and regulate the transcriptional
level of E2-2, Id2, Id3 and Mtg16 through a positive feedback
loop (18, 22, 28). In addition, transcription factor E2-2 also plays
an essential and specific regulator in pDC development (29, 30).
By using single-cell sequencing, Ginhoux’s team showed that
pDCs developed from a Ly6DhighCD2high lymphoid progenitor
cell in the bone marrow and differentiated independently of the
myeloid cDC lineage (31).

Concerning their identification, human pDCs express CD4,
blood-derived dendritic cell antigen 2 (BDCA2, also termed
CD303), CD123 (IL-3R), HLA-DR, ILT3 and ILT7 on the
surface, and Toll-like receptor (TLR)7 and TLR9 within
endosomal compartments (7, 30, 32), but lack most of the
lineage surface markers for T, B, natural killer (NK) cells and
monocytes (33, 34). And in mice, pDCs not only express B220
(CD45R), CD11c and Ly6C (35), but also express a variety of
factors that modulate the function of pDCs, such as Siglec-H,
Bst-2, Pdc-Trem and Ly49Q (1, 36).
ROLE OF PDCS IN CANCERS

PDCS and Melanoma
Functional studies of pDCs in cancer have mostly focused on
mouse models of melanoma. Despite the fact cutaneous
melanoma is a highly immunogenic solid tumor, the
occurrence and development of melanoma is related to its
ability to escape immunosurveillance (7). Previous studies have
shown that circulating pDC levels were decreased in blood of
melanoma patients (37), however, pDCs were increased in
primary tumors and tumor-draining lymph nodes, and pDC
infiltration was associated with poor prognosis and early relapse
(38, 39). In addition, melanoma cells were shown to recruit pDCs
into the tumor microenvironment via stromal-derived factor-1
(SDF-1, also named CXCL12) (40). Moreover, IL-3 up-regulates
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the expression of chemokine receptor 6 (CCR6) in pDCs, as
another mechanism for pDCs recruitment into the tumor
microenvironment in melanoma, through CCR6/CCL20
(chemokine ligand 20) activation (41) (Figure 1A). Aspord
et al. showed that pDCs in melanoma triggered IL-5-/IL-13-
producing CD4 type 2 T helper (Th2) cells and IL-10-producing
Tregs through the expression of OX40L and ICOSL, the secretion
of Th2 cytokines leading to melanoma progression (39).
Moreover, the expression level of MxA (a IFN-a inducible
protein) in primary cutaneous melanomas was drastically
inhibited in the majority of the cases (42) and the poor IFN-a
production by pDCs has been associated with melanoma growth
(40, 42, 43). Interestingly, Aspord and co-workers additionally
demonstrated that the development of melanoma was strongly
inhibited by imiquimod treatment (a TLR7 agonist) using an
innovative melanoma-bearing humanized mouse model (44).
They found pDCs in tumor site were mobilized and their
cytotoxic functions were increased, in addition, the expression
levels of type I IFN (IFN-a) response genes were up-regulated,
thereby inhibiting melanoma growth (44). Another study
suggested that CpG B-type oligodeoxynucleotide (ODN) PF-
3512676 activates pDCs in the sentinel lymph nodes of
melanoma patients through the TLR pathway, prompting
pDCs to release IFN-a, thereby enhances antitumor immunity
(45). Furthermore, in vitro experiments have shown that the
expression of cytotoxic molecule TRAIL was induced on pDCs
by virus, imiquimod or IFN-a stimulation, and can be used to
effectively lyse melanoma cells (7, 46, 47) (Table 1).

Numerous studies have shown that the infiltration of a large
number of pDCs is related to immunosuppression in the tumor
microenvironment (12, 63–66) (Figure 1B). Evidence suggested
that the interaction between LAG-3 and MHC-II induced
TLR-independent activation of pDCs with enhanced IL-6 and
limited IFN-a secretion, induced the production of CCL2 in
monocytes, and generated Tregs from allogenic CD4+ CD25- T
cells, which ultimately leads to immunosuppression in tumors
(67, 68). On the other hand, ILT7L was reported to down-
regulate the expression level of IFN-a through its interaction
with ILT7 receptors, and IDO (indoleamine 2,3-dioxygenase)
released by pDCs strongly promotes the activation of Tregs,
which leads to anergy, eventually helping tumor cells escape
immune surveillance (69, 70). In addition, in vitro experiments
showed that activated pDCs up-regulate the expression levels of
MHC class I and class II molecules and CD95 on melanoma cells
(71), and researchers speculate that tumor cells are more easily
recognized by CTL in vivo (72). However, even if pDCs were
activated in tumors, only weak and cytoplasmic expression of
CD95 was detected on melanoma cells, suggesting that the
progressive loss of CD95 in tumor cells as a possible
mechanism of tumor escape (71). Melanoma cells have also
acquired mechanisms to subvert the immune-stimulatory
functions of pDCs, such as secrete immunosuppressive
cytokines, including IL-10, TGF-b and PGE2, to suppress the
expression level of TLR7/9 and IRF7, resulting in pDCs
producing only a small amount of I-IFN (43, 73). Moreover,
Wnt5a was strongly expressed in melanoma cells which
October 2021 | Volume 12 | Article 749190
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suppressed the activation and IFN-a production of pDCs
stimulated by CpG oligodeoxynucleotide, thus weakening the
anti-tumor effects of CpG (73).

In recent years, different approaches have emerged for the
treatment of melanoma that affect pDC functions. For example,
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ponophosphoryl lipid A (MPLA), a toll-like receptor 4 ligand,
exhibits the capability to enhance anti-PD-L1 antibody-mediated
anti-cancer immunity by activating pDC to produce IFN-a (51).
Furthermore, the ssRNA-Pim-3-shRNA dual-function therapy
established by Liu’s group not only enhanced the activation and
FIGURE 1 | The role of pDCs in tumor progression. (A) pDC recognizes CCL20 secreted by tumor cells through CCR6 on the cell membrane and makes it migrate to
the tumor site. (B) Mechanisms of tumor-infiltrated pDC on immunosuppression include recruitment of immature pDCs lacking the expression of costimulatory
molecules (through CCR6/CCL20 pathway), suppression of type I IFN secretion by pDCs (by ILT7L-ILT7 interaction or immunosuppressive cytokines secreted by
tumor cells, such as IL-10), alternate pDC activation (through the interaction between LAG-3+ pDC and MHC II+ tumor cells), and/or promote pDC tolerance by
activating Tregs (through ICOSL/ICOS interaction and IDO production) and enhancing the expression level of anti-inflammatory cytokine IL-10. In addition, the up-
regulation of CXCR4 on the surface of pDC and the promotion of CXCL12 secretion by tumor cells are positively correlated with lymph node metastasis of tumor cells.
TABLE 1 | Therapeutic approaches for various cancers through pDCs.

Type of cancers Role of pDCs Therapeutic approach References

Melanoma Limit IFN-a secretion, recruit Tregs and enhance immunosuppression. TLR9-agonist (45, 48, 49)
TLR7-agonist (46, 50)
TLR-4 ligand (51)
Pim-3-targeting bifunctional
shRNA

(52)

IFN-a therapy (53)
IFN-a therapy + checkpoint
inhibitor

(54)

pDC-based vaccination (55–57)
Lung cancer Induce immunosuppression and promote the proliferation of lung cancer cells. TLR4-agonist (58)
Gastric cancer Promote the differentiation of naive CD4+ T cells into Tregs and facilitate tumor immune escape. TLR3 agonist (59)
Breast cancer Contribute to the immune escape of breast cancer cells and promote tumor growth. – –

Liver cancer Promote Tregs to produce IL-10, thereby inhibit T cell responses and assist immunosuppression
and tumor progression.

– –

Squamous cell
carcinoma

Limit IFN-a secretion and promote tumor progression. CD317 antibody (60)

Leukemia Recruit Tregs into CMML. CD123-targeted therapy (61)
Ovarian cancer Limit IFN-a secretion recruit Tregs and enhance immunosuppression Prophylactic vaccines (62)
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IFN-a secretion of pDCs, promoted the apoptosis and inhibited
the proliferation of melanoma cells, but also enhanced the
activation of CD8+ T cells and NK cells and simultaneously
reduced the proportion of Tregs and myeloid-derived
suppressor cells (MDSCs), and ultimately reversed the tumor
immunosuppressive microenvironment (52). Targeted delivery
of IFN-a into the tumor site enhance the local immune response
and the benefit of the checkpoint inhibition (53). Interestingly,
the combination of intratumoral injection of IFN-a and anti-
PD-1 immunotherapy (Clinicaltrials.gov research identifier:
NCT02339324) suppressed PD-L1-mediated escape (43, 54). In
addition, subcutaneous injection of TLR9-activating
oligodeoxynucleotide PF-3512676 enhanced activation of pDCs
and cytotoxicity of NK cells (48). Hofmann et al. also injected
PF-3512676 in cutaneous or subcutaneous melanoma metastasis
of 5 patients with melanoma in a phase I study, and observed
local tumor regression (49). Furthermore, the combined topical
use of imiquimod and monobenzone caused local regression of
cutaneous metastases in 52% of 21 melanoma patients (stage III-
IV) in a phase II study (50). On the other hand, by activating
autologous pDCs and simultaneously loading with melanoma-
associated peptides, and then injecting them into the lymph
nodes, induced a systemic IFN-I response and activated NK cells
(55). Other studies support the development of a pDC-based
vaccine (HLA-A*0201+ pDCs) to produce tumor-specific T cells
for adoptive cellular immunotherapy in melanoma patients (56,
57) (Table 1).

PDCS and Lung Cancer
Lung cancer has a very high morbidity and mortality rate in the
smoking population (74). According to the morphology of
cancer cells, lung cancer can be divided into four subtypes,
including small cell carcinoma, adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma (75). Like other types of
cancer, lung cancer is also accompanied by a drastic
accumulation of pDCs (63, 76). Previous research has shown
that pDCs are robustly increased in the peripheral blood of non-
small cell lung carcinoma (NSCLC), and the degree of pDC
accumulation is related to the clinical grade of disease (76).
Another study also observed that tumor-infiltrating pDCs
(TIpDCs) were significantly increased in lung tumor masses
compared to healthy tissues, these pDCs expressed higher levels
of CD33 and PD-L1, associated with reduced cytotoxic activity
towards tumor cells and in fact promoting their proliferation
(63). Moreover, TIpDCs produced higher levels of IL-1a, which
promotes angiogenesis and enhances the invasiveness of cancer
cells, thereby promoting the progression of lung cancer (63). On
the other hand, Perrot et al. reported that the expression levels of
the activation markers CD80, CD83, CD86, or CD208/DC-
LAMP on pDCs infiltrating NSCLC, were completely
suppressed and only partial upregulation of CD86 was detected
after TLR7 activation. In addition, even after TLR9 stimulation,
only very weak T cell proliferation and IFN-a secretion was
induced by TIpDCs. Therefore, the abnormal differentiation of
TIpDCs seems to be an additional factor contributing to tumor
immune escape (77).
Frontiers in Immunology | www.frontiersin.org 4
It is worth noting that in previous studies, CpG-
oligodeoxynucleotides can stimulate the activation of pDCs
and induce anti-tumor immunity in a mouse model of melanoma
(73). However, in the lung cancer microenvironment, the
anti-tumor effect of CpG-oligodeoxynucleotides is ineffective, and
the accumulation of pDCs promotes the tumor infiltration of Tregs
and immature myeloid dendritic cells (mDCs), thereby inducing
immunosuppression and promoting the proliferation of lung cancer
cells (16). These studies show that the activity of pDCs is regulated
by the tumor microenvironment, and the role of pDCs is
multifaceted in different types of tumors.

Interestingly, numerous studies have reported the anti-tumor
effects of LPS (78–82). In a mouse model of melanoma-induced
metastatic lung cancer, Rega et al. showed that the
administration of low-dose LPS caused immunosuppression,
which was associated with the infiltration of pDCs, Tregs,
MDSCs and CD8+ Tregs, while the growth inhibition of lung
tumor caused by large dose of LPS was associated with the
massive infiltration of pDCs, as well as Th1 and Th17
polarization (58).

PDCS and Gastric Cancer
Gastric cancer (GC) is one of the five most common cancers
worldwide as well as the third biggest cause of cancer-related
mortality (83). Previous studies have shown that pDCs play a
crucial role in GC (66). Although the population of pDCs in the
peripheral blood of GC patients is significantly elevated, the
plasma concentration of IFN-a was significantly decreased (66,
84). On this basis, circulating pDCs showed a positive correlation
with advanced stages and lymph node metastasis in gastric
cancer (84). In addition, the accumulation of pDCs in
peripheral blood and tumor tissues predicted poor clinical
outcome in GC patients (85).

Previous studies have shown that gastric microbiota dysbiosis
and immune system dysfunction are critical factors for the
occurrence and development of GC (15, 86–88). In different
microhabitats, it was observed that BDCA2+ pDCs and Foxp3+

Tregs were significantly increased in tumoral and peritumoral
tissues, and there was a positive correlation between them (15).
Moreover, pDCs can effectively promote the differentiation of
naive CD4+ T cells into Tregs, thereby facilitating tumor immune
escape (89). Interestingly, TLR agonist stimulation caused
metabolic reprogramming in DCs, which was critical for
immune activation (59). Basit et al. demonstrated that TLR-
stimulation of pDCs significantly increases the expression level
of genes that regulate oxidative phosphorylation and glutamine
metabolism, thereby promoting pDC activation, leading to
higher production of IFN-a and inducing T cell responses (90).

PDCS and Breast Cancer
Breast cancer (BC) is the most frequent malignancy and the
second biggest cause of cancer- associated mortality in women
worldwide (91, 92), and approximately 70-80% of patients with
early stage and non-metastatic disease can be cured (93). The
most aggressive type of breast cancer is triple-negative breast
cancer (TNBC), which does not express of HER2/neu, estrogen
October 2021 | Volume 12 | Article 749190
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receptor and progesterone receptor (91). In a large majority of
cases, immunity against breast cancer does not exhibit a
protective effect, which indicates that breast cancer cells escape
immunosurveillance (91). In addition, previous research has
shown that the breast tumor microenvironment makes immune
cells dysfunctional and is conducive to immunosuppression,
thereby preventing the establishment of anti-tumor immunity
(94). Published studies have shown that pDCs infiltrate breast
tumors, but are impaired by TGF-b and TNF-a to produce IFN-a
(95), and associated with poor clinical prognosis (64, 96),
indicating that pDCs might contribute to the immune escape of
breast tumors and ultimately promote their growth (96). Another
study showed that the production of GM-CSF and pDCs
infiltration was significantly increased in breast cancer, and
pDCs activated by GM-CSF promoted the differentiation of
CD4+ T cells into Tregs, leading to immunosuppression (64, 97,
98). In addition, pDCs-derived TNF-a in breast tumors triggered
activation of the NF-kB signaling pathway in cancer cells, which
in turn upregulated the expression level of CXCR4 and led to
increased metastasis to lymph nodes, which ultimately promoted
cancer progression (99, 100).

PDCS and Liver Cancer
Liver cancer is the fifth most common malignancy in men and
the ninth most commonly occurring cancer in women, which
can be divided into primary liver cancer and secondary or
metastatic liver cancer according to its cause, and has a poor
prognosis. The therapeutic effect of chemotherapy in liver cancer
is very limited, and it can only prolong the survival of patients by
2.3 to 2.8 months on average (101). The immune regulation in
the liver tumor microenvironment may contribute to the
immune escape of tumor cells, thereby greatly reducing the
efficacy of immunotherapy (102). Previous studies have shown
that pDCs also heavily infiltrate liver cancer tissues, which
promotes vascular invasion and lymph node metastasis,
resulting in a shorter overall survival and a higher recurrence
rate for patients (103). Like melanoma (39), pDCs exposed to
liver tumor-derived factors increased the expression levels of
ICOSL to promote Tregs to produce increased IL-10, thereby
strongly inhibiting T cell responses and ultimately assisting
immunosuppression and tumor progression (12). Furthermore,
the increase of intratumoral pDCs was associated with increased
infiltration of Tregs, therefore, the evaluation of intratumoral
pDCs represents an excellent predictor of the prognosis of liver
cancer patients (103).

PDCS and Squamous Cell Carcinoma
Squamous cell carcinoma (SSC) is a tumor of the upper
aerodigestive tract with high fatality rate and poor prognosis
(104, 105). In primary oral squamous cell carcinoma (OSCC),
tumor cells produce high levels of CXCL12 (106), which
promotes the infi l t ra t ion of pDCs express ing the
corresponding receptor CXCR4, which has also been observed
in head and neck SSC (107). However, there is evidence that
tumor-induced down-regulation of TLR9 in pDCs was observed
within the tumor environment (108), and simultaneously various
cytokines in the tumor microenvironment such as VEGF, TGF-b
Frontiers in Immunology | www.frontiersin.org 5
and IL-10 inhibit the maturation and activation of TIpDCs (109),
resulting in a significant decrease in the expression of IFN-a,
indicating TIpDCs dysfunction (108, 110). In addition, the
increase in the number of TIpDCs is associated with lymph
node metastasis and overall survival (110). Another study
showed that the use of CD317 antibody to deplete pDCs in the
tumor microenvironment significantly promoted the recovery of
T cell function, and inhibited the tumor infiltration of Tregs and
monocyte-derived suppressor cells, thereby breaking the
immunosuppressive state (60). This further supports that the
high infiltration of pDCs in tumors promotes the progression
of SSC.

The subtyping of pDCs is also of great significance in SSC.
BDCA2 is a specific marker of human pDCs, but high BDCA2 is
expressed by immature pDCs, while pDCs expressing CD123
have higher maturity and ability to secrete cytokines (60, 111). In
head and neck SSC, the Poropatich group identified a subgroup
pDCs expressing high levels of OX40 in the tumor
microenvironment, which is conducive to anti-tumor
immunity by increasing the expression levels of local IL-12 and
IFN-a and enhancing the interaction between cDC and CD8+ T
cell via OX40/OX40L-signaling axis (112). Additionally, CD56+

pDCs express higher levels of perforin and granzyme b, which
confers strong cytotoxic activity, but the proportion of such cells
is significantly decreased in head and neck SSC (113). Similar
studies have shown that pDCs can be divided into two subgroups
through the expression level of CD2, where CD2high pDCs
secrete higher levels of IL12p40 and express higher levels of
costimulatory molecule CD80, and exhibit higher efficiency in
triggering T cell proliferation (114). It can be seen that up-
regulating CD56 or CD2 of pDCs will have a positive effect on
anti-tumor immunity in SSC. Therefore, whether the
combination of chemoradiation and intratumor injection of
activated pDCs could also improve clinical outcome in patients
is worthy of further study.

PDCS and Leukemia
Leukemia is the common name for several malignant disorders,
which are manifested by a robust increase in the number of
leucocytes in the blood and/or the bone marrow (115). Previous
studies have found that infiltrating CD123+ pDCs have been
observed in the hematopoietic tissues of a fraction of chronic
myelomonocytic leukemia (CMML) patients, and the excess of
pDCs is associated with the accumulation of Tregs and the
increased risk of acute leukemia transformation (33). However,
in chronic myeloid leukemia (CML), pDCs are derived from
precursors that express a low level of BCR-ABL, and develop
normally and usually express the co-stimulatory antigen CD86.
In addition, CML-pDCs also retain their ability to mature and
produce IFN-a, thereby regulating anti-leukemic immunity in
CML (116). On the other hand, due to different clinical and
pathological manifestations, pDC neoplasms can be divided into
two types including mature pDC proliferation associated with
myeloid neoplasms and blastic pDC neoplasm (BPDCN) (117),
and BPDCN is an aggressive hematopoietic clonal neoplasm that
prone to leukemia transformation and poor prognosis (118).
And in acute myeloid leukemia (AML), Zalmai et al. identified a
October 2021 | Volume 12 | Article 749190
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group of pDC-AML with completely different phenotype from
BPDCN, with high expression of CD34 and CD303, low
expression of CD123 and cTCL1, and no expression of CD56
(119). Molecular analysis indicated that these pDCs were inactive
and neoplastic, and exhibited frequent RUNX1 mutations (119).
Moreover, studies showed that clinical use of tagraxofusp
(SL-401) completely inhibited protein synthesis leading to cell
death of pDCs, which had a positive effect on inhibiting acute
transformation in leukemia (61, 118).

PDCS and Ovarian Cancer
Ovarian cancer (OC) is the most aggressive gynecological cancer
in women (11). High infiltration of pDCs is significantly
associated with early relapse in ovarian cancer (11, 65, 120). At
the same time, TApDCs not only exhibit less production of
IFN-a, mainly mediated through tumor-derived TNF-a and
TGF-b (120), but also induce tumor infiltration of ICOS+

Foxp3+ Tregs and drive immunosuppression via ICOS/ICOSL
stimulation (65). Additionally, both TApDCs and ICOS+ Foxp3+

Tregs predict disease progression in epithelial ovarian cancer
patients (65). On the other hand, published reports indicate that
pDCs control the homeostasis of CD4+ Foxp3+ Tregs and Th17
cells in vivo by expressing sialic acid-binding Ig-like lectin
(Siglec)-H (121). And pDCs in tumor ascites induced IL-10+

CCR7+ CD45RO+ CD8+ Tregs which was independent of CD4+

CD25+ T cells, and inhibit tumor-associated antigen-specific
T cell effector functions through IL-10 (122). Moreover, the
results of Zou et al. showed that high expression of CXCL12 was
observed in malignant human ovarian epithelial tumor cells, and
CXCL12 induced adhesion, transmigration and chemotaxis of
pDCs, and inhibited tumor macrophage IL-10-induced pDC
apoptosis through CXCR4, resulting in poorly proliferating
T cells (13). Interestingly, the Figdor group tested the
immunomodulatory capacity of prophylactic live-attenuated
and inactivated viral vaccines on pDCs, and found that
prophylactic vaccines significantly induce the activation and
maturation of pDCs, the expression of MHC class I and class
II, and the production of IFN-a, that transform pDCs from an
immunosuppressed state to an immune activated state (62). The
above studies provide new ideas for the remission and treatment
of ovarian cancer, by targeting ICOS/ICOSL to inhibit the
accumulation of ICOS+ Foxp3+ Tregs in ovarian cancer,
thereby eliminating immunosuppression. In addition, it can
also play a positive role in restoring the function of pDCs by
regulating the expression of Siglec-H. Using viruses as vaccine
vectors to activate pDCs is also a new regulatory idea, but it
should be noted that even live-attenuated viral, the impact of the
virus itself must be considered.
CONCLUSIONS

pDCs are an promising target for cancer immunotherapy;
however, accumulating evidence indicates that the complex
in te rac t ion o f pDCs wi th tumor ce l l s and the i r
microenvironment appears to contribute to immunologic
Frontiers in Immunology | www.frontiersin.org 6
tolerance (7). In many types of cancers, tumor cells secrete the
chemokine CXCL12 to induce the infiltration of a large number
of immature pDCs, and the cytokines of VEGF, TNF-a, TGF-b
and IL-10 secreted in tumor microenvironment inhibit the
maturation and activation of pDCs, then make it unable to
produce IFN-a. Additionally, pDCs recruit a large number of
Tregs to the tumor site, leading to immunosuppression and
promoting tumor growth. Therefore, it can provide ideas for
clinical treatment of cancer in two aspects. On one hand, the
injection of drugs to induce the activation of pDCs in tumors or
the combination of chemoradiation and intratumor injection of
activated pDCs may reverse the tumor microenvironment,
thereby inhibiting tumor growth and improving patient
survival rate (51, 105). On the other hand, we can eliminate
the immunosuppressive effect in the tumor microenvironment
by reducing the proportion of Tregs or inhibiting its function in
the tumors. Published study demonstrated that daclizumab, a
humanized anti-CD25 antibody, can block the IL-2 signaling
pathway by binding to CD25, which in turn leads to the death of
Tregs (123). In addition, some chemotherapeutic drugs can also
reduce the number of Tregs by inhibiting Tregs gene synthesis
and reducing cell expansion. Zhang et al. showed that the
chemotherapeutic agent gemcitabine significantly reduced
immunosuppression in the tumor microenvironment,
accompanied by a decrease in Tregs and MDSCs, thereby
inhibiting tumor growth (124). Furthermore, CTLA-4 is
expressed on the surface of Tregs and transmits inhibitory
signals in the immune response. Therefore, using monoclonal
antibody to block the expression of CTLA-4, can reduce the
inhibitory activity of Tregs, and achieve tumor suppression
effects (125). However, more efforts are needed to develop
more effective pDCs activators or Tregs inhibitors, which will
help in the treatment of various malignancies clinically.
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