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Background: Immune checkpoint blockade (ICB) has been approved for the treatment of
triple-negative breast cancer (TNBC), since it significantly improved the progression-free
survival (PFS). However, only about 10% of TNBC patients could achieve the complete
response (CR) to ICB because of the low response rate and potential adverse reactions to ICB.

Methods: Open datasets from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) were downloaded to perform an unsupervised clustering analysis to
identify the immune subtype according to the expression profiles. The prognosis, enriched
pathways, and the ICB indicators were compared between immune subtypes. Afterward,
samples from the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) dataset were used to validate the correlation of immune subtype with
prognosis. Data from patients who received ICB were selected to validate the
correlation of the immune subtype with ICB response. Machine learning models were
used to build a visual web server to predict the immune subtype of TNBC patients
requiring ICB.

Results: A total of eight open datasets including 931 TNBC samples were used for the
unsupervised clustering. Two novel immune subtypes (referred to as S1 and S2) were
identified among TNBC patients. Compared with S2, S1 was associated with higher
immune scores, higher levels of immune cells, and a better prognosis for immunotherapy.
In the validation dataset, subtype 1 samples had a better prognosis than sub type 2
samples, no matter in overall survival (OS) (p = 0.00036) or relapse-free survival (RFS) (p =
0.0022). Bioinformatics analysis identified 11 hub genes (LCK, IL2RG, CD3G, STAT1,
CD247, IL2RB, CD3D, IRF1, OAS2, IRF4, and IFNG) related to the immune subtype. A
robust machine learning model based on random forest algorithm was established by 11
hub genes, and it performed reasonably well with area Under the Curve of the receiver
operating characteristic (AUC) values = 0.76. An open and free web server based on the
random forest model, named as triple-negative breast cancer immune subtype (TNBCIS),
was developed and is available from https://immunotypes.shinyapps.io/TNBCIS/.
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Conclusion: TNBC open datasets allowed us to stratify samples into distinct
immunotherapy response subgroups according to gene expression profiles. Based on
two novel subtypes, candidates for ICB with a higher response rate and better prognosis
could be selected by using the free visual online web server that we designed.
Keywords: TNBC (triple negative breast cancer), immune checkpoint blockade, immune subtype, web server, TCGA
INTRODUCTION

Breast cancer (BC) is the most prevalent cancer in women
worldwide, and the number of new cases diagnosed was 2.3
million in 2020 (1). The 5-year relative survival rate for BC
patients is about 90% in America (2). However, as an aggressive
subgroup of breast cancer, triple-negative breast cancer (ER−, PR−,
and Her2− negative, TNBC) comprises approximately 15%–20%
of BC incidence (3). The 5-year survival rate of the metastatic
TNBC patient is <30% (4). Because of the chemoresistance and
poor prognosis (5), novel therapeutic drugs are necessary for
TNBC patients.

Recently, immune checkpoint blockade (ICB), especially
Pembrolizumab (PD-1 antibody) and Atezolizumab (PD-L1
antibody), have achieved great success in multiple cancer types
such as melanoma (6), breast cancer (7), and bladder cancer (8).
The Food and Drug Administration (FDA) granted the
combination of chemotherapy and Pembrolizumab for the
treatment of PD-L1+ metastatic TNBC patients (9). This
approval was based on a randomized, double-blind, phase III,
TNBC study (NCT02819518), in which the progression-free
survival (PFS) was significantly higher in the Pembrolizumab–
Chemotherapy arm (9.7 months) than in the placebo arm (5.6
months) (hazard ratio, 0.65; 95% confidence interval, 0.49–0.86,
p = 0.0012) (10). Moreover, in another clinical trial
(NCT02425891), PFS was 7.2 months in the Atezolizumab–
Chemotherapy group, which was better than 5.5 months in the
Placebo–Chemotherapy arm (hazard ratio, 0.80; 95% confidence
interval, 0.69–0.92, p = 0.002) (11).

Although immunotherapies are promising drug candidates
for patients with TNBC (12), there are some limitations
including low response rates, the risk of side effects, and the
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lack of robust biomarkers. The approximate response rate to ICB
was 20% in most solid tumors (13). Without candidate selection,
only 10% of TNBC patients in the Atezolizumab–Chemotherapy
group achieved a complete response (11). The rates of adverse
reactions including hypothyroidism, colitis, and pneumonitis
were increased with the PD-1 antibodies treatment group than
that with the control group (14). PD-L1/PD-1 levels and tumor
mutational burden (TMB) could potentially indicate the
immunotherapy effectiveness. However, PD-L1 is a dynamic
biomarker (15) and lacks a standard detection method (16).
Moreover, the objective response rate (ORR) for PD-L1+ TNBC
patients was only 17% (17). The detection of TMB is challenging,
expensive, and time consuming (18). These limitations suggest
that an effective, efficient, convenient method to select the
candidate for immunotherapies is needed.

In the current study, we aim at providing a web server that
could contribute to the clinical use of immunotherapies by small
counts of genes. A total of 934 samples from eight TNBC cohorts
were selected for the construction of immune subtypes. Two
immune subtypes (named S1 and S2) were identified, and the
subtype S1 was correlated with the better prognosis, biomarkers
for ICB, and immune-related pathways. We, therefore,
hypothesized that subtype S1 patients are more likely to
respond to ICB. A total of 313 TNBC samples from the
Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset (validation dataset)
demonstrated that subtype S1 was correlated with a better
prognosis. After validation by the data from four independent
immunotherapy trials, S1 patients demonstrated a higher
response rate and better prognosis. Eleven differentially
expressed genes (DEGs) were selected for the immune subtype
prediction model building. After that, a convenient and free web
server was provided based on the constructed model. Overall,
our study might contribute to explore the heterogeneity among
TNBC patients and provide a way to identify the appropriate
patient for the immunotherapies.
MATERIALS AND METHODS

Data Obtaining and Preprocessing
Eight TNBC datasets were used as training sets for immune
subtype identification. One independent dataset was used to
verify the correlation between immune subtypes and prognosis.
Four independent datasets containing patient immunotherapy
information were used to assess the correlation between immune
subtypes and ICB response. The training datasets included
GSE18864 (38 TNBC samples) (19), GSE58812 (107 TNBC
September 2021 | Volume 12 | Article 749459
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samples) (20), GSE76124 (198 TNBC samples) (21), GSE76250
(165 TNBC samples) (22), GSE83937 (131 TNBC samples) (23),
GSE95700 (57 TNBC samples) (24), GSE106977 (119 TNBC
samples) (25), and The Cancer Genome Atlas (TCGA) (116
TNBC samples) (26). The validation dataset1 was the
METABRIC dataset. A total of 313 ER- and HER2-negative
breast cancer from METABRIC were selected, since the overall
survival (OS), relapse-free survival (RFS) information and
expression matrix were available. The validation dataset2
included GSE78220 study containing 28 melanoma samples
(PD-1 antibody) (27), GSE35640 study containing 65 lung
cancer samples (MAGE-A3 immunotherapy) (28), IMvigor210
study containing 348 bladder cancer samples (PD-L1 antibody)
(29), and GSE91061 study containing 51 melanoma samples
treated with immune checkpoint blockade (30). The gene-
expression matrix and the survival results of these training and
validation datasets were obtained from TCGA, cBioPortal, and
Gene Expression Omnibus (GEO). The Masked Somatic
Mutation data (mutect2) of TNBC samples from the TCGA-
TNBC dataset were obtained. The TMB value of each sample is
equal to the total mutation frequency/the number of megabases
of the human exome.

Immune Cell Levels and Immune Scores
Single Sample Gene Set Enrichment Analysis (ssGSEA) is a tool to
calculate the levels of immune cells by expression data of the
immune-cells-specific genes. We collected the immune-cells-
specific-genes data from a previous article (31). The levels of
immune cells were estimated by the “GSVA” package in the R
language (32). Estimation of Stromal and Immune cells in
Malignant Tumor Tissues Using Expression Data (ESTIMATE)
is a method to predict immune scores, stromal scores, and tumor
purity in tumor tissues by gene expression data (33).

Identification of TNBC Immune Subtypes
Consensus clustering (CC) is an unsupervised clustering tool to
find the unidentified subgroups/subtypes by the gene expression
data (34), and the “ConsensusClusterPlus” package was selected
to do CC analysis (35). The CC parameters including “maxK,”
“clusterAlg,” and “distance” were selected as “6,” “hc,” and
“Pearson.” The optimized immune subtype number (K) was
selected by tracking plot, cumulative density function, and
relative change in area under cumulative density function (36).

Differentially Expressed Genes Screening
Since the samples were divided into two immune subtypes, we
performed the DEGs analysis to identify the genetic differences
between the two immune subtypes. The DEGs analysis by
“limma” package from R language was performed in each
dataset (37). Then, we screened the DEGs for each dataset to
obtain those with the p < 0.05 and |log2(fold change)| > 0.5.

Robust Rank Aggregation Analysis
To integrate the screened DEGs from these 8 expression datasets,
the robust rank aggregation (RRA) method that could reduce the
bias among datasets was used. RRA method could estimate the
ranking of DEGs lists. If a DEG ranked the highest in all lists,
Frontiers in Immunology | www.frontiersin.org 3
it will be regarded as a robust DEG with the smallest p-value.
Multiple studies select RRA to integrate DEG results from
different datasets, since it is robust to errors and noise (38).
Significance scores for all genes were provided by RRA, and only
the statistically relevant genes were retained (39). RRA was
performed by the “RobustRankAggreg” package in R language
to obtain the robust DEGs among different datasets (39). Genes
with |log2(fold change)| > 0.5 and p < 0.05 were selected as
robust DEGs.

Gene Set Enrichment Analysis
Gene sets including Kyoto Encyclopedia of Genes and Genomes
(KEGG), REACTOME, and Biological Processes were
downloaded from the MSigDB database (40). The gene sets
were selected based on the criteria: “GeneNumber > 15.” R
package “fgsea” was used to perform GSEA and visualize the
top enriched gene sets. The gene sets with p < 0.05 were
considered statistically significant.

Weighted Gene Coexpression
Network Analysis
To identify the hub genes/proteins for tumor grades, the DEGs
expression data from TCGA-TNBC were chosen to be analyzed
by the “WGCNA” package in R language (41). The input data for
Weighted Gene Coexpression Network Analysis (WGCNA) is
the expression data of tumor samples and their correspondent
clinical information. First, outliers were identified by cluster
analysis and then removed. Second, screening the best value of
soft threshold power b was crucial to guarantee a scale-free
network. Then, the parameters such as minModulesize (42) and
mergeCutHeight (0.25) were set to identify the potential
modules. Moreover, the correlations between modules and
clinical traits were calculated to select the modules. Lastly, the
gene significance (GS) of the gene in the module was calculated,
since it represents the correlation between gene and sample.

Identification of Hub Genes
Protein–protein interaction (PPI) network of the selected
module was constructed to select the hub genes/proteins. All
the genes in the selected module were uploaded to the STRING
website, and only the interactions that came from experiments
were retained. Besides, the interactions were characterized as
significant interactions when their confidence value was >0.7.
After obtaining the PPI network, the genes/proteins were
characterized as hub genes/proteins when their degree value
was >10.

Immune Subtypes Prediction Model
Random forest (RF) from the “caret” package in R language was
trained to build the immune subtype prediction model (43). The
expression data of hub genes from the TCGA-TNBC cohort was
used in the process of model training. First, the gene expression
data were randomly divided into two datasets, the training
dataset (70%) and the testing dataset (30%). Second, grid
search with fivefold cross-validation was employed for RF
model training. Then, the prediction ability of the constructed
RF model was evaluated by the testing dataset. Finally, four
September 2021 | Volume 12 | Article 749459
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datasets (GSE78220, GSE35640, GSE91061, and IMvigor210)
were selected as the independent validation dataset to verify
the correlation of immune subtype and ICB response.

Immune Subtype Prediction Web Server
Shiny application from the R “shiny” package is a tool to
construct open and free web servers (44). There is no limit for
this constructed web server to be used by any users. The
constructed web server was tested in different computer
systems including Linux, Windows, and macOS, and browsers
such as Chrome, Firefox, and Internet Explorer.
RESULTS

Calculation of Immune Cells Levels
The workflow is plotted in Figure 1. Eight datasets, namely,
GSE18864 (38 TNBC samples), GSE58812 (107 TNBC samples),
GSE76124 (198 TNBC samples), GSE76250 (165 TNBC
samples), GSE83937 (131 TNBC samples), GSE95700 (57
TNBC samples), GSE106977 (119 TNBC samples), and TCGA
(116 TNBC samples) were obtained and used. The gene-
expression profiles of these datasets were then transformed
into the data of immune cell levels by ssGSEA. Before the
transformation, principal component analysis (PCA) results
demonstrated an obvious batch effect (Figure 2A). After the
transformation, PCA results illustrated that the batch effect was
successfully removed (Figure 2B).

Immune Subtypes Among TNBC Patients
CC analysis was performed on the data of immune cell levels from
931 TNBC patients. Two immune subtypes named S1 and S2 were
recognized (Figure 2C). The tracking plot indicated that “two”
was the optimal immune subtype number (Supplementary
Frontiers in Immunology | www.frontiersin.org 4
Figure 1A). The area under the cumulative distribution
function (CDF) curve and its relative change indicated that 4
was the best value for immune subtype number (Supplementary
Figures 1B, C). Two immune subtypes, but not four immune
subtypes, would contribute to the binary classification model
building. As shown in Figure 2D, the OS rates of S1 samples
were significantly better than that of the S2 samples. Moreover,
the PFS of S1 samples were significantly better than that of the S2
samples (Supplementary Figure 2A).

S1 samples demonstrated the high levels of adaptive immune
cells including activated B cells, activated CD8 T cells, and
activated CD4 T cells, while S2 samples showed higher levels
of neutrophils and type 17 helper cells (Figure 3A). The
association of the identified immune subtypes with
immunotherapy efficacy biomarkers such as immune
checkpoints (CD274, CTLA4, LAG3, and PDCD1), T-cell
cytotoxicity factors (CD8A, GZMA, GZMB, and IFNG), and
epithelial–mesenchymal transition (EMT) biomarkers (CDH1,
CDH2, FN1, and VIM) were also calculated. The results
indicated that immune checkpoints and T-cell cytotoxicity
factors were significantly higher in subtype1, and EMT
biomarkers were higher in subtype 2 (Figure 3B). The
Student’s t-test result suggested that subtype 1 samples were
correlated with a higher value of TMB, but the difference was not
statistically significant (Supplementary Figure 2B).

The Correlations of Immune Subtypes
With Immune Score and Clinical
Characteristics
After the calculation of immune scores, stromal scores, and
tumor purity scores by ESTIMATE algorithm, S1 samples
demonstrated the higher immune and the lower stromal
scores, whereas the S2 samples displayed higher stromal and
lower immune scores, respectively (p < 0.0001, Wilcoxon test,
FIGURE 1 | The flowchart of this study.
September 2021 | Volume 12 | Article 749459
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Supplementary Figures 3A, B). The ESTIMATE algorithm also
revealed that subtype 2 had the higher tumor purity score (p <
0.0001, Wilcoxon test, Supplementary Figure 3C).

The distribution of datasets and age were not significantly
different between the two immune subtypes. Lower-grade tumors
(grade 2) were dominant in the S2 TNBC patients, while the
higher-grade tumors (grade 3) were predominant in the S1 TNBC
patients (Table 1). In the tumor–node–mestastasis (TNM) staging
system, the rates of the primary tumor (T) (p = 0.011) and regional
lymph nodes (N) (p = 0.029) were significantly different between
S1 and S2 samples. Advanced tumors such as T3 and T4 in S2
samples were higher than in S2 samples. However, the differences
in rates of distant metastasis (M) and stage between the two
subtypes were not significant (Table 1).

Analysis of DEG and GSEA
DEGs between two subtypes were investigated in each cohort
(p < 0.05 and logFC > 0.5; Supplementary Figure 4).
The number of upregulated expressed genes in S2 samples
Frontiers in Immunology | www.frontiersin.org 5
were 437 (GSE18864), 1,415 (GSE58812), 467 (GSE76124), 212
(GSE76250), 845 (GSE83937), 760 (GSE95700), 140
(GSE106977), and 2,636 (TCGA-TNBC). The number of
upregulated expressed genes in S1 samples were 489
(GSE18864), 1,204 (GSE58812), 686 (GSE76124), 301
(GSE76250), 1,214 (GSE95700), 327 (GSE106977), and 1,223
(TCGA-TNBC). Since no genes could be regarded as DEG in all
eight datasets, a total of 440 robust DEGs were determined by the
RRA method, including 148 upregulated and 292 downregulated
genes in S2. The selected robust DEGs were visualized by the
heatmap (Figure 4A).

To obtain the enriched pathways related to 440 robust DEGs,
GSEA was performed, and the pathways with the lowest p value
are displayed in Supplementary Tables 1, 2. Some immune-
related terms and pathways were largely identified in S1,
including immune system process, regulation of immune
system process, T-cell receptor signaling pathway, primary
immunodeficiency, and adaptive immune system. On the other
hand, only one KEGG and two REACTOME pathways were
A B

DC

FIGURE 2 | Consensus clustering for the TNBC by combining eight datasets GSE18864, GSE58812, GSE76124, GSE76250, GSE83937, GSE95700,
GSE106977, and TCGA. (A) PCA of the expression matrix of eight different datasets. (B) PCA of the levels of the immune cells of eight different datasets.
(C) Consensus matrix heatmap plots when k = 2. (D) Five-year Kaplan–Meier curves for OS of TNBC patients stratified by the immune subtypes. p-value was
calculated by the log-rank test among subtypes. TNBC, triple-negative breast cancer; PCA, principal component analysis; TCGA, The Cancer Genome Atlas; OS,
overall survival.
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identified in S2, and most of them were related to metabolisms,
such as small molecule metabolic process, oxidation regulation
process, and lipid metabolic process.

WGCNA Analysis and PPI Analysis
WGCNA was performed on the expression matrix of 440 robust
DEGs of the TCGA-TNBC cohort. According to the scale
independence plot, “5” was selected as the best number for
soft-thresholding power (Figure 4B). Robust DEGs were
assigned into different modules based on the degree of
coexpression between DEGs. The module containing
coexpression genes was given a random color, and the
remaining genes were assigned into a gray color module
(Figure 4C). Correlation between modules and clinical features
was calculated and visualized in Figure 4D, showing that the
turquoise color module possessed a significantly negative
correlation with immune subtype (r = −0.51, p < 0.01). Since
S1 (immune+ subtype) and S2 (immune- subtype) as “1” and “2,”
the negative correlation with S2 meant the positive correlation
with S1. The 196 genes in the turquoise module were selected for
further analysis.
Frontiers in Immunology | www.frontiersin.org 6
The protein interaction analysis of 196 genes was performed
in the STRING database, and the results were visualized by
Cytoscape software Based on the criteria of “degree > 10,” a total
of 11 hub genes were selected (Figure 5A). These 11 hub genes
include lymphocyte cell-specific protein-tyrosine kinase (LCK),
interleukin 2 receptor subunit gamma (IL2RG), CD3G, signal
transducer and activator of transcription 1 (STAT1), CD247,
interleukin 2 receptor subunit beta (IL2RB), CD3D, interferon
regulatory factor 1 (IRF1), oligoadenylate synthetase 2 (OAS2),
interferon regulatory factor 4 (IRF4), and interferon gamma
(IFNG). The log2 fold change and p-value of 11 hub genes in
RRA analysis are provided in Supplementary Table 3.

Construction of Prediction Model of
Immune Subtypes
The expression matrix of hub genes (LCK, IL2RG, CD3G,
STAT1, CD247, IL2RB, CD3D, IRF1, OAS2, IRF4, and IFNG)
from the TCGA-TNBC dataset was used as input data to build an
RF model for immune subtype prediction. The expression values
of genes were transformed from numeric values (0–1) into
discrete values (“high” or “low”) by the median value. Before
A

B

FIGURE 3 | The distribution of immune cell enrichment scores and immune-related markers in two different immune subtypes. (A) The immune cell enrichment
scores in two subtypes are displayed by heatmap. (B) The immune-related markers in two different immune subtypes are displayed by the boxplot. The expression
values of these markers in each dataset were transformed into “high” or “low” by the median value of the marker. Then, the correlation of immune subtypes (subtype
1 or subtype 2 groups) and expression groups (high or low groups) was tested by the Fisher’s test.
September 2021 | Volume 12 | Article 749459
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RF model construction, the best parameters for the RF model
were selected as “mtry = 2” and “ntree = 300” by the best areas
under the curve of the receiver operating characteristic (AUC)
value (Figures 5B, C). After RF model construction, the RF
model performed well in the testing dataset indicated with an
AUC value of 0.76 (Figure 5D). After the construction of the
model, the importance of variables is ranked and illustrated in
Supplementary Figure 5. The most accurate decision tree in the
constructed random forest model is shown in Figure 6.

Validation of the Performance of
Prediction Model in Independent Datasets
We predicted the immune subtype of these 313 selected samples
from the METABRIC dataset. The prediction result demonstrated
that the validation dataset contained 183 subtype 1 and 130
subtype 2 samples. The subtype 1 samples in the validation
dataset had a better prognosis including OS (p = 0.00036) and
RFS (p = 0.0022) than subtype 2 samples (Figures 7A, B). These
survival results are consistent with results from the training
dataset of TCGA (Figure 2D and Supplementary Figure 2).
Thus, our study identified and validated two robust immune
Frontiers in Immunology | www.frontiersin.org 7
subtypes based on different and independent datasets. Besides,
the expression profiles of 10 hub genes were available in the
METABRIC dataset. In Supplementary Figure 6, high expression
of CD3D, CD3G CD247, IL2RG, IRF1, IRF4, LCK, and STAT1
was correlated with better survival. The IFNG and OAS2 showed a
similar but not statistically significant tendency.

Four independent datasets (GSE35640, GSE78220,
GSE91061, and IMvigor210), which contain the expression
matrix of patients before immunotherapy, were selected as the
independent datasets for validating the performance of the
immune subtype prediction model. Immune subtypes of
patients from these cohorts were predicted by their 11 hub
genes (LCK, IL2RG, CD3G, STAT1, CD247, IL2RB, CD3D,
IRF1, OAS2, IRF4, and IFNG) expression values. Patients in S1
behaved better overall response rate to immunotherapy than
subtype 2 patients (Figures 8A–D). The difference in response
rates between two immune subtypes in different datasets was
42% in GSE35640 (Figure 8A), 20% in GSE78220 (Figure 8B),
10% in GSE91061 (Figure 8C), and 8% in IMvigor210
(Figure 8D). S1 was associated with better overall survival
(OS) than S2 (Figure 8E). High expression of six hub genes
including LCK, CD3G, CD247, IL2RB, IRF1, and IFNG was
associated with the better prognosis of patients treated with
Atezolizumab (Supplementary Figure 7). However, the survival
results of CD3G, IL2RG, IRF4, OAS2, and STAT1 were not
significant (Supplementary Figure 8).

Web Server Development
A web server with the name of triple-negative breast cancer
immune subtype (TNBCIS) via https://immunotypes.shinyapps.
io/TNBCIS/ was built for TNBC immune subtype prediction.
The expression data of 11 hub genes (LCK, IL2RG, CD3G,
STAT1, CD247, IL2RB, CD3D, IRF1, OAS2, IRF4, and IFNG)
will be the input data. Then, the input data will be preprocessed
and then used to predict the immune subtype. The flowchart of
predicting the TNBC immune subtype is shown in Figure 9.
DISCUSSION

The approval of immunotherapies on the treatment of TNBC
brings a new chance to improve the clinical outcomes of TNBC.
Multiple clinical trials had demonstrated that the median
survival time of TNBC patients in the Immunotherapy–
Chemotherapy arm was significantly higher than the Placebo–
Chemotherapy arm. However, due to the heterogeneity of
TNBC, only approximately 10% of patients are sensitive to
immunotherapy. Therefore, clarifying the immune subtype and
providing a precise prediction tool have positive significance for
screening the dominant populations of immunotherapy. In our
research, we carried out the immunophenotyping analysis of a
large amount of TNBC samples by unsupervised clustering and
built a convenient web tool for clinicians based on
machine learning.

The classical biomarkers for a patient decision of treatment
immunotherapies include PD-L1 immune cell status, TMB, and
TABLE 1 | Distribution of clinical characteristics among two immune subtypes.

Subtype 1
(N = 426)

Subtype 2
(N = 508)

p-value

Dataset 0.534
GSE106977 56 (13.1%) 63 (12.4%)
GSE18864 20 (4.69%) 18 (3.54%)
GSE58812 51 (12.0%) 56 (11.0%)
GSE76124 82 (19.2%) 116 (22.8%)
GSE76250 72 (16.9%) 93 (18.3%)
GSE83937 55 (12.9%) 76 (15.0%)
GSE95700 27 (6.34%) 30 (5.91%)
TCGA-TNBC 63 (14.8%) 56 (11.0%)
Age 0.273
(26,46) 80 (28.3%) 76 (22.8%)
(46,55) 76 (26.9%) 84 (25.1%)
(55,64) 65 (23.0%) 84 (25.1%)
(64,90] 62 (21.9%) 90 (26.9%)
Grade <0.001
Grade1 1 (0.66%) 3 (1.60%)
Grade2 25 (16.6%) 64 (34.0%)
Grade3 125 (82.8%) 121 (64.4%)
Primary tumor (T) 0.011
T1 27 (19.1%) 37 (21.8%)
T2 106 (75.2%) 104 (61.2%)
T3 6 (4.26%) 18 (10.6%)
T4 2 (1.42%) 11 (6.47%)
Regional lymph nodes (N) 0.029
N0 74 (61.7%) 73 (50.0%)
N1 35 (29.2%) 40 (27.4%)
N2 8 (6.67%) 22 (15.1%)
N3 3 (2.50%) 11 (7.53%)
Distant metastasis (M) 0.624
M0 115 (99.1%) 127 (97.7%)
M1 1 (0.86%) 3 (2.31%)
Stage 0.320
I 16 (18.6%) 12 (14.3%)
II 54 (62.8%) 48 (57.1%)
III 14 (16.3%) 23 (27.4%)
IV 2 (2.33%) 1 (1.19%)
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tumor-infiltrating T cells, as S1 subtype samples were correlated
with a high level of tumor-infiltrating T cells (Figure 3A) and
TMB (Supp lementary F igure 2B ) immune score
(Supplementary Figure 3A). This finding prompted us to
hypothesize that PD-1/PD-L1 antibodies might be a suitable
treatment strategy for S1 subtype patients. The use of these
biomarkers is limited because of low prediction accuracy, high
costs, and complication. Thus, predicting immune subtype by a
small number of genes expression profiles might contribute to
the patient decision of treatment immunotherapies. Recently, a
24-gene RNA signature was used to predict immunotherapy
effectiveness for gastrointestinal cancer patients (45). Based on
six genes, some researchers have constructed a lung cancer risk
score model to provide a reference for individualized
immunotherapy for patients (46). Some studies construct the
prediction model of immunotherapy response for urothelial
carcinoma or lung cancer using deep learning of noninvasive
radionics biomarkers (47, 48). However, a user-friendly web tool
is still not available for TNBC patients. Therefore, the web server
Frontiers in Immunology | www.frontiersin.org 8
constructed in the current study will contribute to the clinical
implementation of immunotherapy in TNBC.

Cluster analysis has been widely used in identifying the potential
subtypes/subgroups among patients from one dataset. To find the
robust immune subtype among TNBC patients, multiple datasets
other than a single dataset should be used. However, the batch effect
among multiple datasets will be the major barrier to merging
different datasets into one dataset. Fortunately, PCA results from
Figures 2A, B demonstrated that the batch effect was successfully
removed after transforming the expression matrix into a matrix of
ssGSEA score. Thus, the identified immune subtypes might be
more robust than the immune subtype from a single dataset since
931 samples from eight different cohorts were used in our study.

Among the identified immune subtypes, subtype 1
demonstrated higher immune and lower stromal scores and
lower tumor purity than subtype 2. These ESTIMATE method
results were inconsistent with the result from the ssGSEA
method. For example, subtype 1 was enriched in activated CD8
T cells, activated B cells, activated CD4 T cells, and natural killer
A B

DC

FIGURE 4 | Identification of hub genes by RRA analysis and WGCNA. (A) Heatmap showing the top 100 upregulated genes or downregulated genes according to
log2 fold change value. Each row represents one gene and each column indicates one dataset. Gold indicates upregulated genes and blue represents
downregulated genes in subtype2. (B) Analysis of the scale-free fit index for various soft-thresholding powers (b). In all, 5 was the fittest power value. (C) The cluster
dendrogram of TCGA-TNBC patients. Each branch in the figure represents one gene, and every color below represents one coexpression module. (D) PCC matrix
between gene module and clinical characteristics. The PCC values range from −1 to 1 depending on the strength of the relationship. A positive value indicates that
the genes within a particular coexpression module increase as the clinical trait increases. DEG, differentially expressed gene; RRA, robust rank aggregation; WGCNA,
weighted gene coexpression network analysis; PCC, Pearson correlation coefficient.
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A B

DC

FIGURE 5 | The selection of the best parameter for the machine learning model. (A) Protein–protein interaction network of genes in the brown module. The color
intensity and the size of nodes were positively correlated with the degree score. (B) The “mtry” with the highest AUC was selected as the optimal value of the
random forest algorithm. (C) The “ntree” with the highest AUC was selected as the optimal value of the random forest algorithm. (D) Validation of model in the
testing dataset. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
FIGURE 6 | The optimal decision tree in the random forest model. The sample will be predicted into subtypes 1 or 2 by its gene expression.
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T cells. Recently, studies advocated tumors could be classified
into two categories, namely, “hot” and “cold” (49). Hot tumors
demonstrated higher levels of T-cell infiltration and some
immune checkpoints such as PD-1 and PD-L1 than cold
tumors (49). Hot tumors were correlated with increased
response to immunotherapies including PD-1/PD-L1
Frontiers in Immunology | www.frontiersin.org 10
antibodies (50–52). Patients from S1 would be more likely to
respond to immunotherapy, since subtype 1 and S2 identified in
this study could be referred to as hot and cold tumors,
respectively. Thus, we hypothesized that S1 patients should
receive immunotherapy, and S2 patients should not. Consistent
with our hypothesis, the results from multiple datasets
A B

FIGURE 7 | The correlation of predicted immune subtype with the prognosis in the independent dataset (METABRIC dataset). (A) Five-year Kaplan–Meier curves
for OS of TNBC patients stratified by the immune subtypes. (B) Five-year Kaplan–Meier curves for RFS of TNBC patients stratified by the immune subtypes.
The p-values were calculated by the log-rank test among subtypes. METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; OS, overall survival;
RFS, relapse-free survival.
A B

D E

C

FIGURE 8 | The correlation of predicted immune subtype with the immunotherapy efficacy in the independent datasets. (A–D) The correlation of predicted
immune subtype with the response rate to immunotherapy in the independent datasets: (A) GSE35640, (B) GSE78220, (C) GSE91061, and (D) IMvigor210.
(E) The correlation of predicted immune subtype with the survival analysis in the IMvigor210 dataset.
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containing patients treated with immunotherapies also
demonstrated that S1 was correlated with a higher response
rate and better prognosis to immunotherapy.

The hub genes identified in the current study play crucial roles
in the immune system. For example, CD3D, CD3G, and CD247
play an important role in coupling antigen recognition to several
intracellular signal-transduction pathways (53). IL2RG and IL2RB
are crucial components of T-cell-mediated immune responses (54).
OAS2 is a famous innate immune-activated antiviral enzyme for
inhibition of viral propagation (55). The interferon regulatory
factors (IRFs) including IRF1 and IRF4 are lymphocyte-specific
and regulate the activation of innate and adaptive immune systems
(56). Moreover, some hub genes have been characterized as
biomarkers for immunotherapy efficacy. For example, LCK
activity could improve T-cell responses in cancer immunotherapy
(57), and STAT1 expression was demonstrated as a potential
biomarker for anti-PD-1/anti-PD-L1 for cancer patients (58, 59).
The level of IFNG was recognized as a biomarker for lung cancer
patients receiving immunotherapies (42).

Before the random forest model construction, the matrix of
gene expression was transformed into the matrix of “high” and
“low” (Figure 9), as the model usually fails to be robust in the
validation dataset whose expression ranges from 100 to 10,000
than if the model was constructed in the training dataset whose
expression ranges from 1 to 100. It is necessary to ensure that the
training and validation dataset have comparable expression value
ranges. This transformation was used to increase the robustness
of the random forest model. However, the limitations of this
study need to be acknowledged. First, the correlation of the
proposed immune subtype with the response rate to ICB needs to
be validated by TNBC cohorts with ICB treatment. The immune
Frontiers in Immunology | www.frontiersin.org 11
subtype and the constructed predictive model were only tested by
melanoma and bladder cancer datasets because the data of
TNBC patients with ICB treatment were not available. Second,
the mechanisms of these hub genes impacting cancer
immunotherapy also need clarification.
CONCLUSION

Our study takes full advantage of available TNBC datasets to stratify
samples into distinct immunotherapy response subgroups, named
S1 and S2. The data from four independent immunotherapy-related
cohorts demonstrated that S1 samples had a higher response rate
and better prognosis. In addition, a convenient and free web server
was provided based on an accurate model constructed in this study.
Overall, our study might contribute to explore the heterogeneity
among TNBC patients and provide a way to identify the appropriate
patient for the immunotherapy.
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Supplementary Figure 1 | The selection of best value for the number of immune
subtypes. (A) Tracking plot for k=2 to 6. In the Tracking plot, the colors in each row
represented the samples in different subtypes. (B) Consensus clustering cumulative
distribution function (CDF) for k=2 to 6. (c) Delta area curve of consensus clustering,
indicating the relative change in area under CDF curve for each category number k
compared with k−1. The horizontal axis represents the category number k, and the
vertical axis represents the relative change in area under the CDF curve. CDF,
Consensus clustering cumulative distribution function.

Supplementary Figure 2 | The correlation of the immune subtype with prognosis
and TMB. (A) Five-year Kaplan–Meier curves for PFS of TNBC patients stratified by
the immune subtypes. p value was calculated by the log-rank test among subtypes.
Frontiers in Immunology | www.frontiersin.org 12
(B) The distribution of TMB value between two immune subtypes. TMB, tumor
mutation burden; PFS, progression-free survival.

Supplementary Figure 3 | Differential stromal/immune cell infiltration of the
immune subtypes. (A-C) Box plots comparing the distribution of stromal/immune
cell infiltrations in the two immune subtypes. Each box spans the interquartile range,
with the lines representing the median for each group. Whiskers represent the
absolute range. All outliers are included in the plot.

Supplementary Figure 4 | Volcano plots of the Differentially expressed genes
(DEGs) between two subtypes in each dataset. The color of the data points denotes
the status of DEGs (red points: highly expressed in subtype2 samples; green points:
highly expressed in subtype1 samples).

Supplementary Figure 5 | The importance of variables in the random forest model.

Supplementary Figure 6 | Ten-year Kaplan–Meier curves for OS of 10 hub
genes (from A–J: CD3D, CD3G CD247, IFNG, IL2RG, IRF1, IRF4, LCK, OAS2, and
STAT1). TNBC patients were stratified by the median value and the expression data
came from the METABRIC dataset. p value was calculated by the log-rank test
among high and low expression groups. METABRIC, Molecular Taxonomy of
Breast Cancer International Consortium; OS, overall survival.

Supplementary Figure 7 | Five-year Kaplan–Meier curves for OS of 6 hub genes
(LCK, CD3G, CD247, IL2RB, IRF1, and IFNG). TNBC patients were stratified by the
median value and the expression data came from the IMvigor210 dataset. p value
was calculated by the log-rank test among high and low expression groups. OS,
overall survival.

Supplementary Figure 8 | Five-year Kaplan–Meier curves for OS of 5 hub genes
(CD3G, IL2RG, IRF4, OAS2, and STAT1). TNBC patients were stratified by the
median value and the expression data came from the IMvigor210 dataset. p value
was calculated by the log-rank test among high and low expression groups. OS,
Overall Survival; TNBC, triple-negative breast cancer.
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