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Cell-mediated cytotoxicity is an essential immune defense mechanism to fight against
viral, bacterial or parasitic infections. Upon recognition of an infected target cell, killer
lymphocytes form an immunological synapse to release the content of their cytotoxic
granules. Cytotoxic granules of humans contain two membrane-disrupting proteins,
perforin and granulysin, as well as a homologous family of five death-inducing serine
proteases, the granzymes. The granzymes, after delivery into infected host cells by the
membrane disrupting proteins, may contribute to the clearance of microbial pathogens
through different mechanisms. The granzymes can induce host cell apoptosis, which
deprives intracellular pathogens of their protective niche, therefore limiting their replication.
However, many obligate intracellular pathogens have evolved mechanisms to inhibit
programed cells death. To overcome these limitations, the granzymes can exert non-
cytolytic antimicrobial activities by directly degrading microbial substrates or hijacked host
proteins crucial for the replication or survival of the pathogens. The granzymes may also
attack factors that mediate microbial virulence, therefore directly affecting their
pathogenicity. Many mechanisms applied by the granzymes to eliminate infected cells
and microbial pathogens rely on the induction of reactive oxygen species. These reactive
oxygen species may be directly cytotoxic or enhance death programs triggered by the
granzymes. Here, in the light of the latest advances, we review the antimicrobial activities
of the granzymes in regards to their cytolytic and non-cytolytic activities to inhibit pathogen
replication and invasion. We also discuss how reactive oxygen species contribute to the
various antimicrobial mechanisms exerted by the granzymes.

Keywords: granzymes, ROS - reactive oxygen species, caspases, antimicrobial defense, apoptosis, mitochondria
INTRODUCTION

A key mechanism against intracellular pathogens, such as viruses, bacteria and parasites, is cell-
mediated cytotoxicity exerted by killer lymphocytes of the innate and adaptive immune systems (1,
2). When these cytotoxic immune cells recognize cells infected with intracellular pathogens, they
release their cytotoxic granule contents to eliminate the target cells and the intracellular pathogen.
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Cytotoxicity is mediated by a group of highly homologous serine
proteases, the granzymes (Gzms), that are localized in specialized
lysosomes of the killer cells (3). The best-established biological
role of the Gzms is the induction of programed cell death when
these cytotoxic proteases are delivered into the target cells by
perforin (PFN) (4–6). PNF is a pore-forming protein (7) that
facilitates the uptake of other cytolytic granule components
by enhancing endocytic uptake (8–10) and promoting
endosomolysis to allow cytosolic release (11) (Figure 1).
Lymphocytic cytotoxic granules of humans and some other
mammals, but not rodents, contain another membrane-
disrupting protein, granulysin (GNLY) (14). GNLY belongs to
the saposin-like protein family (SAPLIP) that is characterized by
a particular polypeptide motif and its affinity to a variety of lipids
(15). GNLY was found to disrupt prokaryotic (but not eukaryotic
(16, 17)) membranes and to kill bacteria, parasites and fungi
in vitro (18).

While the Gzms-mediated induction of host cell apoptosis is
well established, the mechanisms of intracellular pathogen
elimination is far less clear constituting an emerging field in
recent years. The most obvious mechanism is that host cell death
deprives obligate intracellular pathogens of their protective
niche. Host cell death plays a major role in the elimination of
many viruses (19) and obligate intracellular bacteria, such as
Chlamydia spp (20, 21). These kind of pathogens counteract the
host cell death machinery with a variety of inhibitory
mechanisms, such as prevention of cytochrome C release (22)
or the upregulation and/or mimicry of host anti-apoptotic
proteins (23–25).

In addition to the induction of cell death, a direct mechanism
of antimicrobial activities by the Gzms was discovered in
numerous studies, which is mediated by the proteolytic
degradation of microbial proteins to activate microbial death
pathways, hence, limiting their growth inside a host,
independently of host cell death. In this review, we aim to
dissect these mechanisms with a particular focus on oxidative
versus non-oxidative killing pathways.
THE GRANZYMES

The Gzms are a family of serine proteases firstly described by the
team of Jürg Tschopp in 1986, who identified “granular
enzymes” in the secretory granules of cytolytic lymphocytes
(26). There are 5 human Gzms (A, B, H, K and M) and 10
mouse orthologues (A, B, C, D, E, F, G, K, M and N). The human
Gzms are encoded from three different chromosomal loci: the
chymase locus on chromosome 14 encodes for GzmB and
GzmH, the met-ase locus on chromosome 19 for GzmM, and
the tryptase locus on chromosome 5 harbors GzmA and GzmK
(27). Although the human Gzms are highly homologous and
share the catalytic triad (His57, Asp102 and Ser195), there are
remarkable differences in their primary substrate specificities
(28). The tryptases GzmA and GzmK cleave substrates after Arg
or Lys (29, 30), GzmB cleaves after Asp (31), GzmH cleaves after
Tyr or Phe (32), and GzmM cleaves after Leu or Met (33).
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It is noteworthy that the Gzms, in particular GzmB, are not
only expressed and secreted by killer lymphocytes. They were
also detected in various non-cytotoxic immune cells (34), non-
immune cells (35) and cancer cells (36–38). Interestingly, the
non-cytolytic activities of granzyme B also modulate the
differentiation of lymphoid cells via the interference with
NOTCH1 signaling (39) or with production of IL-17 (40). As
PFN is exclusively expressed in activated killer lymphocytes (41),
the Gzms released from the above listed cells will exhibit
predominantly extracellular effects. Potential activities include
remodeling of extracellular matrix (42), modulating
inflammation (43–45), detachment-mediated cell death, anoikis
(46), and – as reviewed below – exerting antimicrobial activity
against invading pathogens in synergy with antimicrobial
peptides (AMPs) or by targeting secreted microbial proteins.
THE GRANZYMES IN CELL DEATH

Due to this diversity in the cleavage site specificity, all Gzms have
their unique degradomes (47), resulting in the activation of
widely differing death pathways in target cells after cytosolic
delivery by PFN. The best characterized death pathways are
those of GzmA (48) and GzmB (49). GzmB executes death in a
caspase-dependent manner (50) (Figure 1). Once released into
the cytosol of a target cell, GzmB can directly cleave several
caspases (51, 52), including caspase 3 (53). This executioner
caspase trigger the release of an active DNase (CAD), responsible
for DNA fragmentation upon various apoptotic stimuli (54).
Human GzmB also efficiently cleaves the pro-apoptotic protein
Bid (55). Truncated Bid induces Bad/Bax-dependent
mitochondrial outer membrane permeabilization, the release of
cytochrome C, SMAC/DIABLO, and other proteins, such as
Htra2/omi, ultimately leading to apoptosome formation and
activation of caspase 9 (56–61).

GzmA induces a cell death harboring morphological features
similar to apoptosis: chromatin condensation, nuclear
fragmentation, membrane blebbing, mitochondrial swelling
and loss of cristae. However, GzmA does not activate
executioner caspases to kill the cell. Cytosolic delivery of
GzmA triggers a complex cascade of events that includes the
translocation of a protein complex known as SET from the ER to
the nucleus, ultimately leading to the nuclear transfer of two
nucleases (NM23-H1 and Trex1) and lethal DNA damage (62–
64). These pro-apoptotic features and mechanisms of GzmA
were essentially established in the laboratory of Judy
Lieberman (65).

An important common death mechanism of GzmA and
GzmB is nuclear uptake to attack several nuclear proteins,
involved in structural integrity, DNA repair and RNA splicing
(66–72).

For the residual, “orphan” Gzms, caspase-dependency to
induce death or even if the induction of apoptosis is their
major function is still not clear and needs further study (73,
74). However, there are multiple lines of evidence suggesting that
GzmM, GzmH and GzmK, as well as the non-orphan GzmA,
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have well defined proinflammatory and antimicrobial roles as
further discussed below (75–78).
OXIDATIVE CELL DEATH PATHWAYS
DRIVEN BY THE GRANZYMES

A critical common feature of GzmA and GzmB death pathways
is the mitochondrial uptake of these enzymes (Figure 1). Once in
the mitochondria, the Gzms cleave four subunits of the
respiratory chain complex 1 (NDUFS3, NDUFV1, NDUFS1
and NDUFS2). The disruption of the electron transport chain
dramatically increases premature electron leakage, leading to the
formation of reactive oxygen species (ROS), a decrease in
mitochondrial respiration and the loss of cristae (79–81).
Strikingly, caspase 3 also degrades a complex 1 subunit
(NDUFS1) to induce ROS-dependent cell death (82–84). In
challenge of the orthodox mitochondrial import biology,
GzmA and GzmB (and potentially caspase 3), without
containing a canonical mitochondrial import sequence, cross
the outer mitochondrial membrane through SAM50 channels
and the inner membrane through TIM22 in a mtHSP70-
dependent manner (85). The resulting increased ROS
Frontiers in Immunology | www.frontiersin.org 3
generation facilitates the release of apoptogenic factors through
Bax/Bak pores and drives the nuclear translocation of the SET
complex to enhance GzmB and GzmA death pathways,
respectively. At least one study suggests that there might be
additional, extra-mitochondrial sources of ROS induced
by GzmB, in particular via the activation of NADPH-
oxidase (86).
CYTOLYTIC ANTIMICROBIAL FUNCTIONS
OF THE GRANZYMES

The induction of host cell death via the granule exocytosis
pathway is an obvious effector mechanism used by killer
lymphocytes to eliminate the host cells and obligate
intracellular pathogens, such as viruses (87) and certain
unicellular parasites (88) or bacteria (89). Suicidal death is an
approved defense mechanism of cells infected with pathogens
independently of a lymphocyte attack (90–92). Programed host
cell death deprives the pathogens of their protective niche,
minimizes the risk of dissemination as membrane integrity is
initially preserved, and recruits and activates phagocytes to digest
the remains (93). Therefore, it is not surprising that obligate
FIGURE 1 | Granzyme A and Granzyme B induce apoptosis of infected cells. The killer lymphocyte releases the content of its granules in the immunological
synapse, i.e. the immune effectors granzyme A (GzmA), granzyme B (GzmB), perforin (PFN) and granulysin (GNLY). The endocytosis of GzmA, GzmB, PFN and
GNLY in the infected cell is mediated by a PFN-dependent calcium (Ca2+) influx and relies on clathrin and dynamin. Once in the cytosol, GzmA and GzmB cleave
various substrates. GzmB triggers the formation of Bax/Bak pores in the outer mitochondrial membrane by cleaving Bid (in truncated-Bid, t-Bid), Mcl-1 (which
releases Bim) (12) and p53 (which inhibits Bcl2) (13). GzmB also directly cleaves and matures pro-caspase 3 (Pro-Casp3) into active caspase 3 (Casp3). GzmB and
caspase 3 target similar substrates that induce apoptosis of the infected cell. GzmA and GzmB enter the mitochondria – via Sam50 and Tim22 – where they target
subunits of the electron transport chain (ETC) complex I, leading to the production of reactive oxygen species (ROS). The ROS favor the release of apoptogenic
factors through the Bax/Bak pores, such as cytochrome C (Cyt C), Smac, Htr2A and endonuclease G (Endo G) in the cytosol. Cyt C binds Apaf1 to form the
apoptosome, which matures the pro-caspase 9 (pro-Casp9) into active caspase 9 (Casp9). It is noteworthy that caspase 3, either activated by GzmB or caspase 9,
also reaches the mitochondria – via Sam50 – where it cleaves a subunit of ETC complex I, leading to the production of ROS. Following these events, ROS
concentration increases in the cytosol of the infected cell. The cytosolic ROS are involved in the translocation of the SET complex from the endoplasmic reticulum
(ER) to the nucleus, where it is cleaved by GzmA and turns into a DNA degrading complex. GzmA and GzmB also reach the nucleus where they cleave nuclear
substrates, such as lamin B, histones and PARP-1.
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intracellular pathogens evolved multiple mechanisms to
counteract the death machinery, as already documented in a
vast body of comprehensive reviewing literature (87, 94–97).
More interesting in this particular context, the Gzms are capable
to digest vital microbial substrates independently of host cell
death that can directly affect pathogen survival as discussed
below in the main focus of this reviewing article.
NON-CYTOLYTIC ANTIMICROBIAL
FUNCTIONS OF THE GRANZYMES

Non-cytolytic, direct antimicrobial activities by the Gzms were
primarily demonstrated in virus-infected cells (2). When the
Gzms enter a virus-infected cell in a PFN-dependent manner,
they will induce apoptosis to deprive the virus of its protective
niche as described above. The induction of programed cell death
is often inefficient as many viruses evolved multiple pathways to
inhibit the death machinery by means of caspase or Gzms
inhibition, as well as by mimicking anti-apoptotic proteins,
such as Bcl-2 (98–101). Nevertheless, the Gzms can effectively
overcome this inhibition by targeting viral proteins or host
proteins hijacked by the virus involved in viral replication. The
laboratory of Markus Simon previously demonstrated that
mouse GzmA cleaved and therefore inactivated the enzymatic
activity of reverse transcriptase from Moloney murine leukemia
virus. As reverse transcriptase activity is critical for the retroviral
life cycle, GzmA might potentially interfere with retroviral
replication (102).

In a report concerning adenovirus, GzmH was shown to
proteolytically degrade adenovirus DNA-binding protein (DBP),
a crucial viral component DNA replication (103). Interestingly,
GzmH additionally directly inactivated L4-100K assembly
protein crucial for viral assembly and also a potent inhibitor of
GzmB (104), suggesting complex interaction of these serine
proteases in virus-infected cells.

Also for the family of Herpesviridae, such as human
cytomegalovirus (HCMV) or herpes simplex virus-1 (HSV-1),
multiple viral substrates were identified that are targeted by the
Gzms. GzmM interferes with HCMV replication independently of
cell death by the proteolytic degradation of phosphoprotein 71, a
HCMV protein critical for immediate-early protein expression
(105). In more recent works, the same laboratory demonstrated
that virus-specific T cells control HCMV replication in a non-
cytolyticmanner by theGzms-mediated degradation of theHCMV
immediate early proteins IE1 and IE2 (106), as well as of host cell
hnRNP K, essential for HCMV replication (107).

GzmA deficiency in mice was associated with impaired
control of HSV-1 in infected neurons (108). In addition,
human GzmB cleaves the HSV-1 immediate-early protein
ICP4, therefore potentially contributing to the non-cytolytic
inhibition of viral reactivation in latently infected ganglion
cells, mediated by HSV-1 specific T cells (109). In a more
recent study, several novel HSV-1 GzmB substrates were
identified, suggesting an even broader non-cytolytic role of
GzmB in the control of Herpesviridae (110).
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In conclusion, non-cytolytic, direct antimicrobial activities of
the Gzms against viruses are well established. Viral substrates or,
for viral replication, essential host factors that are targeted by the
Gzms were identified for many additional viruses, such as
vaccinia (111), hepatitis C (112) and hepatitis B (113), as well
as influenza A virus (114).

Less is known for other intracellular pathogens, such as
bacteria or parasites. In earlier work, we found that activating
human naïve T cells with bacterial antigens not only triggered the
expression of known antibacterial effectors, such as GNLY,
interferon-g or tumor necrosis factor-a, but also of the Gzms
in remarkable high levels, in particular GzmB (115). These
findings corroborated a previous study indicating elevated
plasma levels of GzmA and GzmB in patients with bacterial
infections or after endotoxin administration (116). By following
up these works, we realized through functional antibacterial
assays that GzmA, GzmB and GzmM (the other human Gzms
were not tested) are potent antibacterial effectors when these
enzymes are delivered into bacteria by GNLY (117, 118)
(Figure 2). Building on these findings, a recent study
demonstrated that the high levels of secreted GzmB and GNLY
by activated mucosa-associated invariant T cells (MAIT) not
only directly damage bacteria but also increase the susceptibility
to carbapenems in multidrug resistant E. coli (119, 120). In
addition, it was revealed that the three major effector molecules
of cytotoxic lymphocytes (Gzms, GNLY and PFN) collaborate in
a highly coordinated manner to kill intracellular bacteria, such as
Listeria monocytogenes (121). The proteolytic activity of the
Gzms is necessary to achieve this function, as mutations of
their catalytic site impaired the killing of intracellular
pathogens. These mutations were introduced by using a
mammalian expression system, allowing the generation of
comparable purifications of catalytically active and non-active
Gzms (122). An unbiased proteomics search for GzmB substrates
in several bacterial strains revealed a well-defined list of bacterial
proteins, involved in multiple critical metabolic pathways,
including protein synthesis and virulence (123). Indeed,
extracellular Gzms degraded secreted bacterial virulence factors
in absence of GNLY, overall decreasing virulence of the
affected bacteria, therefore enabling bystander immune and
non-immune cells to more efficiently eliminate the invading
pathogens (124).

Interestingly, Gzms-mediated killing mechanisms after
delivery by PFN and GNLY were also found against certain
unicellular parasites, such as Plasmodium falciparum (125,
126). For the Plasmodium parasite, we found that the
mechanism of Gzms delivery changed upon maturation of
the intracellular pathogen in red blood cells (RBCs). While
early stage infected RBCs (rings and trophozoites) are
susceptible to PFN and resistant to GNLY, late stages
(schizonts) display the opposite behavior due to membrane
cholesterol depletion and increased phosphatidylserine
exposure upon parasite maturation (Figure 3) (127). Also
for Toxoplasma gondii and Trypanosoma cruzi, a PFN- and
GNLY-dependent delivery mechanism of the Gzms was
revealed that induced a death pathway in the parasites,
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FIGURE 2 | Granzyme-mediated death pathways in bacteria. To fight intracellular bacteria, Gzms and GNLY are delivered into infected cells in a PFN dependent
manner. GNLY then forms pores in bacterial membranes, allowing the entry of the Gzms into the bacterial cytosol. GzmB cleaves the catalytic subunits of electron
transport chain (ETC) complex I, as well as bacterial proteins involved in antioxidant defense, generating ROS that induce membrane lipid oxidation, DNA damage
and protein oxidation. GzmB also target various bacterial proteins involved in protein synthesis, folding and degradation. Independently of GNLY, extracellular GzmB
directly targets external bacterial components, such as secretion systems, membrane proteins and secreted virulence factors to attenuate virulence and,
consequently, to facilitate bacterial elimination in bystander cells.
FIGURE 3 | Granzyme B released by gd T cells contributes to anti-malaria defense. The particular killer lymphocyte subset bearing the gd T receptor forms an
immunological synapse with Plasmodium falciparum-infected red blood cells (iRBC). In early stage iRBC, the plasma membrane contains cholesterol-enriched lipid
rafts and the negatively charged phosphatidylserine (PS) is predominantly present in the inner leaflet. At that early stage, PFN can form membrane pores allowing the
entry of Gzms, while being resistant to GNLY lysis. For late stage iRBC, cholesterol depletion allows the GNLY to disrupt the membrane while the surface exposure
of PS inhibits the formation of PFN pores. Once in the iRBC, GzmB induces dramatic morphological alterations of late stage parasites (schizonts), notably the
detachment of the parasitophorous vacuole (PV). Moreover, GzmB inhibits ATP production and decreases the mitochondrial membrane potential of the parasite. At
the end of the parasite growth cycle, the rupture of iRBC plasma membrane leads to merozoites egress. GNLY also disrupts the membrane of the merozoite,
allowing the entry of GzmB in the parasite.
Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7505125
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displaying morphological features highly similar to
mammalian apoptosis (Figure 4) (128).
OXIDATIVE ANTIMICROBIAL FUNCTIONS
OF THE GRANZYMES

As for the cytolytic activities of the Gzms, the induction of ROS
seems to be a critical merging point in the antimicrobial
mechanisms against various pathogens. In E. coli, the Gzms
attacked homologue subunits of the respiratory chain complex-1,
as in mammalian mitochondria, suggesting an evolutionary well-
conserved killingmechanism.The premature electron leakage from
thedisrupted respiratorymachinery in combinationwith theGzmB
proteolysis of important antioxidant defense enzymes, such as
superoxide dismutase and catalase, triggered lethal ROS levels in
the affected bacteria (118). GzmB also extensively targeted the ROS
defense machinery in the proteome of Mycobacteria tuberculosis,
Listeria monocytogenes, as well as Salmonella typhimurium,
suggesting that oxidative mechanisms also play a central role in
the GzmB-mediated death pathways in these bacterial pathogens
(123, 124). Major antioxidant enzymes were also degraded by
GzmB in the unicellular parasites, Plasmodium falciparum,
Toxoplasma gondii and Trypanosoma cruzi (125, 128). For the
latter parasites, a dominant role of ROS in the killing mechanism
was indicated by several lines of evidence: 1. ROS were produced in
response toGzmBafter deliverywith pore formingproteins, 2. ROS
scavengers efficiently inhibited the killing, and3.GzmBuncleavable
point mutations in major antioxidant defense enzymes slowed
down the death pathway (128). GzmB delivery into unicellular
Frontiers in Immunology | www.frontiersin.org 6
parasites also clearly affect the mitochondria as indicated in
morphological alterations, loss of mitochondrial membrane
potential and decreased ATP production (125, 128).
CONCLUSIONS

Though this particular field of research is only developing and
further study is necessary, we think it is fair to state that the Gzms
exert potent antimicrobial activities by direct proteolysis of vital
microbial substrates that are crucial for their replication. Best
studied so far in virus-infected cells; however, numerous studies
indicate that the Gzms can also lethally affect intracellular bacteria
and unicellular parasites by means that are independent of host
cell cytolysis. Mitochondria and increased ROS generation seem to
be on center stage in Gzms-mediated death pathways in
mammalian cells and unicellular parasites. As mitochondria
originated from endosymbiotic alpha-proteobacteria, it was not
surprising to find respiratory chain disruption by the Gzms in
modern living bacteria. To what exact extent these ROS contribute
to the killing pathways of the different microbes and mammalian
cells is still a matter of debate and needs further study.
Nonetheless, there is little doubt that ROS pathways seem to be
a highly conserved target in Gzms-mediated death pathways in
various species that are evolutionarily far apart.
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