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Virus Infection Is an Instigator
of Intestinal Dysbiosis Leading
to Type 1 Diabetes
Zachary J. Morse and Marc S. Horwitz*

Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada

In addition to genetic predisposition, environmental determinants contribute to a complex
etiology leading to onset of type 1 diabetes (T1D). Multiple studies have established the
gut as an important site for immune modulation that can directly impact development of
autoreactive cell populations against pancreatic self-antigens. Significant efforts have
been made to unravel how changes in the microbiome function as a contributor to
autoimmune responses and can serve as a biomarker for diabetes development. Large-
scale longitudinal studies reveal that common environmental exposures precede diabetes
pathology. Virus infections, particularly those associated with the gut, have been
prominently identified as risk factors for T1D development. Evidence suggests recent-
onset T1D patients experience pre-existing subclinical enteropathy and dysbiosis leading
up to development of diabetes. The start of these dysbiotic events coincide with detection
of virus infections. Thus viral infection may be a contributing driver for microbiome
dysbiosis and disruption of intestinal homeostasis prior to T1D onset. Ultimately,
understanding the cross-talk between viral infection, the microbiome, and the immune
system is key for the development of preventative measures against T1D.
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INTRODUCTION

Type 1 diabetes (T1D) is a persistent autoimmune disorder where immune cells attack and destroy
the insulin-producing beta cells of the pancreas. Eventually, once enough beta cell mass is lost,
individuals will begin to experience loss of natural blood glucose regulation and become reliant on
exogenous administration of insulin. Numerous studies have characterized genetic variance and
single nucleotide polymorphisms associated with T1D, which can explain why some individuals are
more predisposed than others (1–6). Genome-wide association studies have found that Human
leukocyte antigen (HLA) and insulin genes are responsible for a significant portion of the genetic
risk for T1D. Additionally, many polymorphisms have been identified within immune-related genes
including PTPN22, IFIH1, CTLA4, and IL2RA (5, 6). However, genetic make-up only accounts for
part of the equation. After all, the immune system is shaped to an incredible extent by non-heritable
forces and instead moulded largely by environmental exposures (7).

An array of exogenous stressors have been associated with precipitating autoimmunity (8).
However, understanding exactly how environmental factors contribute to disease pathogenesis is a
messy ordeal. Dysbiosis, infection, exposure to dietary antigen, and vitamin D deficiency have all
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been significantly implicated in altering susceptibility to T1D
(9, 10). With such complicated etiology, incorporation of multi-
faceted approaches, which take into account the extensive
amount of cross-talk that occurs between each of these
influences on the host, should be strongly considered in
future studies.

Virus infections may be an instigating factor for the gut
pathology and dysbiosis that is observed in patients leading up
to islet autoimmunity and/or T1D onset (Figure 1). Clinical
evidence suggests that diabetic patients experience prolonged
enterovirus infections associated with the gut mucosa, resulting
in persistent inflammation. Furthermore, patients with islet
autoimmunity have increased intestinal permeability, low-
grade enteropathy, and a dysbiotic microbiome. Seasonal
patterns observed in T1D and other autoimmune disease
diagnosis could, at least partially, be explained by seasonal
variations in infection (11, 12). In this review, we will examine
the known effects of virus infection on the microbiome and
gastrointestinal (GI) physiology, and how this modulation may
relate to T1D pathogenesis.
VIRUS INFECTIONS ARE ASSOCIATED
WITH T1D

Numerous viruses, particularly those associated with the gut,
have been connected with T1D pathogenesis including
enterovirus, rotavirus, cytomegalovirus, and norovirus (13–17).
The enterovirus, coxsackievirus B (CVB), has been the virus
most frequently associated with T1D. So much so, that recently
there has been movement and discussion towards the necessity
to develop a vaccine specific for coxsackievirus to help mitigate
the globally increasing rates of T1D (18–21). CVB binds to the
coxsackie and adenovirus receptor (CAR), which is highly
expressed on the insulin-secreting beta cells in the pancreatic
islets (22). Variance in CAR expression has been correlated with
increased predisposition for T1D (23). In both human
populations and experimental mouse models, infection with
Abbreviations: AMP, antimicrobial peptide; APC, antigen-presenting cell; CAR,
coxsackie and adenovirus receptor; CARD, caspase activation and recruitment
domains; CTLA4, cytotoxic T-lymphocyte associated protein 4; CVB,
coxsackievirus B; dsRNA, double stranded RNA; DSS, dextran-sulfate sodium;
EBV, Epstein-Barr virus; FMT, fecal microbiome transfer; GAD, glutamic acid
decarboxylase; GI, gastrointestinal; HAdV-C, human masadenovirus-C; HERV,
human endogenous retroviruses; HHV, human herpes viruses; HLA, Human
leukocyte antigen; IEB, intestinal epithelial barrier; IFIH1, interferon induced with
helicase C domain 1; IFN, interferon; IGF, insulin-like growth factors; IL2RA,
interleukin-2 Receptor alpha; LPS, lipopolysaccharide; MAIT, Mucosa-associated
invariant T cells; MHC, major histocompatibility complex; mLN, mesenteric
lymph node; MNV, murine norovirus; MR1, MHC class 1-related protein;
MyD88, Myeloid differentiation primary response 88; NOD, non-obese diabetic;
NOD2, nucleotide-binding oligomerization domain-containing protein 2; NOR,
non-obese diabetes resistant; PAMP, pathogen-associated molecular patterns;
pDC, plasmacytoid dendritic cells; PRR, pattern recognition receptor; PTPN22,
protein tyrosine phosphatase 22; SCFA, short chain fatty acid; SLE, systemic lupus
erythematosus; T1D, type 1 diabetes; Th, T helper cell; TLR, toll-like receptor;
Treg, regulatory T cell; VILP, viral insulin/insulin-like growth-1-like peptides.
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enteroviruses has been identified to precede onset of islet
autoimmunity (24–26). A recent large-scale study looking at
virus shedding in the stool of children found that while those
with islet-autoantibodies had no difference in total incidence of
infection, they did experience a higher rate of sustained
enterovirus B (particularly of CVB serotype) infections, which
may be contributing to islet autoimmunity (23). Interestingly,
this study also found association of other mammalian viruses
including human masadenovirus-C (HAdV-C), which actually
correlates with reduced incidence of auto-reactivity. The authors
suggest that this may be due to HAdV-C competitively inhibiting
CAR engagement or through sustained activation of innate
immunity resulting in protection from other strains of virus
including enterovirus. Children who developed T1D and islet-
specific autoantibodies also have a history of increased incidence
of respiratory infections in early adolescence (27). It is unclear,
however, if there may be underlying immune differences that
cause these populations to have increased susceptibility to both
these types of infections and T1D autoimmunity. But, children
who experience early loss of B cell tolerance to insulin exhibit
weak humoral protection against CVB, whereas those with
autoantibodies to the T1D biomarker, glutamic acid
decarboxylase (GAD), have competent CVB responses -
signifying viral clearance may be altered in individuals with
T1D-related autoimmunity (28).

Rotavirus infection in children with a genetic predisposition
to T1D is associated with increased islet autoimmunity,
signifying that infection may exacerbate autoimmunity and
diabetes (14). In non-obese diabetic (NOD) mice, rotavirus
infection has also been shown to accelerate onset of T1D (29).
However, pre-existing autoimmunity is necessary to accelerate
disease onset (29). Thus, rotavirus may likely promote
pathogenic events rather than serving as a trigger of diabetes.

Antiviral responses to viruses including CVB can likely have
direct effects within the pancreas in precipitating T1D (30–32).
While CVB has been shown to impair beta cell function in vitro,
evidence suggests that the virus itself does not destroy beta cells
through cytopathy (30, 33). Antiviral responses are largely
mediated through expression of the three classes of interferon
(IFN): type I (IFN-a and IFN-b), type II (IFN-g) and type III
(IFN-l). Innate viral receptor engagement and ensuing immune
pathway activation can have a significant role in T1D initiation
and pathogenesis (34, 35). A transient type I IFN signature has
been observed preceding islet autoantibody development in
genetically-susceptible children, but is lost by the time of
diabetes diagnosis (36–38). This IFN signalling may be a
significant contributor to the hyperexpression of major
histocompatibility complex (MHC) class I, endoplasmic
reticulum stress, epigenetic and transcriptional/translational
modifications observed in the islet microenvironment prior to
T1D development. Recently, researchers were able to detect viral
signatures (enteroviral protein and dsRNA) in the islets of
autoantibody-positive and recent-onset T1D donors along with
increased interferon and microbial stress markers (39). There has
also been some suggestion that terminally-deleted viral genomes
are able to persist in the islet microenvironment causing
inflammation and increased immune cell recruitment (40).
October 2021 | Volume 12 | Article 751337
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While there are existing direct links to virus-causing
inflammation and modulation of the immune system within
the islet microenvironment, there are likely secondary effects of
infection, which are also long-term contributors to disease
pathogenesis including microbial dysbiosis.
THE MICROBIOME AND T1D

Comprising of a rich diversity of bacteria, archaea, viruses, fungi,
and helminths – the microbiome is a dynamic environment that
is constantly shifting. This review primarily focuses on the
impact of commensal bacterial communities and later the
collective virome. The microbiome has a substantial role in
shaping peripheral immune tolerance, activation, migration,
and differentiation, as well as local inflammatory responses
(41). In response, the immune system is in constant
Frontiers in Immunology | www.frontiersin.org 3
communication to respond to these fluctuations in stimuli
(42). Alterations in the microbiome have been heavily
implicated in the pathogenesis of T1D (43–45) and genetic risk
for T1D autoimmunity even confers differences in the bacterial
microbiome (46–48). The intestinal microbiota can exert potent
influence on immune homeostasis through the production of
various metabolites and particularly short chain fatty acids
(SCFAs). Both clinical studies and mouse models have
established SCFAs including butyrate, propionate, and acetate
as significant factors affecting immune regulation in T1D
pathogenesis (43, 49). Metabolite-related dietary patterns have
been shown to influence T1D susceptibility and metabolomic
alterations precede the development of islet autoantibodies in
children (50, 51).

While the human microbiome can be quite heterogenous and
studies examining the relationship between the microbiome and
diabetes have produced highly variable results, there are some
FIGURE 1 | Virus infections alter intestinal homeostasis to contribute to T1D. The GI environment is tightly regulated by numerous mechanisms. Perturbations such
as virus infection results in dysbiosis and disruption to the enteric environment. Microbial dysbiosis is characterized by loss of species diversity and production of
SCFAs including butyrate and acetate. As a result of dysbiosis and inflammation, the epithelial barrier becomes more permeable due to loss of tight junctions
between epithelial cells, alteration of secreted IgA (sIgA) antibodies, and diminished mucus production. Some persistent infections may be maintained contributing to
sustained inflammatory signalling within the gut. Both pancreatic self-antigens and commensal microbial antigens are taken up by APCs and presented to T cells in
the pLN causing loss of self-tolerance. These autoreactive T cells migrate to the pancreas to contribute to anti-islet responses and destruction of insulin-secreting
beta cells. Individuals would progress to T1D once sufficient beta cell mass is lost resulting in loss of blood glucose regulation.
October 2021 | Volume 12 | Article 751337
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notable microbial hallmarks which have been often identified in
individuals with T1D and islet-autoimmunity including: a
marked decrease in the diversity of bacteria colonizing the gut,
increased abundance of bacteria within the Bacteroides phylum,
the loss of Firmicutes, and decreased production of SCFAs
among other variances (52–55). However, understanding the
effects of perturbations in humans while also controlling for
extraneous factors is incredibly difficult. The use of NODmice as
a model for spontaneously developing diabetes has given
significant insight into understanding the disease pathogenesis
of T1D. While the autoimmunity experienced by NOD mice is
not the same as that experienced by humans, it allows the use of
environmental and genetic interventions in order to understand
how they may impact diabetes development (56). Dysbiosis
occurs in both humans and NOD mice prior to disease onset
and diabetes incidence can even be predicted in these mice based
on sampling from various mucosal microbiomes (43, 57, 58). A
“diabetogenic” microbiome from a diabetes-prone NOD mouse
is sufficient to promote insulitis when transferred to a non-obese
diabetes-resistant (NOR) mouse (59). Typically, female NOD
mice are more susceptible to developing autoimmune diabetes
than male mice; however, this difference is not observed in germ-
free mice (60). This discrepancy in sex bias can at least partially
be explained by microbial stimulation of testosterone (60).

Pattern recognition receptors (PRRs) including toll-like
receptors (TLRs), RIG-I-like receptors, and caspase activation
and recruitment domains (CARDs) are innate sensors that can
detect viral and microbial pathogen-associated molecular
patterns (PAMPs). Signalling through these receptors can be
detrimental for modifying susceptibility to T1D development
(34). There are 13 total types of TLRs, each of which is specific
for various bacterial (LPS, flagellin, peptidoglycan, etc.) and/or
viral (dsRNA, CpG DNA, viral protein, etc.) antigens.
Microbiota can regulate T1D through TLR signaling
differences (61, 62). For instance, imbalance between TLR2 vs.
TLR4 stimulation can determine T1D susceptibility where TLR2
provides a pro-diabetic signal whereas TLR4 provides
microbiota-induced tolerization (61). This overlap in bacterial
and virus infection immune signaling may signify a role
between commensal microbes and virus infection in host
immune regulation.
VIRUS INFECTIONS AS A SOURCE OF
DYSBIOTIC PERTURBATION

In the first few years of life, colonization of the GI tract plays an
indispensable role in shaping host immune development,
regulation, and maintenance (63, 64). With age, the
microbiome experiences decreasing plasticity and tolerance for
new antigen exposure and environmental disruptions (63, 65).
Following infancy, the microbiome seems to stabilize with
relatively established communities that continue to shape
mucosal and systemic immune homeostasis into adulthood
(66). Thus, timing of environmental perturbations is likely an
important factor for producing dysbiosis, which impacts disease
susceptibility. The “Hygiene Hypothesis” proposes that exposure
Frontiers in Immunology | www.frontiersin.org 4
to antigens in early life during immune development can have
profound effects for the development of autoimmune and allergic
disease later on. Evidence suggests that instigating factors leading
to T1D occur early in life – especially since a majority of early-
onset individuals who progress to overt T1D before adolescence
develop autoantibodies by 3 years of age (1, 67). However, most
individuals are diagnosed with T1D in adulthood, hinting that
tolerance for environmental stressors may not necessarily be
limited to a defined age or that triggering events can occur long
before disease onset (68).

Infections that are relatively mild later in life, may have the
ability to be quite detrimental early in life at promoting T1D, as
the immune system is not yet fully developed and may lack the
ability to properly defend the host (69). Viruses cause dysbiosis
(70–72), potentially signifying lasting consequences whereby
individuals may develop a more autoimmune-skewed
microbiome that might be characterized by decreased diversity
and less beneficial bacteria (e.g., less butyrate producers). Studies
in NOD mice have shown early life exposure to a “diabetogenic
microbiome” through fecal microbiome transfers (FMT) can
regulate B cell activation and promote T1D onset later on (69).
However, when mice are given this same microbiome
composition post-adolescence they do not experience the same
modulation of the immune system and increased incidence of
diabetes autoimmunity. Thus, there may be a unique window,
particularly early in life, whereby disruptions in the microbiome
from exogenous stressors like infection can have much larger
implications on future health.
T1D: A CONSEQUENCE OF INTESTINAL
DYSBIOSIS AND RESIDENT IMMUNE
POPULATION CONTROL

Studies have found that detection of enteric infection precedes
islet autoimmunity by 6 months or more (24, 73, 74). The
existing confluence between intestinal inflammation and T1D
maintain the gut as an important site for immune modulation
that has implications for islet autoreactivity. While some viruses
may have deleterious effects on the microbiome, others may
actually promote tolerance. For example, norovirus infection was
shown to protect from T1D through modulation of the
microbiome (75). In this study, Pearson et al. found that NOD
mice infected with murine norovirus (MNV) had significantly
lower diabetes incidence, less immune infiltration into the islets,
increased bacterial diversity, and an increased regulatory rather
than inflammatory T cell profile.

Islet-autoreactive CD8+ T cells circulate in the blood in
approximately the same quantities between healthy and diabetic
patients – suggesting that these cells are a normal part of the T cell
repertoire (76). However these cells are more abundant in the
pancreata of T1D patients, indicating that they must home to the
pancreas due to altered immunoregulatory signalling,
proinflammatory islet environment, and/or peripheral activation
(76). The GI tract plays a fundamental part in communicating
between the host and microbiota. Even at healthy steady-state
October 2021 | Volume 12 | Article 751337
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conditions, there is significant T cell trafficking between the gut
and pancreatic tissues (77). Existing within this gut-pancreas axis,
the pancreatic lymph nodes (pLN), which drain from the
duodenum and pancreas, are sampling antigen heavily from
both organs. The pLN resides at a critical and significant
confluence whereby intestinal stress can alter the presentation of
pancreatic self-antigens (77). It has even been suggested that this
may be the portal connecting celiac disease with T1D, where GI
inflammation due to gluten-sensitivity potentially stimulates anti-
islet immune activation in the pancreas (77, 78). Diabetic patients
experience prolonged enterovirus infections associated with the
gut mucosa, resulting in persistent inflammation (79). This
sustained inflammation may be sufficient to result in loss of self-
tolerance and T1D development.

Adaptive Cells
Resident T and B cells hold specificity for commensal microbes
even under healthy homeostatic conditions (80). T cell
polarization into T helper 1 (Th1), Th2, Th17, or regulatory
(Treg) cell phenotypes can be driven in the gut by presence and
abundance of specific microbes in autoimmunity (42, 81, 82). For
instance, Bifidobacteria species can drive Th17 cell responses
(83) – while Akkermansia, Bacteroides, and most notably
Clostridium species, have been shown to promote Treg
populations (82, 84). Produced in large quantities, particularly
by Clostridium bacteria, the SCFA butyrate is a potent inducer of
Treg delineation through histone modification promoting Foxp3
expression and, by eliciting high levels of transforming growth
factor b (TGF-b), expression in gut-related CD103+ dendritic
cells (85, 86).

Regulatory T Cells
Insight into the pathogenesis of T1D has revealed that Treg cells
can be potent mediators for the suppression of autoreactive T
cells and promotion of tolerance to islet antigen (87).
Inflammasome-deficient mice have a microbiome that is
protective for T1D (88). When NOD mice are co-housed with
these protected mice they experience a corresponding reduction
in diabetes incidence (89). This is attributed to an expansion of
type 1 regulatory T cells in the gut, which home to the pancreas
and secrete IL-10 to reduce inflammation in the pancreatic
microenvironment. This microbiome-driven alteration in Treg
populations is likely due to production of bacterial SCFA
metabolites since administration of butyrate to NOD mice also
causes initial expansion of Tregs in the colon, mesenteric lymph
nodes (mLN), and Peyer’s patches with a subsequent migration
to the pancreas and pLN to reduce T1D onset (90). Expansion of
Ruminococcus species of bacteria can also promote CD8+ Treg
cells to prevent diabetes in NOD mice and a streptozotocin-
induced model. Furthermore, healthy human donors have
increased CD8+ Tregs along with increased Ruminococcus
when compared to T1D patients (91). These gut-primed Tregs
may have a profound impact on maintaining pancreatic
tolerance and may be limited in infection since enterovirus
detection in young children is associated with ensuing
depression of Treg responses and increased inflammatory Th1/
Th17 responses (92).
Frontiers in Immunology | www.frontiersin.org 5
Mucosa-Associated Invariant T Cells
Mucosa-associated invariant T cells (MAIT) are innate-like T
cells expressing MHC class 1-related protein (MR1) that
specifically binds microbial metabolites originating from
riboflavin metabolite biosynthesis in bacteria. These cells are
present in several tissues, and like their name suggests, they are
important at mucosal sites (93). MAIT cells exist at an interesting
interface and may be a key mediator between microbes, virus
infection, and T1D. Germ-free mice lack MAIT cells, thus
indicating that they likely rely on commensal bacteria for their
development and maintenance (93). In fact, differences in
bacterial metabolism can regulate MAIT cell activation (94,
95). Typically, MAIT cells are thought to have a protective
phenotype whereby they promote intestinal homeostasis and
have a role in supporting the gut epithelial barrier via secretion of
IL-22, IL-12, and IL-17a (96). However, MAIT cells can also take
on a more pathogenic nature in certain circumstances.

Rouxel et al. found that both recent-onset and established
T1D patients have altered MAIT cell populations circulating in
their blood whereby they are less abundant, express more
activation/exhaustion markers, Th1-skewed, and are more
cytotoxic (97). In NOD mice, MAIT cells seem to show a
dimorphic phenotype depending on tissue specificity where
MAIT cells in the lamina propria express IL-22 and IL-17a in
non-diabetic mice; however, cells that infiltrate the pancreatic
islets express IFN-g and granzyme B to participate in beta cell
destruction. Furthermore, the authors showed that MAIT cell-
deficient (MR1-restricted) NOD mice have increased rates of
diabetes and have a modified gut mucosal environment –
suggesting that they can be protective (97). Beyond their role
in sensing bacterial products, MAIT cells have also been
identified to hold potent inflammatory responses in both acute
and chronic virus infections (98). This is due to activation, which
is independent of MR1 stimulation and instead due to cytokine
signaling largely through type-1 interferon, IL-12, and IL-18 (98,
99). Ultimately, collective signalling from bacterial metabolites
and cytokine profiles in infection may be detrimental in skewing
MAIT populations toward either a protective or pathogenic
nature in T1D pathogenesis.

B Cells
Mariño et al. found that providing diets to NOD mice that yield
increased production of acetate and/or butyrate are largely
protected from autoimmune diabetes (49). These two SCFAs
accomplish this through their own distinct mechanisms. While
butyrate primarily boosted Tregs, acetate decreased frequency of
islet-specific autoreactive T cells by modulating antigen
presentation in B cell populations residing in the spleen and
intestinal Peyer’s patches. Cross presentation of islet antigen by B
cells in the pLN has been previously been shown to activate self-
reactive CD8+ T cells (100).

Antigen-Presenting Cells
Plasmacytoid dendritic cells (pDC) play an important part in
mediating antiviral intestinal immunity. These cells extend their
dendrites across the epithelial cell barrier to sample microbial
antigen in the GI tract to present to resident adaptive immune
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cells and can produce a significant amount of IFN in infection.
pDCs infected with rotavirus can induce bystander activation of
islet-reactive T cells via type I interferon signalling (17). Mucosa-
associated pDCs likely detect virus infection and travel to the
mesenteric and/or pLN to promote B cell expression of MHC-I
and proinflammatory T cell cytokine secretion to aid in
inflammation (101, 102). Phagocytosis of Lactococcus lactis
bacteria by pDCs can stimulate robust IFN-a secretion via
TLR9 and MyD88 signalling (103). Oral administration of the
L. lactis colonization factor antigen I fimbriae can also prevent
T1D in NOD mice by promoting expansion of IL-10 and IFNg
while decreasing Th1 T cells (104).

MNV infection alters recruitment of macrophages in the pLN
where they are deficient in CD86, signifying a decreased capacity
to activate T cells leading to protection from T1D (75).
Furthermore the offspring of antibiotic-treated pregnant NOD
mice also experience reduced T1D incidence by instigating
tolerized APCs (105). These APCs have a diminished ability to
activate cytotoxic CD8+ T cells and thus represent the
importance for microbiome-specific education of developing
immune self-tolerance. Macrophages which lack previous
exposure to bacteria in antibiotic-treated mice have reduced
responses to LPS antigens (106). Decreased inflammatory
responses by these APC populations due to microbiome
differences may be sufficient to prevent autoreactivity –
especially since islet resident macrophages are detrimental for
the instigation of T1D autoimmunity in NOD mice (107).
INFECTION AND A LEAKY GUT

Containment of commensal bacteria and dietary antigens within
the intestinal lumen relies on several physiological and molecular
barriers. The first line of defense is a layer of mucus created by
O-linked glycoproteins (mucins) secreted from intestinal goblet
cells combined with luminal saccharides. In the colon, a double
layer of mucus serves as a physical barrier. The apical layer is
typically colonized with various mucus-degrading microbes
including those within the Akkermansia family. The innermost
mucus layer, however, is predominately uncolonized and creates
a largely impenetrable barrier for bacteria. A single cell layer of
epithelial cells (IEB) is joined through tight junctions to create a
continuous cellular barrier throughout the GI tract. This IEB can
be maintained by cytokines including IL-22 produced by group 3
innate lymphoid cells and IL-17A from Th17 lamina propria T
cells. Epithelial cells and resident lamina propria immune cells
constantly sample the mucosal environment and respond to
changes in microbial and viral stimuli. Commensal bacteria
populations are regulated through production of antimicrobial
peptides (AMPs) and by secreted IgA antibodies. AMPs are
bactericidal for specific bugs, particularly within the small
intestine where the mucus barrier can be more discontinuous.
Colonization of bacteria within the GI tract is also highly
regulated by IgA antibodies, which can coat bacteria for
neutralization and opsonization. Most secreted IgA is
polyreactive and holds an innate specificity to multiple strains
Frontiers in Immunology | www.frontiersin.org 6
of bacteria, but can also undergo somatic hypermutation to
produce highly specific IgA against particular bacteria (91, 108).

Autoimmune disorders including T1D, rheumatoid arthritis,
multiple sclerosis, and systemic lupus erythematosus (SLE) have
all been associated with increases in intestinal permeability - or a
so-called “leaky gut” (109–111). Clinical studies have found that
individuals with islet autoimmunity experience increased
intestinal permeability and low-grade enteropathy (112–116).
Loss of integrity occurs prior to T1D development in both
human and mouse models, indicating that it may be a
significant trigger – rather than a result – of autoimmunity
(112, 117). In fact, Sorini et al. found that breaking the
intestinal barrier using low-dose dextran-sulfate sodium (DSS)
treatments in NOD mice was sufficient to increase onset of
autoimmune diabetes (109). This subsequent loss of intestinal
integrity can induce activation of islet-specific immune cells in the
gut to travel to the pancreas and promote onset of diabetes in T
cell receptor-transgenic BDC2.5 crossed NODmice. Activation of
these T cells also appeared to be dependent on the presence of the
gut microbiome; however, microbial dysbiosis caused by the DSS-
treatment alone was not sufficient to promote autoimmunity.

Bacterial Translocation
Breakage of the tight junctions, which glue together the intestinal
epithelial barrier, may be a contributing factor in allowing
permeability and contribute to T1D pathogenesis (118). As a
result of reduced intestinal integrity, bacteria can cross mucosal
barriers and leak into systemic circulation and various tissues.
When disseminated systemically, commensal bacteria antigens
can rapidly promote diabetes autoimmunity in NOD mice (119).
Translocation of bacteria can contribute to autoreactivity in the
following ways: 1) by directly damaging the beta cells (120) 2)
through presentation of bacterial antigen to autoreactive T cells
(109) 3) in promoting inflammation through innate receptor
stimulation (121) 4) through bacterial molecular mimicry of self-
antigens (122). In fact, translocation to the pLN has been
observed in NOD mice prior to diabetes onset (123). It can
also trigger activation of the innate bacterial peptidoglycan
receptor, NOD2, to contribute to T1D development in a
streptozotocin-induced mouse model (121). Islets exposed to
translocated bacteria can directly mount anti-bacterial responses
and promote inflammation (124). These responses may
ultimately aid in recruitment and activation of autoreactive
cells within the pancreatic environment.

Intestinal Homeostasis in the NOD Mouse
Miranda et al. performed an extensive analysis looking at
alterations at the mucosal immune environment in NOD mice
prior to diabetes development (123). This study found that the
mice developed impaired mucin production, dysbiosis, modified
secretion of bacteria-specific IgA, and alterations in lamina
propria dendritic and T cell populations – which skew toward
an inflammatory rather than regulatory profile. Some of these
changes were shown to be microbiome-driven since cross-
fostering NOD pups with NOR mothers can restore mucus
production. The intestinal mucus layers represent the first line
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of defense against intestinal microbes and can be modulated by
the presence of specific bacteria. Specifically, butyrate-producing
and mucin-degrading bacteria can improve intestinal integrity
through regulation of epithelial tight junctions and stimulate
production of mucin synthesis, respectively (49, 125, 126).
Acetate- and butyrate-yielding diets correspond to a reduced
concentration of bacterial lipopolysaccharide (LPS) antigens
detected in the serum of mice - indicating reduced bacterial
dissemination (49). The mucin-degrading bacteria, Akkermansia
muciniphilia, can reduce intestinal permeability through
fortification of epithelial tight junctions (126). Administration
of A. muciniphilia can reduce diabetes incidence in NODmice by
modulating mucus production and expression of antimicrobial
peptides (127). Furthermore, the colonization of A. muciniphilia
decreased islet expression of TLRs and promoted regulatory T
cells (127). This potentially signifies a change in the host’s ability
to respond to subsequent infections and susceptibility to
infection-induced diabetogenic responses.

Commensal-Specific Antibody Responses
Alterations in the abundance of certain bacterial antigens have
been previously observed to elicit specific IgG antibody responses
to commensal bacteria suggesting that B cell receptor and TLR
stimulation can alter GI-related B cell profiles (128).
Furthermore, SCFA metabolite concentration can drive
production of bacteria strain-specific IgA in a T cell-dependent
mechanism involving TLR recognition – resulting in altered
bacterial colonization of mucosal environments (108). The
presence of T1D and/or autoimmune risk alleles confers
alterations in IgG and IgA anti-commensal microbial
responses in HLA haplotype-dependent and -independent
mechanisms (129). For example, Huang et al. observed that
newly-diagnosed T1D patients have increased secretory IgA
responses along with dysbiosis and decreased SCFA
production (130). Performing FMTs to transfer the microbiota
from these T1D patients to germ-free NOD mice results in
similar alteration in IgA-mediated immunity in these mice.
However, administration of the SCFA acetate is able to recover
this modulation and restore IgA responses. It has yet to be
determined if dysregulation of IgA-mediated control of
commensal bacteria communities and intestinal homeostasis
has role in contributing to T1D autoimmunity or if it is a by-
product of dysbiosis and/or metabolic pathogenesis. Some
evidence has indicated that changes in the anti-commensal
antibody milieu occurs after seroconversion, but prior to T1D
onset (48).

Infection as an Instigator of
Intestinal Permeability
Collectively, research included in this review suggests that a
“leaky gut” is a natural part of T1D pathophysiology that likely
triggers and/or progresses disease (Table 1). Virus infections
may be a causative agent to aid in microbiome-related
promotion of autoreactivity. Increased gut inflammation
invariably leads to loss of epithelial integrity and a breakdown
of the barriers – thereby allowing dissemination of bacteria from
Frontiers in Immunology | www.frontiersin.org 7
the gut and increasing immune accessibility to antigens within
the GI tract. Chronic viral infection is sufficient to drive
sustained intestinal permeability (133). This infection-induced
epithelial damage can be mitigated through blockade of type I
IFN or depletion of CD8+ T cells (133). Infection with
Citrobacter rodentium is able to produce barrier disruption
along with increased insulitis in NOD mice (134). Respiratory
infections are known to cause gastrointestinal distress, dysbiosis,
and increased intestinal permeability despite an absence of virus
in the GI environment (135). SARS-CoV2 patients experience
noted dysbiosis and loss of intestinal integrity corresponding
with more severe systemic inflammation, bacteremia, and higher
mortality rate – potentially signifying a leaky gut as a contributor
to worsening disease outcomes (136, 137). Additionally, human
immunodeficiency virus (HIV) infection has been shown to
cause systemic immune activation and AIDs-related morbidity
due to translocation of bacteria from the intestinal lumen (138).
In fact, HIV positive individuals can experience systemically
disseminated bacteria resulting in stimulation of anti-CD4+ T
cell autoantibody production (139).
VIROME AS A CONTRIBUTOR
TO HOST IMMUNITY AND
MICROBIAL REGULATION

The intestinal virome is made up of rich and diverse prokaryotic
and eukaryotic viral communities, which are shaped by
numerous factors including diet, genetics, disease, and
geography (140). While a vast majority of the viruses in the
body are bacteria-infecting phages, the human virome is also
made up of: genomically-integrated human endogenous
retroviruses (HERVs); latently-infecting viruses, such as human
herpes viruses (HHVs); and potentially persistent/chronic
infections – including common enteric viruses previously
discussed in this review (CVB, norovirus, rotavirus, etc.) (23,
141). With the GI tract being the most abundant site of viral
colonization, the intestinal virome is crucial for maintaining
homeostasis and regulating disease pathogenesis through
interaction with both commensal bacteria as well as the host
(142). Typically germ-free and antibiotic-treated mice face
immune dysfunction and altered intestinal morphology.
However, infecting these mice with MNV mitigates these
aberrations in the intestinal environment (143). Norovirus is
therefore sufficient to preserve gut homeostasis and intestinal
immunity in a manner that is typically served by microbiota.
With potential for such an influential impact, it should be no
surprise that alterations and dysbiosis in the viral composition
have been associated with several diseases and can alter host
immune homeostasis, particularly within mucosal environments
(142, 144).

Virus-Mediated Regulation
of Bacterial Communities
Using metagenomic analyses, researchers have observed the
intestinal virome dramatically shifting prior to onset of T1D
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TABLE 1 | Highlighted recent studies depicting intestinal changes associated with T1D.

Organism Virus Result Microbiome Dysbiosis Intestinal Pathology Intestinal Immune Changes Ref

NOD mice None Butyrate and acetate SCFA
administration protects from
T1D

Increased Bacteroides SCFA treatment reduced
systemic bacterial
translocation and
increased expression of
tight junction proteins

SCFA treatment promotes
increased Treg populations,
altered B cell differentiation and
function, increased serum IL-22,
and decreased serum IL-21.

Marino
et al. (49)

NOD Mice None NOD mice receiving FMT from
T1D patients had modified IgA
immunity to GI bacteria. Acetate
treatment reverses IgA
dysfunction.

Decreased diversity,
decreased Firmicutes in
mice receiving FMT from
T1D patients

NOD mice receiving FMT
from T1D donors
experience heightened
intestinal permeability,
increased IgA immunity,
and decreased AMP
expression

Acetate treatment increases gut-
associated Tregs and decreases
IgA+ B cells.

Huang
et al. (130)

NOD mice None Low-grade DSS administration
is able to induce T1D.

DSS treatment alters
microbiome, however FMT
of dysbiotic DSS-induced
microbiome to naïve mice is
insufficient to promote T1D
alone

Increased permeability
triggers T1D (NOD mice
have decreased tight
junction protein
expression, and reduced
mucosal barrier

Increased intestinal permeability
activates islet-reactive T cells and
increased gut related T cell
infiltration into the pancreatic
islets.

Sorini
et al. (109)

NOD mice None Intestinal homeostasis is altered
in NOD prior to T1D onset.

Increased Firmicutes and
reduced Actinobacteria prior
to T1D development

Prediabetic NOD mice
have increased intestinal
permeability, diminished
mucus production,
bacterial translocation,
and reduced IgA.

Prior to T1D onset, mice have
elevated Th1 and Th17 responses
as well as decreased Th2 cells,
ILC2s, and Tregs in the small
intestine.

Miranda
et al. (123)

NOD mice None TLR4-defiecient NOD mice have
accelerated T1D onset.

T1D was associated with
increased Bacteroides, lower
Firmicutes, and decreased
peripheral SCFA levels.

Increased bacterial
translocation (Serum LPS
levels)

ND Simon
et al. (62)

NOD mice None Offspring of NOD mice treated
with Vancomycin had increased
autoimmunity and those treated
with Neomycin experienced
protection.

Both case group mice had
less segmented filamentous
bacteria. Offspring of
neomycin-treated mice had
less gram-positive bacteria
overall, and more
Actinobacteria.

ND Neomycin-treated mice had
significantly less co-stimulatory
molecule expression on APCs,
and decreased Th1 and Th17 T
cells.

Hu et al.
(105)

NOD mice MNV MNV infection protects from
T1D development.

Increased alpha-diversity,
increased Firmucutes/
Bacteroides ratio, and
reduced Akkermansia in
infected mice

MNV infection causes
altered Tuft cell gene
expression. No changes
in permeability, tight
junction, or AMP
expression in infected
mice.

Infected mice had increased
systemic Tregs, reduced
inflammatory T cells and cytokine
secretion, altered mucosa-
associated B cell populations, and
increased macrophage
recruitment in pLN

Pearson
et al. (75)

Humans Unknown Human T1D patients have
decreased acetate levels and
increased IgA production.

T1D patients had increased
bacterial diversity, with
decreased Firmicutes species
prevalence, and decreased
stool acetate and butyrate
levels

T1D patients had
increased IgA-coated
bacteria in their stool.

ND Huang
et al. (130)

Humans Enterovirus Small bowel mucosa from T1D
patients have increased
prevalence of enterovirus.
Children who progress to T1D
experience sustained
enterovirus infections prior to
autoimmunity.

ND Virus positive and T1D
patients had increased
mucosal IgA deposits.

Virus positive patients had
increased CD3 intra-epithelial
leukocytes. T1D patients (without
celiac disease) had increased
HLA-DR expression.

Oikarinen
et al. (79)
Honkanen
et al. (24)

Humans Unknown Children with islet
autoantibodies and who
progress to T1D experience
intestinal dysbiosis.

Case subjects had decreased
anti-inflammatory Prevotella
and Butyricimonas bacteria
as well as overall decreased
microbial diversity.

Individuals with islet
autoantibodies and those
who progressed to T1D
had increased intestinal
permeability and
decreased mucus
production

Seropositive subjects had
decreased IgA (decreased stool
IGHA1)

Harbison
et al. (115)
Gavin
et al. (131)
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(23, 132, 145). Zhao et al., for instance, found that healthy donors
had significantly higher viral diversity and increased abundance
of Circoviridae-related sequences when compared to children
who developed autoantibodies and T1D (132). These differences
were observed prior to seroconversion and were also reflected
in coinciding dysbiosis in bacterial communities. This suggests
that there is a viral-bacterial relationship in precipitating
autoimmunity. While modulation of commensal bacteria
through phage bactericidal predation is not well understood,
the ability of certain phages to affect bacterial abundance and
modify bacterial fitness is particularly exemplified by the success
of phage therapies in treating antibiotic-resistant bacterial
infections (146). A study by Hsu et al. showed how phage-
mediated killing has cascading effects within the microbiome,
resulting in expansion or attrition of non-target bacterial
populations and causing altered gut metabolomic profiles
(147). These results suggest that lytic bacteriophages and the
induction of prophages can be potent modulators of the bacterial
microbiome and their effects can be amplified between molecular
and cellular signals in the GI environment.

Immune Regulation by
Commensal Viruses
An exhaustive study by Dallari et al. characterized host immune
responses to several asymptomatic virus infections (acute and
persistent strains of MNV, mastadenoviruses, astrovirus,
parvoviruses, and reoviruses) in conventional and germ-free
mice (144). The authors identified both distinct and common
immune modulation contributed by viral and bacterial microbes.
Viruses were generally responsible for eliciting Th1- and IL-22-
mediated immunity as well as B cell and bacterial response
pathway activation. While each virus exposure promoted
profound immunomodulation, there was little consistency in
immune pathways activated by each virus examined. Viral
genome type, virus persistence, and viral load were only
modestly attributed to the observed immune variance
suggesting there is a largely individualistic and strain-specific
contribution to intestinal immunity. While bacterial members of
the microbiome have been the major focus of research in respect
to their ability to shape mucosal immunity, this highlights
importance and impact virus exposure also has within both
GI-related and systemic immune homeostasis.

Despite eukaryotic cells not being a natural target for
bacteriophages, their presence can alter host immune profiles.
This is most often accomplished by bacteriophage stimulation of
Frontiers in Immunology | www.frontiersin.org 9
viral PRRs, including TLRs or RIG-I-like receptors. One study
showed how phage taken up in antigen-presenting cells activates
TLR3 signalling and subsequently type I IFN expression (148).
Another study demonstrated Lactobacillus, Bacteroides, and
Escherichia phages can promote IFN-g-producing T cells along
with IL-6, IL-10, and IL-12 secretion via TLR9 activation in
germ-free mice (149). These changes can alter susceptibility to
ensuing bacterial and viral infection. For instance, the presence
of murine astrovirus has been shown to protect against MNV
and rotavirus infection via stimulation of type III interferon
signalling in the gut epithelium (150). Type III IFN expression in
epithelial cells may also be detrimental in determining
persistence of CVB in enteric environments (151). Phage-
mediated cell lysis of bacteria would also result in increased
release of antigenic bacterial PAMPS that go on to initiate
inflammation through PRR activation. Bacteriophage induced
amyloid production in E. coli has been associated with
subsequent seroconversion and development of T1D (152).
This effect is hypothesized to be caused by the release of E. coli
amyloid-DNA PAMPs, which are known inducers of TLR2 and
TLR9 and have been previously shown to trigger SLE
autoimmunity in mice (153). However, more evidence is
needed to determine if this mechanism can be directly
contributing to T1D.

Human Endogenous Retroviruses
Ancestral viruses have integrated into the mammalian genome
over millions of years of evolution, resulting in human
endogenous retroviruses (HERVs). Some estimates attribute
approximately 8% of the human genome to a viral origin
(154). These genomic viral remnants largely go unexpressed.
However, they can be induced by exogenous stressors including
CVB and other viral infections (155–157). Expression of HERV
antigen, particularly from the HERV-W family, has been
associated with both T1D and multiple sclerosis autoimmunity
in humans and mouse models (158–161). Mycobacterial
infection can stimulate expression of the HERV-W envelope
antigen, resulting in increased cross-reactive autoantibody
expression in children at higher risk of T1D (162). Murine
ERV antigens can be detected in the islets of NOD mice as
disease progresses and anti-ERV immunity correlates with anti-
islet reactivity (158). Furthermore, inducing expression of
HERV-W-Env protein in mice causes hyperglycemia, reduced
insulin production, and increased immune infiltration into the
pancreas (159). This indicates a potential role in promoting
TABLE 1 | Continued

Organism Virus Result Microbiome Dysbiosis Intestinal Pathology Intestinal Immune Changes Ref

Humans Enterovirus
B and
intestinal
virome

Children with islet
autoantibodies experience
sustained enterovirus B
shedding. Changes in the
virome precede T1D-related
autoantibody detection.

Genetic risk for T1D confers
altered virome. Increased
prevalence of Bacteroides
dorei bacteria and
Bacteroides-associated
phages prior to
seroconversion.

ND ND Vehik et al.
(23)
Zhao et al.
(132)
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inflammatory events within the islet microenvironment. While
the exact role is to be determined, HERV-W-Env involvement in
autoimmunity has been at least partially attributed to its
signalling via CD14 and TLR4 PRR stimulation in APCs
resulting in activation of Th1 and antimicrobial immune
pathways (163).

Molecular Mimicry in the Virome
Antigenic similarity between viral and host proteins can also
potentially contribute to autoimmune responses. Antibodies
against CVB4 viral protein can positively recognize beta cell
antigen and induce cell apoptosis (164). Commensal viruses
including Poxviruses, HHVs and other dsDNA viruses have been
shown to exhibit sequence homology with multiple human peptide
hormones such as insulin, insulin-like growth factors (IGFs),
adiponectin, and resistin (165). Viruses in the Iridoviridae family
express viral insulin/insulin-like growth-1-like peptides (VILPs),
which share a significant homology with human insulin/IGF-1.
These VILPS are able to adequately bind to, and cause activation of,
their respective hormone receptors in both humans and mice
(165). Whether this similarity can contribute to antigenic cross-
reactivity against endogenous insulin in T1D has yet to be seen.
INTESTINAL COMMENSAL BACTERIA
CAN INFLUENCE VIRUS OUTCOMES

There is a significant degree of bidirectional influence between the
microbiome and antiviral response. Not only does infection alter
the microbial homeostasis, but the microbiome can also have a
significant impact on the outcome of virus infection and the
ensuing immunological responses (144, 166–168). The
microbiome has been shown to determine severity of viral
infection and promote resistance to enteric infection (169–171).
Certain species of commensal bacteria can colonize intestinal
lymphoid tissues including the Peyer’s patches and mLNs to
modify antigen-presenting cell cytokine expression even under
healthy homeostatic conditions (172). There is some evidence that
microbial antigens may even share sufficient homology to induce
cross-reactive T cells against pancreatic targets (76, 122). For
instance, an integrase protein expressed by many bacteria within
the Bacteroides genus is capable of serving as a low-avidity
mimotope of pancreatic autoantigen (173).

Commensal bacteria can aid or limit virus infection through
enhanced viral genetic recombination, stabilization of virus
particles, promotion of virion dissemination to permissive
cells, and modification to immune homeostasis (174). Surface
bacterial polysaccharides, such as peptidoglycan and LPS, have
been shown to promote virion stability and receptor engagement
to increase poliovirus and reovirus infectivity in mice (170).
Certain Bifidobacteria and Lactobacillus species have even
exhibited an inhibitory potential of CVB4 in vitro (175, 176).
Additionally, depleting microbiota through use of antibiotics is
able to reduce rotavirus infection by promoting virus-specific
humoral responses (177). Infection with H3N2 and H1N1
influenza strains in mice causes intestinal dysbiosis and results
Frontiers in Immunology | www.frontiersin.org 10
in reduced SCFA production and diminished immune responses
to secondary infections (135). Conversely, commensal bacteria
LPS and extracellular matrix-binding proteins have also been
shown to destabilize influenza virions and block infection at
mucosal sites, respectively (178, 179).

Microbial Activation of Antiviral Immunity
Intestinal bacteria can elicit prolonged steady-state activation of
the innate and adaptive immune system to modify susceptibility
to subsequent infection (180–182). For instance, commensal
microbes can limit persistence of MNV infection in mice
through stimulation of interferon signalling (183). Ultimately,
bacterial stimulation of immune pathways may play an
important role in setting the thermostat for ensuing pathogenic
infections particularly in the intestinal environment (184).
Antibiotic-treated mice have compromised innate and adaptive
antiviral immune responses resulting in impaired ability to clear
virus infection (181). This is likely because the sustained
immunological stimulation from commensal microbiota lowers
the activation threshold in order to establish a robust immune
response against an invading pathogen. In fact, intestinal bacteria
can send signals to lung stromal cells to maintain a primed
baseline IFN signature to prepare against subsequent influenza
infection and limit early viral replication (185). The antiviral
thermostat may be altered in some individuals due to genetic
variance and/or environmental stimulation. This may allow the
establishment of persistent infections which have been observed
prior to disease onset in individuals with islet-autoimmunity and
T1D (23).
CONCLUSION

Understanding how enteric viruses contribute to homeostatic
regulation of immunity and may contribute to autoimmune
disorders is of great importance. Consequences of virus
exposure within the intestinal environment are difficult to
determine due to a lack of established animal models and
confounding variables including commensal microbes
commonly found in murine colonies (e.g., SFB, astrovirus),
which may limit viral infection and skew results (150, 186).
Ultimately, mice also exhibit differences in viral susceptibility,
tropism, and pathogenesis when compared to humans.

Changes in the microbiota have been observed to occur prior
to autoimmunity development, which suggests that dysbiosis has
a causative role in T1D rather than a result of autoreactive or
metabolic pathophysiological responses (58). Intervention
studies in humans modulating the microbiome through dietary
means or FMT have shown some success in improving T1D
outcomes and prevention (187). However, conclusive results in
these studies may be limited and require further work.

While there remains much controversy with regards to the
precise role and importance of virus infection and the
microbiome in determining whether a genetically susceptible
individual will lose self-tolerance, significant efforts are being
made to understand the patterns and commonalities that are able
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break through the heterogeneity of human data, background
noise, and experimental limitations currently impeding
understanding of these issues. Mouse models certainly provide
a great deal of potential mechanistic insight into T1D; however,
longitudinal human studies integrating clinical data for
microbiome differences, infection history, and susceptibility to
T1D-related autoimmunity are absolutely necessary to dissect
the complicated etiology leading to diabetes development. Blood
and stool samples from these large cohort studies can shed light
on changes in the microbial, viral, and immunological landscape
prior to disease onset. Furthermore, intestinal inflammation and
potential increases in gut permeability can be identified by
determining abundance of blood markers, clinical tests, and
presence of translocated bacterial antigen (188).

Communication between the intestinal microbiota and
resident immune populations likely have a profound role in
dictating susceptibility and immune system response to virus
infection. The intimate inter-relatedness of genetic susceptibility,
viral responses, dysbiosis, and host immune state produces an
incredibly complex web whereby perturbation can cause a
myriad of effects. Understanding the experimental complexity
in host-virus-microbe interactions is a monumental challenge. It
is difficult to determine which factors and pathways are active
contributors to, rather than incidental by-products of, disease.
Though challenging, exploring this relationship further is
Frontiers in Immunology | www.frontiersin.org 11
necessary to inform the ultimate prevention, detection, and
treatment of autoimmunity.
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