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The capacity of T cells to recognize and mount an immune response against tumor
antigens depends on the large diversity of the T-cell receptor (TCR) repertoire generated in
the thymus during the process of T-cell development. However, this process is
dramatically impaired by immunological insults, such as that caused by cytoreductive
cancer therapies and infections, and by the physiological decline of thymic function with
age. Defective thymic function and a skewed TCR repertoire can have significant clinical
consequences. The presence of an adequate pool of T cells capable of recognizing
specific tumor antigens is a prerequisite for the success of cancer immunotherapy using
checkpoint blockade therapy. However, while this approach has improved the chances of
survival of patients with different types of cancer, a large proportion of them do not
respond. The limited response rate to checkpoint blockade therapy may be linked to a
suboptimal TCR repertoire in cancer patients prior to therapy. Here, we focus on the role
of the thymus in shaping the T-cell pool in health and disease, discuss how the TCR
repertoire influences patients’ response to checkpoint blockade therapy and highlight
approaches able to manipulate thymic function to enhance anti-tumor immunity.
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INTRODUCTION

Optimal immunological response to a large array of unknown antigens requires the presence of a
diverse T-cell receptors (TCRs) repertoire, which represents the primary determinant for the
likelihood of recognizing specific antigens (1). The thymus is the primary lymphoid organ with the
exclusive role for generating and maintaining in the periphery a broadly diverse pool of T cells able to
recognize tumor and pathogenic antigens. Once considered to take only a marginal part in
maintaining a healthy immune system in adult life, the adult thymus plays a crucial role in
sustaining the peripheral TCR repertoire diversity under physiological and clinical conditions.
Thymic function and T-cell output are dynamic processes that can be severely compromised by
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acute immunological insults (resulting from infections, stress or
antineoplastic therapies) and by chronic dysfunctions (such as the
ones correlated to age-associated involution and recurrent
infections). Suboptimal thymic function and skewed TCR
repertoire can have profound immunological and clinical
consequences for patients’ response to different forms of
immunotherapy (Figure 1).
THYMIC FUNCTION AND THE
GENERATION OF A DIVERSE
TCR REPERTOIRE

During the process of T-cell development, thymocytes undergo a
series of well-characterized and sequential developmental steps
that ultimately lead to the formation of CD4 or CD8 single-
positive T cells. These developmental steps are orchestrated by the
crosstalk between bone marrow (BM)-derived T-cell progenitors
and the supportive thymic stromal microenvironment, which
primarily consists of thymic epithelial cells (TECs), endothelial
Frontiers in Immunology | www.frontiersin.org 2
cells (ECs), mesenchymal cells, dendritic cells and macrophages
(2). A crucial step in T-cell development process is the generation
of TCR molecules able to recognize antigenic peptides presented
on heterologous cells. The recognition of a specific antigen is
granted by three complementarity-determining regions (CDRs) of
the TCR. The CDR3 regions are generated by somatic
rearrangement between noncontiguous variable (V) and joining
(J) gene segments for a and g loci and between V, diversity (D),
and J segments for the b and d loci. The existence of multiple V, D
and J gene segments in germline DNA allows the generation of a
large variety of distinct CDR3 sequences that can be encoded (3).
TCR rearrangement occurs in the thymic cortical and medullary
regions where, respectively, the positive and negative selection of
developing thymocytes occurs (4). Once the formation of a
functional TCR is completed, T cells leave the thymus and enter
the circulation where they impact the peripheral TCR diversity,
specifically, of the naïve T-cell compartment.

The integrity of thymic function is essential for the generation
of T cells with a diverse TCR. However, the thymus is
particularly susceptible to negative insults that can come from
infections, stress, acute and chronic Graft-versus-Host disease,
FIGURE 1 | Overview of the factors affecting thymic function and their potential role in regulating patients’ response to checkpoint blockade immunotherapy.
Thymus is particularly sensitive to negative insults that can come from infections, stress, cytoreductive therapies and the physiological process of aging (yellow
boxes). The reduction in thymic functionality and in the TCR diversity impaired immune surveillance and may provide a supportive environment for tumors to elude
T-cell-mediated response. Instead, a broader TCR repertoire in patients receiving CBI would increase the chance of tumor antigen recognition and favorable long-
term clinical outcome. The use of regenerative factors aimed to boost thymic function could improve TCR repertoire diversity and have the potential to significantly
extend the clinical efficacy of CBI. TCR, T cell repertoire; CBI, checkpoint blockade immunotherapy; SSA, sex steroids ablation.
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cytoreductive therapies such as chemo and radiotherapy (5).
These effects lead to a qualitative and quantitative decline in T-
cell output with consequent restricted TCR repertoire diversity
and impaired immune responses. At a specific time of an
individual’s life, the peripheral diversity of TCR repertoire
reflects and is shaped by multiple intrinsic and extrinsic
factors, including the residual thymic functionality, previous
response to pathogens, previous diseases and therapies, and
many others.

In addition, the physiological process of aging has important
effects on thymic function and TCR diversity. While the adult
thymus can still generate new T cells up to the seventh decade of
life, this process is severely compromised (6–8). It is well
recognized that the size of peripheral naïve T-cell pool and the
functionality of the immune system progressively decline with
age (9). Particularly, aging impairs the normal process of T-cell
development at multiple levels, including reduced numbers of
lymphoid progenitors generated in the BM, decreased clonal
deletion during negative selection (which increases the risk of
releasing autoreactive T cells in the periphery), altered thymic
microenvironment, reduced output of new T cells (6, 10). As a
result, it has been estimated that only ~30–40% of elderly people
are capable of mounting sufficient immune responses to the
influenza vaccine (11). In addition, studies in pre-clinical models
linked the skewed TCR repertoire occurring during aging to
infection susceptibility (12). Although in healthy individuals
thymic involution is not associated with any clinical
consequences, the age-associated decline of thymic function
significantly impairs the endogenous process of thymic repair
following cytoreductive therapies further delaying the immune
reconstitution in cancer patients (6).

Overall, reduction in thymic functionality and in the
peripheral T-cell diversity are important contributors of the
decline in immune surveillance observed in the elderly and this
may eventually provide a supportive environment for infections
and tumors to elude T-cell-mediated response. Even though
there is a temporal correlation, the connection between
decreased thymic function and increased incidence of cancers
during age is still largely debated (13, 14).
IMPACT OF THYMIC FUNCTION AND TCR
DIVERSITY IN CLINICAL CONDITIONS

In several clinical conditions, damage to thymic function and
changes in TCR repertoire diversity correlate with patients’
response to therapy and clinical outcome. In this section, we
will provide a brief overview of how thymic functionality
correlates with TCR diversity in human diseases and how TCR
repertoire has been used to monitor and predict patient response
to therapies.

Infections lead to severe thymic dysfunction, including
reduced thymic output, altered thymic architecture and skewed
TCR repertoire (15). Given that the degree of TCR diversity
correlates with the chance of recognizing pathogenic antigens,
the skewed TCR repertoire would probably represent a major
Frontiers in Immunology | www.frontiersin.org 3
factor in the reduced immune response to infections observed in
HIV seropositive patients (16).

In patients affected by symptomatic SARS-CoV2 infection,
lymphopenia, particularly in the CD8+ T cell compartment, has
been shown to predict poor prognosis and can represent an early
indicator for admission to the intensive care unit (17, 18). While
there are not yet data on potential detrimental effects of SARS-
Cov2 infection on thymic function, a recent study showed that
Thymosin-a1 administration, which boosts immunity through
thymic dependent and independent effects, increased survival of
Covid-19 patients (19). Few studies are investigating the
dynamic of TCR repertoire modification during infection
demonstrating trends towards reduced TCR diversity in
patients with pneumonia compared to those with mild disease
(20). A clinical trial is ongoing to better characterize B- and T-
cell repertoire and immune response in patients with acute and
resolved Covid-19 infection (NCT04362865).

In patients receiving hematopoietic cell transplantation (HCT),
impaired thymic function and suboptimal reconstitution of T-cell
compartment have deleterious consequences. Thymic function is
highly sensitive to conditioning regimens associated with the
transplant procedure and delayed or defective recovery of its
function has been linked to adverse clinical outcomes (21–24).
Although mature T cells transferred with the graft or T cell clones
resistant to conditioning procedure can expand and contribute to
the recovery of the absolute lymphocyte counts early after HCT, the
resulting T-cell immunity has a limited efficacy due to the skewed
TCR repertoire. Low levels of tumor antigen-specific clonally
expanded T cells are associated with higher risk of disease relapse
(25). Indeed, higher TCR diversity has been correlated with lower
relapse rates, presumably due to a greater probability of having T
cell clones endowed with Graft-versus-Leukemia capacity (26).
Similarly, delayed T-cell recovery and restricted TCR diversity
post HCT are associated with increased risks of infection and
leukemia relapse (27).

T-cell immunity is critical to control cancer occurrence and
relapse; a more diverse TCR repertoire increases the likelihood of
tumor-antigen recognition and mounting an effective immune
response. For instance, reduced TCR diversity, when compared
to healthy individuals, has been demonstrated in lung cancer
patients (28). In addition, the TCR repertoire was particularly
restricted in those patients carrying a more severe disease, which
would indicate a defective antitumor immunity (28). In patients
affected by cervical cancers, TCR repertoire diversity was lower
than in patients with cervical intraepithelial neoplasia and
healthy women, with a gradual decrease in TCR repertoire
diversity during carcinogenesis and progression of the disease
(29). Likewise, a recent study found that TCR repertoire diversity
in renal cell carcinoma patients could predict better prognosis
and the diversity was significantly higher in early disease stages.
Interestingly, cytoreductive nephrectomy could restore TCR
diversity, reduce T-cell exhaustion and induce mobilization of
naïve T cells (30).

Checkpoint Blockade Immunotherapy
Immunotherapy with monoclonal antibody-based immune
checkpoint blockade (CBI) enhances the function of anti-
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tumor T lymphocytes in cancer patients, by targeting co-
inhibitory signaling pathways.

Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) is an early
negative regulator of T-cell activation. It binds to CD80/CD86
(which provides co-stimulatory signal through CD28) and
inhibits the acquisition of T-cell effector function. CTLA4
inhibits the priming of naive CD4+ T cells and reduces the
function of memory CD8+ T cells. CTLA4 is also expressed on
CD4+ FOXP3+ regulatory T cells (Tregs), contributing to their
immunosuppressive property (31). Anti-CTLA4 monoclonal
antibodies constrain Tregs immune suppression in the tumor
microenvironment and enhance CD4+ and CD8+ T cells
primary and memory function (32). Anti-CTLA4 monoclonal
antibodies are used in several clinical settings, including stage III/
IV melanoma, renal cell carcinoma, non-small-cell lung
carcinoma (NSCLC) and prostate cancer (33).

Programmed death-ligand 1 (PD-L1) and 2 (PD-L2),
expressed by tumor cells and tumor-associated APCs (in
tumor inflammatory microenvironment), are Programmed
Death 1 (PD1) ligands and represent important immune
checkpoint molecules. The interaction between the ligand and
its receptor inhibits T-cell effector activity (34), primary T-cell
response (35) and inducible Tregs suppression function (36).
Given the critical role of PD1 in mediating T-cell exhaustion,
anti-PD1 blocking antibodies have been developed to restore
effector function of anti-tumor T cells. Monoclonal anti-PD1
antibodies, either alone or in combination with other agents, are
used to manage advanced cancer stages such as melanoma,
advanced squamous-cell lung carcinoma, NSCLC, advanced
renal cell carcinoma, recurrent squamous cell carcinoma of the
head and neck, advanced hepatocellular carcinoma and Hodgkin
Lymphoma. Monoclonal antibodies against PD-L1 are used in
NSCLC, advanced urothelial carcinoma, metastatic Merkel cell
carcinoma (31).

TCR Repertoire Diversity and Patients’
Response to CBI
The success of CBI depends on the presence of T cells able to
recognize specific tumor antigens. The capacity of an individual
to elicit an effective immune response is also directly correlated
with tumor mutation load, which increases the likelihood of
generating immunogenic neo-antigens and the chance to
stimulate an anti-tumor immune response (37, 38). Thus, a
broader TCR repertoire in patients receiving CBI would
increase the chance of tumor antigen recognition and favorable
long-term clinical outcome. Profiling TCR repertoire in patients
before and after CBI has been used to assess dynamics of T-cell
expansion and changes in T-cell clonotype diversity to predict
and monitor patient response to therapy (39). Here we will
highlight studies in which TCR diversity has been evaluated in
the most commonly used CBI approaches: anti-CTLA4 e anti-
PD1/PD-L1.

Anti-CTLA4 therapy shapes T-cell pool involved in anti-
tumor recognition by indiscriminately broadening blood TCR
repertoire (which also increase treatment side effects) (40, 41)
and by increasing the number of tumor reactive T-cell clones (42,
Frontiers in Immunology | www.frontiersin.org 4
43). Indeed, it has been shown that anti-CTLA4 therapy drove
polyclonal expansion of TCR clones in tumor microenvironment
(44) even those not specific for tumor antigens (45, 46). Analysis
of pre-treatment TCR clonality in metastatic melanoma patients
suggested that T-cell clonality within the tumor did not predict
response to CTLA4 blockade (47). On the other hand, melanoma
patients receiving anti-PD1 therapy showed increased TCR
clonality (which was ten times greater in responders than in
non-responders) and reduction in TCR diversity of intra-
tumoral infiltrating lymphocytes (47).

Studies have found that higher peripheral blood TCR diversity is
associated with improved clinical outcome in melanoma patients
receiving anti-CTLA4 (48, 49) or anti-PD1 therapy (49). A similar
study in melanoma patients observed that high pre-therapy
clonality was associated with poor response to CTLA4, whereas it
predicted good response to PD1 blockade (50). Higher baseline
TCR diversity has been found to correlate with better disease control
in patients with gastrointestinal cancers (51) and relapsed/refractory
classical Hodgkin Lymphoma (52) receiving anti-PD1 therapy.
Similarly, low T-cell clonality prior to anti-PD-L1 therapy and its
increase in the periphery after immunotherapy has been associated
with clinical benefits in patients with metastatic urothelial cancer
(53). More recently, in a small group of patients affected by renal cell
carcinoma receiving anti-PD1 therapy it was found which pre-
treatment TCR diversity could not predict patients’ outcome and
that restriction of TCR diversity early post-treatment (with
following increase in TCR clonality) correlated with good
response to therapy (54).

Thus, higher blood TCR diversity at baseline and increased
TCR clonality following CBI have been associated with better
clinical outcomes and increased survival in several studies,
although not in all. Several factors can explain this discrepancy
including the type of disease, the intra-tumoral mutation burden
rate, patient previous therapies and method used to evaluate
TCR diversity. In particular, the sample used to estimate TCR
diversity could play a major role in the results. In addition to
analysis in peripheral blood (which is representative of non-
tumor and tumor specific TCRs), specific blood T-cell subsets
could better help to characterize the association between TCR
diversity and response to CBI. For instance, peripheral PD1+ T
cells, in the case of anti-PD1 blockade therapy, which should be
representative of tumor-specific T cells (46, 55), may represent
an ideal target to assess TCR diversity. Indeed, contrary to
analysis performed on bulk CD8+ T cells, melanoma patients
with higher pre-treatment TCR diversity and reduced diversity
post anti-PD1 treatment in CD8+ PD1+ showed longer
progression free survival (46). In addition, higher pre-
treatment TCR diversity on sorted PD1+ CD8+ T cells was
also reported in those NSCLC patients with longer progression-
free survival and better overall survival before anti-PD1/PDL1
therapy (56).

Overall, a broader T-cell receptor before CBI immunotherapy
has been largely associated with a better clinical outcome in
cancer patients (Figure 1). This may suggest that approaches
that improve TCR repertoire diversity could render more
patients receptive to CBI treatment.
November 2021 | Volume 12 | Article 752042
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As already discussed above, the decline of thymic function
and the reduction of T cell repertoire diversity with age lead to
holes in the repertoire that could compromise the efficacy of CBI.
An increasing number of studies have been evaluating the
possible association between age and response to CBI therapy
in clinical studies, as well as in pre-clinical mouse models. In
triple-negative breast cancer mouse model, one study
demonstrated that young (8-12 weeks of age) and aged (>12
months of age) animals equally respond to anti-PD1. However,
response to anti-CTLA4 therapy was significantly impaired in
aged animals when tumor growth and survival were compared to
young animals (57). Mechanistically, a lower number of
infiltrating lymphocytes and a reduction in the expression of
genes associated with antigen presentation and inflammation
was observed in the tumor microenvironment of aged animals.
Another study found that advanced age was associated with
decreased overall survival in aged mice (>22 months of age)
treated with anti-PD1 (58). Interestingly, the same study also
demonstrated that survival of glioblastoma patients were
inversely correlated with CBI therapy as such that older
patients have worse survival compared to younger patients.

However, a large amount of clinical evidence suggests that
CBI therapy remains effective even in patients over the age of 75
and similar clinical response has been observed when patients are
stratified by age (59, 60). For instance, response to CBI
immunotherapy has been found to be independent of age in
patients affected with IV stage melanoma and treated with anti-
CTLA4 (61). Surprisingly, other studies found that the response
of melanoma patients to anti-PD1 was even better in older than
in younger patients (62). A large meta-analysis of 19 CBI trials in
advanced cancers found no significant association between age
and response to therapy.

While multiple studies have found that age does not affect
patients’ response to CBI, this possibility is still under debate. In
particular, as several of the reported studies are limited due to the
retrospective nature of the analysis, prospective clinical studies
that would include larger cohorts of elderly patients would be
required to answer this question.
MANIPULATING THYMIC FUNCTION TO
ENHANCE EFFICACY OF CANCER
IMMUNOTHERAPY

Although the thymus is extremely sensitive to injury, it
maintains a remarkable capacity for repair (63, 64). Therapies
aimed to enhance the regeneration of thymic function are an
attractive strategy to restore a diverse T-cell pool and long-term
immunity (65). Several studies explored the use of regenerative
factors to enhance and broaden immune responses in individuals
with thymic insufficiency and immunodeficiency resulting from
infections, cancer therapies and immunosenescence (Table 1 and
Figure 1). Several therapies have been developed over time in
preclinical models, some of which have been translated into
clinical trials (5).
Frontiers in Immunology | www.frontiersin.org 5
IL-7
One of the most widely studied molecules with immune
regenerative capacity is the cytokine IL-7, a key lymphopoietic
factor with the ability to enhance the proliferation of
lymphocytes and lymphoid precursors (66). Several pre-clinical
studies demonstrated that IL-7 cytokine controls the size of the
peripheral T-cell pool and plays an important role in regulating
overall T-cell homeostasis (69, 72). Moreover, in patients
enrolled in a phase I dose-escalation trial, recombinant human
IL-7 (rhIL-7) administration safely induced polyclonal T-cell
expansion, resulting in increased T-cell counts. Specifically, 4 of
the 6 enrolled subjects showed a statistically significant increase
in TCR repertoire diversity 1 week after the end of rhIL-7
treatment compared to their baseline levels in CD4+ and CD8+

populations (73). RhIL-7 therapy also augmented immune
responses to weak antigens and spare Tregs expansion (73). In
a phase I clinical trial (NCT00684008) in which the immune-
regenerative properties of rhIL-7 were assessed in patients
receiving T-cell-depleted allogeneic HCT, the majority of
participants displayed enhanced TCR repertoire diversity that
persisted several weeks after the end of rhIL-7 therapy (70).

A recombinant form of the human interleukin-7 (NT-I7), in
combination with PD-L1 inhibition, will be assessed in a Phase 2
study for the treatment of NSCLC patients.

KGF
Normal thymic T-cell development is strongly contingent on the
regular maintenance of the stromal microenvironment. Thus,
molecules that can promote recovery of stromal function, in
particular of TECs, would support T-cell development and
enhance T-cell reconstitution after damage. Keratinocyte
Growth Factor (KGF) is a potent growth factor expressed by
thymic stroma that binds to its receptor on TECs and induces
thymic epithelial cells (TEC) proliferation (115). Given its
peculiarity to protect thymic stromal compartment from
damage, KGF administration has been exploited in thymic
regeneration therapies (116). The impact of exogenous
administration of KGF on TEC function and thymic regrowth
has been extensively assessed in several mouse studies. It has
been found that KGF administration significantly increased
thymic cellularity in mouse models of aging and following
acute damage caused by radiation or chemotherapy (88, 117).
Moreover, several studies in mice and non-human primates
demonstrated the efficacy of KGF for improving thymic-
dependent T-cell recovery following HCT. In particular, KGF-
treated animals showed increased numbers of T-cell receptor
excision circles (TRECs), which measure thymic function in
peripheral blood, up to 3 months following treatment (118).

RANKL
The role of RANKL in the regeneration of the thymic
microenvironment has been well characterized (82). Following
thymic damage, RANKL induces up-regulation of lymphotoxin-
a (LTa) which can bind to LTb receptor on thymic epithelial
progenitor cells and TECs, and promote their regeneration (83).
Exogenous administration of recombinant RANKL boosts
November 2021 | Volume 12 | Article 752042
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TABLE 1 | Approaches, discussed in the review, to promote thymic function, their targets and their evaluation in clinical trials.

Therapeutic Approach Targets cells Clinical Translation References

Trial Setting

Cytokines
IL-7 HSPCs, thymocytes, mature T cells NCT01190111

NCT01241643
NCT00839436
NCT00684008
NCT00477321
NCT04332653

HIV
HIV
ICL
HCT
HIV

Advanced solid tumors (anti-PD1)

(66)
(67)
(68)
(69)
(70)
(70)
(71)

(72, 73)
IL-12 Thymocytes Pre-clinical (74)

(75)
IL-21 HSPCs, thymocytes Pre-clinical (76)

(77)
(78)

IL-22 TECs Pre-clinical (79)
(80)

RANKL TECs Pre-clinical (81)
(82)
(83)

Growth Factors
KGF TECs NCT00593554

NCT02356159
NCT03042585
NCT01233921
NCT01712945

HCT
HCT
HCT
HCT
MS

(84)
(85)
(86)
(87)
(88)
(69)
(89)

IGF-1 TECs Pre-clinical (90)
BMP4 TECs Pre-clinical (91)
Hormones
Thymosin-a1 Thymocytes NCT00580450

NCT00911443*
HCT

Melanoma*
(92, 93)
(94)
(92)
(95)

GH TECs, thymocytes NCT00287677
NCT00071240
NCT00050921
NCT00119769
NCT04375657

HIV
HIV
HIV
HIV

Immunosenescence

(96)
(97)
(98)
(99)
(100)
(101)

Sex steroid ablation TECs, HSPCs, thymocytes NCT01746849
NCT01338987
NCT03650894

HCT
HCT

Breast cancer (anti-PD1+ anti-CTLA4)

(102)
(63)
(103)
(104)
(105)
(106)
(105)
(107)

(108, 109)
Artificial Tissue
Artificial Thymus TECs, thymocytes Pre-clinical (110)

(111)
(112, 113)

(114)
Frontiers in Immunology | www.fr
ontiersin.org
 November 2021 | Volume 12 | A6
In bold, clinical studies on CBI in combination with immune boosting strategy. (GH, growth hormone; HSPCs, hematopoietic stem and progenitor cells; KGF, keratinocyte growth factor; IL,
interleukin; RANKL, receptor activator of nuclear factor-kB ligand; TECs, thymic epithelial cells; IGF1, insuline-like growth factor 1; HCT, hematopoietic cell transplantation; MS, multiple
sclerosis; ICL, Idiopathic CD4+ lymphocytopenia; HIV, Human Immunodeficiency Virus).
*Clinical trial on the efficacy of thymosin-a1 in combination with dacarbazine in melanoma patients. Patients were subsequently treated with anti-CTLA4 in a separate study.
rticle 752042

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cardinale et al. Thymic Function and Immunotherapy
regeneration of TECs and improves T-cell progenitor homing
and de novo thymopoiesis. Overall, these effects lead to enhanced
T-cell development (81).

Thymosin-a1
Thymic stroma, particularly TECs, also produces Thymosin-a1
(Ta1) that is able to increase thymocytes differentiation, boost T-
cell function and promote immune recovery following
hematologic insults (119). Several evidence in pre-clinical
models have highlighted the immunomodulatory properties of
Ta1; thus, this therapy has been studied in the clinic for the
treatment of patients experiencing viral infections,
immunodeficiency and hematological malignancies (92, 94).
Treatment with Ta1 resulted in earlier appearance of
pathogen-specific T-cell responses against pathogens such as
cytomegalovirus and Aspergillus species after HCT (93).
Interestingly, recent clinical studies also suggested that Ta1
may also have synergistic effects when used in combination
with CBI. It has been shown that sequentially treatment with
Ta1 and anti-CTLA4 significantly increased overall survival of
melanoma patients (95).

Growth Hormone and Insulin-Like
Growth Factor-1
Growth Hormone (GH) is a small peptide hormone implicated
in the regulation of hematopoietic function. It has been
demonstrated that in vivo administration of a recombinant
form of GH or insulin-like growth factor-1 (IGF1) (which
represents one of the principal mediators of GH effects) can
reverse thymic involution, increases TCR diversity and enhances
recovery of hematopoietic compartments in patients with adult
GH deficiency (90, 101, 120). Moreover, the administration of
human recombinant GH in HIV-infected patients promoted
thymic function and peripheral immune function (96, 99). A
recent study also suggested that GH treatment can regenerate
thymic tissue in healthy adults between 51 and 65 years of age
(100). This treatment resulted in significant increase of both
CD4+ and CD8+ naive T cells, and in decrease of PD1+CD8+ T
cells (100).

Ablation of Sex Steroids
Sexual dimorphism in the immune system is well recognized and
it is broadly summarized with the concept that women tend to
develop more autoimmune diseases than men, while men are
more vulnerable to some infectious diseases. Sex hormones, and
in particular androgens, heavily influence thymic function
primarily through the regulation of TEC differentiation and
function (121, 122). Studies in murine models demonstrated
that age-related thymic dysfunction is faster in males than in
females. Similarly, in humans, the rate of thymic involution is
greater in males as demonstrated by evaluation of TRECs in
patient peripheral blood (123, 124). As direct evidence of the
close connection between sex hormones and thymic function,
many pre-clinical studies have demonstrated that sex steroid
ablation (SSA), by surgical or chemical approaches, transiently
reverses thymic involution and promotes rejuvenation of
lymphoid tissues. SSA induces thymic reconstitution and
Frontiers in Immunology | www.frontiersin.org 7
per iphera l immune ce l l s recovery af ter radiat ion,
chemotherapy and HCT (63, 104–107). Recent studies have
also shown that the effects of SSA are not restricted to the
lymphoid lineage, as extensive regenerative signals are also
directed towards the hematopoietic stem and progenitor
cells and their niche (103, 108). While the underlying
mechanisms are still not completely understood, experimental
evidence demonstrated that some of the regenerative effects are
mediated by the removal of the inhibitory effects of sex steroids,
primarily of androgens, on endogenous B and T lymphopoiesis.
The increase in androgens during life could also explain and
contribute to the faster rate of thymic-involution observed after
puberty. Most of our mechanistic understanding of the effects of
hormones on thymic function is largely restricted to the effects of
androgens in male subjects. However, recent studies have started
characterizing genders differences in thymic function and in
response to SSA (122, 125). It has been shown that, in female
mice, age induces a higher degree of central tolerance imbalance
characterized by the reduction of medullary TECs expressing the
autoimmune regulator gene (AIRE), which could contribute to
the increased risk of autoimmune disease observed in middle-
aged women (126). In addition, middle-aged females are less
affected by the regenerative effects triggered by SSA therapy
compared to males but are more responsive when thymic
regeneration was evaluated in response to acute thymic
damage (125).

Interestingly, when transferred into the clinic, SSA has been
shown to enhance neutrophil and lymphocyte recovery, thymic
function and T-cell repertoire regeneration in patients receiving
autologous and allogeneic HCT, independently from gender
(109). Thus, while the precise mechanisms of action of SSA on
lymphoid regeneration is still not completely understood, this
approach represents an appealing therapy to enhance immune
recovery in patients. Importantly, a clinical trial has been
recently opened to evaluate if the regeneration of thymus and
peripheral T-cell pool induced by SSA can enhance response to
dual ICB with anti-PD1 and anti-CTLA4 therapy in metastatic
breast cancer patients (127).

There is an incredible effort in the field to identify novel
pathways and targets that can enhance thymic and immune
recovery as the currently identified approaches are limited. In
addition to IL-7, KGF, RANKL, SSA, GH and Thymosin a1,
studies have found that other cytokines and growth factors have
the potential to restore thymic function following immune
insults. Administration of IL-12 induces thymocyte
proliferation through increased IL-7 and IL-2 signaling (74).
IL-21 delivery can also imprint regenerative signals to the
thymus after immunological injuries such as glucocorticoid-
induced thymic atrophy, aging and allogeneic HCT (76–78).
IL-22 cytokine can mediate thymic regeneration by promoting
TECs survival and proliferation through activation of STAT3
and STAT5 and expression of the antiapoptotic molecule Mcl1
(80, 128). Furthermore, BMP4 produced by thymic endothelial
cells can drive thymic regeneration by binding to its receptor
expressed on TECs and stimulating the upregulation of FoxN1
and its target genes (91). Critically, in patients with extensive
thymic aplasia due to repetitive cycles of chemo or radiotherapy
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and/or aging, the presence of residual thymic tissue that could
receive the regenerative signals and start organ recovery can be
insufficient. In those conditions, the implant of artificial thymic
tissue could represent an attractive alternative to repopulate the
naive T-cell pool (110–114).

While some of the above-mentioned strategies have made
some steps into the clinic, at present, there is no standard of care
approach to promote immune reconstitution. In addition, their
beneficial use in elderly cancer patients, which would greatly
benefit from immune rejuvenating approaches, still requires
additional research. Recent work observed that the increased
disorganization and fibrosis of lymph nodes with age can limit
the efficacy of thymic rejuvenation strategies (129). Thus, further
studies are needed to determine whether secondary lymphoid
organs are also rejuvenated with immune regenerative
treatments, or whether approaches that could target both the
thymus and the lymph nodes would represent a more effective
therapy for immune recovery.

Breaking Central Tolerance to Enhance
CBI Efficacy
Central tolerance takes place in the thymus, where T cell clones
that are reactive to self are deleted to protect against the
development of autoimmunity. Although on the one hand, this
process allows the elimination of T cells reactive against tissue-
specific self-antigens (130), on the other hand, the majority of
tumor cells, which express self-antigens, could be recognized by
the same self-reactive T cells deleted by negative selection in the
thymus (131). AIRE plays a crucial role in establishing central T
cell tolerance controlling the expression of tissue-specific self-
antigens in medullary TECs. AIRE deficiency leads to multiple
autoimmune disorders in mice and patients. AIRE knock-out
mice, which show expanded auto reactive T cell repertoire, have
enhanced ability to mount anti-tumor response when challenged
with syngeneic melanoma cells (132). Interestingly, a
polymorphism in AIRE, which can decrease the stability of the
mRNA, has been associated with protection from melanoma
(133). Thus, while protecting against autoimmunity, AIRE also
limits antitumor immunity. Thus, recent studies have been
investigating alternative approaches to enhance T cell-mediated
antitumor immunity and response to CBI, which are based on
temporary disruption of central T cell tolerance through the
inhibition of AIRE (131). Evidence of this approach has been
provided in pre-clinical settings by the infusion of anti-RANKL
antibody, which depleted AIRE-expressing TEC in the thymus
and allowed self/melanoma-reactive T cells to escape negative
selection and increase in the peripheral pool. Combination of
anti-RANKL and anti-CTLA4 antibody therapy enhanced anti-
tumor response and survival after melanoma challenge (134).
Similarly, the use of anti-RANKL/PD-1 dual targeting antibody
has been shown to promote anti-tumor response in pre-clinical
tumor models (135).

While the depletion of AIRE+ TECs and the suppression of
central tolerance after anti-RANKL therapy could play an
important role in the enhanced anti-tumor activity when
combined with CBI, further studies are needed to better
Frontiers in Immunology | www.frontiersin.org 8
characterize the contribution of RANKL antagonism on the
tumor microenvironment.
CONCLUSIONS

T-cell immunity is critical to control cancer occurrence and
relapse. A more diverse TCR repertoire increases the likelihood
of tumor-antigen recognition and of mounting an effective
immune response. As the thymus represents the primary site
of T-cell development and its function directly shapes the
peripheral TCR diversity, robust residual thymic function in
adult life can be associated with greater chance of establishing
effective tumor immunity. However, direct evidence of the
connection between thymic function and cancer is still under
investigation. While thymic boosting approaches can have an
immediate impact to enhance immune reconstitution after
cytoreductive therapies, which would significantly reduce
morbidly and improve survival in HCT patients, their potential
use to extend the benefit of CBI is just beginning to be
investigated. Indeed, although CBI has tremendously improved
the chances of survival of cancer patients, a large proportion of
them do not respond. Would patients with greater residual
thymic functionality have greater chance to respond to CBI? In
addition, multiple studies have investigated the use of TCR-seq
as a predictive and prognostic tool for patient’s response to CBI.
Broader TCR diversity has been linked to greater response to CBI
in multiple studies. However, the methodology is associated with
significant cost and methodological bias. Thus, can the
assessment of thymic function, for example through the
evaluation of TRECs or recent thymic emigrants, better and
more precisely stratify patients that could benefit from CBI?
Clinical trials in progress will be fundamental to answer to these
questions and explore these intriguing possibilities.
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