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Microbiota can exert immunomodulatory effects by short-chain fatty acids (SCFA) in
experimental models of graft-versus-host disease (GvHD) after allogeneic hematopoietic
stem cell transplantation (allo-SCT). Therefore we aimed to analyze the expression of
SCFAs sensing G-protein coupled receptor GPR109A and GPR43 by quantitative PCR in
338 gastrointestinal (GI) biopsies obtained from 199 adult patients undergoing allo-SCT
and assessed the interaction of GPR with FOXP3 expression and regulatory T cell
infiltrates. GPR expression was strongly upregulated in patients with stage II-IV GvHD
(p=0.000 for GPR109A, p=0.01 for GPR43) and at the onset of GvHD (p 0.000 for
GPR109A, p=0.006 for GPR43) and correlated strongly with FOXP3 and NLRP3
expression. The use of broad-spectrum antibiotics (Abx) drastically suppressed GPR
expression as well as FOXP3 expression in patients’ gut biopsies (p=0.000 for GPRs,
FOXP3 mRNA and FOXP3+ cellular infiltrates). Logistic regression analysis revealed
treatment with Abx as an independent factor associated with GPR and FOXP3 loss.
The upregulation of GPRs was evident only in the absence of Abx (p=0.001 for GPR109A,
p=0.014 for GPR43) at GvHD onset. Thus, GPR expression seems to be upregulated in
the presence of commensal bacteria and associates with infiltration of FOXP3+ T regs,
suggesting a protective, regenerative immunomodulatory response. However, Abx, which
has been shown to induce dysbiosis, interferes with this protective response.
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GRAPHICAL ABSTRACT | G-protein coupled receptor (GPR109A, GPR43 and GPR41) is predominantly expressed on epithelial and immune cells. GPR is
activated by its ligand short chain fatty acids (SCFAs). In absence of broad-spectrum antibiotics (Abx), beneficial commensals produce SCFAs that activate GPR
pathway. SCFA engage GPR-NLRP3 pathway for the maintainance of epithelial barrier. SCFA also engage GPR on immune cells to induce regulatory T cells.
Patients who do not receive Abx show an upregulation of GPR expression in the presence of aGvHD suggesting a counterregulatory mechanism. Abx suppresses
commensals leading to reduced SCFA hence less GPR. GPR-NLRP3 axis and GPR-Tregs axis are strongly abrogated by Abx. Abx also interfere with the
upregulation of GPR during aGvHD.

Ghimire et al. GPR Expression in Gastrointestinal GvHD
INTRODUCTION

Acute Graft versus host disease (aGvHD) is the major cause of
transplant-related mortality (TRM) and morbidity following
allogeneic stem cell transplantation (SCT). Current treatment
options for this complication are poor if initial treatment with
steroids has failed (1). Landmark studies in the early 70s by van
Bekkum already pointed to a role of the intestinal microflora in
gastrointestinal (GI) aGvHD (2) and suggested protection of
germfree mice from GvHD. Preclinical and clinical studies
therefore introduced prophylactic use of decontamination as
an approach to reduce GvHD (3) and together with the
concept of prevention of neutropenic gram-negative infections,
antibiotic prophylaxis has become standard of care (4) With the
introduction of next-generation sequencing technologies
including 16s rRNA, it now became evident that the intestinal
microbiota is an important modulator of aGvHD. Since 2012,
several studies using this technique in experimental (5) and
clinical settings (6, 7) reported a strong loss of commensal
bacteria (dysbiosis) but no complete decontamination and an
association of dysbiosis with the occurrence of GI aGvHD as well
as several severe infectious complications following allogeneic
SCT. Prophylactic and therapeutic antibiotics were even
identified as the major driver of dysbiosis (8, 9) and these
findings more and more questioned at least prophylactic
concepts. Recent reports also suggested that even the
Frontiers in Immunology | www.frontiersin.org 2
reconstitution of commensal bacteria by fecal microbiota
transfer (FMT) contributes favorably to the treatment of
patients (pts) with steroid-refractory aGvHD (10–12).

The mechanisms of how commensal intestinal microbiota
dampens intestinal inflammation in general and in the setting of
aGvHD are still poorly understood. Microbial metabolites that
are produced by commensal bacteria after digestion of dietary
fibers, tryptophan, and other sources have been identified as
major protective molecules that act as mediators of pathogen-
host interaction and exert protective functions. In this context,
short-chain fatty acids (SCFA) like butyrate and propionate are
not only a major energy source for colonocytes but also stabilize
the epithelium and dampen immune reactions by multiple
mechanisms including regulation of Nlrp3-inflammasome
dependent inflammation (13) and by induction of regulatory T
cells (T regs) (14, 15). Indoles derived from dietary tryptophan
stabilize the epithelium via induction of interleukin 22 in innate
lymphoid cells and modulate inflammation by inducing anti-
inflammatory cytokines such as interleukin 10 (16, 17). Strong
protection against aGvHD by the tryptophan-metabolite Indol-
3-carboxaldehyde (ICA) was observed in Swimm´s study (18) as
gavage with ICA reduced aGvHD mortality to a large extent in a
type I Interferon (IFN-I) dependent manner while maintaining
graft-versus-leukemia activity.

As all these mechanisms have been reported to modify
GvHD, it is not surprising that experimental reports found
October 2021 | Volume 12 | Article 753287
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significant protection from GvHD by these metabolites.
Mathewson and colleagues applied butyrate gavage and a
cocktail of commensal clostridia known to be high SCFA
producers in a murine model of GvHD and reported strong
protection (19). Recently, the same group addressed the role of
SCFA by using knockout mice for one of the receptors of SCFA,
G-protein coupled receptor (GPR) 43, and reported that GPR43
knockout on non-hematopoietic cells led to accelerated and
increased GvHD related mortality (20).

In humans, a comparable role of SCFA is likely and suggested
by a recent analysis of Romick-Rosendale et al. (21) who reported
reduced stool SCFAs after exposure to Abx suppressing
commensals in children receiving HSCT but so far no data
have been reported regarding the expression of GPR in adult
human GvHD. We, therefore, performed an analysis of
expression of the major SCFA receptors GPR43 and GPR109A
by quantitative PCR in intestinal biopsies obtained from pts
receiving allogeneic SCT at our unit. We observed upregulation
of GPR in aGvHD which was strongly suppressed by broad-
spectrum antibiotics.
MATERIAL AND METHODS

Patient Characteristics
338 serial biopsies were obtained and analyzed from a total of
199 adult patients (pts) receiving allogeneic SCT between Nov
2008 and Nov 2015. Patient characteristics are summarized in
Supplementary Table 1. The disease status was defined
according to the EBMT score (22). All pts gave informed
consent, the biopsy studies and scientific analyses were
approved by the local ethical review board (approval no 02/220
and 09/059). All studies were performed in accordance with the
regulations of Helsinki. Serial biopsies were either obtained i) in
the course of a screening study in asymptomatic, clinically
aGvHD free pts or ii) because of clinical symptoms indicative
of de novo onset or iii) persistence or recurrence of GI aGvHD.
Biopsies were obtained through upper or lower GI endoscopy.

Quantitative Real-Time PCR (qPCR)
qPCR on intestinal biopsies was performed according to RNA
availability. 338 serial biopsies for GPR109A, 263 biopsies for
GPR43, 103 biopsies for NLRP3, 281 biopsies for FOXP3 mRNA
and 240 biopsies for FOXP3 immunohistochemistry were
available. Intestinal biopsies were immediately transferred to
500 µl RNA later (QIAGEN) and were stored at -80°C until
RNA extraction. RNA was extracted using RNeasy Mini Kit
(QIAGEN) as per manufacturer’s recommendation. RNA
concentration and purity was monitored by NanoDrop and
Bioanalyzer respectively. 1 µg of RNA was reverse transcribed
to cDNA using moloney murine leukemia virus reverse
transcriptase (Promega) following the manufacturer ’s
instructions. qPCR was performed on a Mastercycler Ep
Realplex (Eppendorf) using QuantiFast SYBR Green PCR Kit
(QIAGEN). 18S ribosomal RNA was used as reference gene.
Gene of interest was normalized to the reference gene.
Frontiers in Immunology | www.frontiersin.org 3
Gene-specific primer sequences are as follows: GPR109A,
forward: 5’ GCG-TTG-GGA-CTG-GAA-GTT-TG-3’, reverse:
5’- GCG-GTT-CAT-AGC-CAA-CAT-GA-3’; GPR43, forward:
5’- GTA-GCT-AAC-ACA-AGT-CCA-GTC-CT -3’, reverse: 5-
CTA-GGT-GTT-GCT-TTG-AAG-CTT-GT -3 ’; FOXP3,
forward: 5’-GAA-ACA-GCA-CAT-TCC-CAG-AGT-TC -3’;
reverse: 5’- ATG-GCC-CAG-CGG-ATG-AG-3’; NLRP3,
forward: 5’-GGA-CTG-AAG-CAC-CTG-TTG-TGC-A-3’,
reverse: 5’- TCC-TGA-GTC-TCC-CAA-GGC-ATT-C-3’; 18S,
forward: 5’-ACC-GAT-TGG-ATG-GTT-TAG-TGA-G-3’,
reverse: 5’-CCT-ACG-GAA-ACC-TTG-TTA-CGA-C-3’.

Immunohistological Analysis
The same pathologist blinded to the clinical data assessed serial
biopsies. GI-aGvHD was graded according to the Lerner grading
system (23). The number of FOXP3 positive cells was
determined by immunohistochemistry, analyzed with a Zeiss
Axioskop 40 microscope. 2-3µm thick slides sectioned from the
formalin-fixed and paraffin-embedded (FFPE) biopsies were
deparaffined and stained automatically (Ventana Benchmark
Ul t ra ) . Af t e r pre - t rea tment wi th CC1 buff e r the
immunohistochemical staining was performed with a
monoclonal mouse antibody (1:120, eBioscience 14-4777, clone
236A/E7) and OptiView DAB IHC Detection Kit (Ventana). The
mean number of FOXP3 positive stromal cells was determined
microscopically per high power field (HPF), counting 3-12 HPF
exhibiting the highest histological aGvHD damage.

Immunofluorescence of Biopsies
FFPE biopsies were cut 2-3 µm thick and were incubated at 80°C
for 30 minutes followed by immersing in Xylol twice for 10
minutes each following descending alcohol line for 5 minutes
each. Sections blocked with 20% Bovine Serum Albumin
(BSA) for 20 min at room temperature (RT). Single
immunofluorescence was performed for GPR43 (Biozol,
LSA1578-50, rabbit polyclonal). Double immunofluorescence
was performed for GPR43 (Biozol, LSA6599, rabbit polyclonal)
and CD68 (Dako, PG-M1, mouse monoclonal). Primary
antibodies were diluted in 1% BSA and were applied to biopsy
section at the dilution of 1:50 for 1 hour at RT followed by
secondary antibodies Alexa Flour (AF) 488 and Alexa Flour 594
(Invitrogen) for 30 minutes (dilution 1:100) in the dark at RT.
CD68 was conjugated with AF488 and GPR43 was conjugated
with AF594. Sections were counterstained with DAPI and were
sealed with mounting media. Biopsy sections were washed three
times with PBS after every step. GPR43 positive cells were
observed and images were taken at 200X magnification using
Zeiss epifluorescence microscope.

Dendritic Cell (DC) Culture and
Determination of Cytokines
Monocytes were isolated from PBMC of healthy donors after
leukapheresis followed by density gradient centrifugation over
Ficoll/Hypaque as described previously (24). All healthy
volunteers consented to the study. Freshly isolated monocytes
were differentiated into DCs as previously described (17). On day
7, 100 ng/mL LPS (Enzo) was added to induce maturation of
October 2021 | Volume 12 | Article 753287
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immature DCs (iDCs) in absence or presence of 5 mM sodium
acetate (NaA), 2.5 mM sodium propionate (NaP) and 0.5 mM
sodium butyrate (NaB) for another 48 hours. NaA, NaP and NaB
were purchased form Sigma-Aldrich. On day 9, mature DCs
(mDCs) were harvested for RNA extraction, cDNA synthesis and
qPCR as described above. Supernatants were collected for
cytokine determination and were stored at -20°C until further
analysis. IL-12 and IL-10 cytokines were analyzed using enzyme-
linked immunosorbent assays (ELISA) according to the
manufacturer’s recommendation (R&D).

Caco-2 Cell Culture
The human intestinal Caco-2 cell line was purchased form CLS
Germany. Cells were maintained in DMEM low glucose media
(Sigma) supplemented with 10% FCS (Sigma), 1% NEAA, 1% NaP
and0.5%P/S (Gibco) in a collagen (5µg/cm2) coatedT75flask.Cells
were seeded at 9.3x103 cells/cm2 and subcultured after 60-80%
confluency for a maximum of 10 passages, changing media every
two days. For differentiation, Caco-2 cell monolayer was grown at a
density of 3x105 cells/cm2 on 0.4 µm collagen coated polyster
membrane 12 well transwell (1.12 cm2 area) for 3 weeks. The
monolayer was monitored by measuring trans epithelial electrical
resistance (TEER) with Millicell ERS-2 voltohmmeter (EMD
Millipore). Media was changed every two to three days. On day
21, cells were stimulated with 50 ng/ml IL1b and 100 ng/ml TNF
(PromoCell) with or without sodiumbutyrate (Sigma) for 24 hours.
Barrier integrity was monitored by TEER measuremernt. Cell
supernatants were analysed for IL-6 and IL-8 ELISA as per
manufacturer’s recommendation (R&D). Immuofluorescent
stainingofCaco-2cellswereperformedaspreviouslydescribed (17).
Frontiers in Immunology | www.frontiersin.org 4
Statistical Analysis
Data analysis was done in SPSS v26. Test of normality was
performed using Shapiro-Wilk test. Normally distributed data
was analysed with t-test or one way ANOVA. Correlation
analysis was performed with Pearson test. For non-normal
data, Mann-Whitney or Kruskal Wallis tests were performed
and Spearman correlation was chosen. For multivariate analysis,
results were dichotomized based on median. The Lerner stage of
aGvHD and use of Abx prior to biopsy were analyzed using
binary logistic regression.
RESULTS

GPR Expression Correlates With the
Severity and Onset of GI-aGvHD
When we assigned unbiasedly selected serial biopsies based on
the determined histological Lerner stage to either aGvHD 0-1 or
aGvHD 2-4, we found that patients (pts) with higher Lerner
stages showed increased GPR expression (Figures 1A, B;
p=0.000015 for GPR109A, p=0.008 for GPR43). In accordance
with this observation, clinical symptomatic aGvHD pts showed
higher GPR expression (p=0.0001 for GPR109A, p=0.006 for
GPR43) compared to aGvHD free screening pts or ongoing
aGvHD pts (Figures 1C, D). In addition, the phenomenon of
GPR upregulation was observed in both upper or lower gastro-
intestinal (GI) tract (Table 1). In summary, GPR expression was
upregulated in both histological and clinical aGvHD
independent of anatomical section of biopsy.
A B

DC

FIGURE 1 | GPR mRNA expression in the serial biopsies from the gastro-intestinal tract in the course of GvHD. (A) GPR109A and (B) GPR43 expression with
respect to Lerner GI-GvHD. (C) GPR109A and (D) GPR43 expression in screening biopsies and at the clinical onset of GI-GvHD. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001, Mann-Whitney U test.
October 2021 | Volume 12 | Article 753287
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Broad Spectrum Antibiotics (Abx)
Suppress GPR and FOXP3 Expression
Broad spectrum Abx results in rapid loss of microbiota diversity.
We, therefore, considered the application of Abx (mainly
Frontiers in Immunology | www.frontiersin.org 5
piperacillin/tazobactam or carbapenems) within 7 days before
obtaining biopsies as an indicator of microbiota damage. GPR
expression in Abx group was significantly reduced compared to
the no Abx group (Figures 2A, B, p=0.0004 for GPR109A and
TABLE 1 | Distribution of GPR109A and GPR43 in the upper and lower gastro-intestinal (GI) tract.

A. Histological GvHD

Genes Lerner stage No of samples Mean rank P value

Upper Gastrointestinal tract
GPR109A 0-1 82 47.2 0.003

2-4 20 69.15
GPR43 0-1 70 41.06 0.058

2-4 16 54.19
Lower Gastrointestinal tract
GPR109A 0-1 179 110.56 0.002

2-4 57 143.43
GPR43 0-1 133 83.96 0.023

2-4 44 104.43

B. Clinical GvHD

Genes Clinical character No of samples Mean rank P value

Upper Gastrointestinal tract
GPR109A Screening 51 31.69 0.005

Onset 20 47.00
GPR43 Screening 43 27.12 0.017

Onset 17 39.06
Lower Gastrointestinal tract
GPR109A Screening 103 79.37 0.007

Onset 72 100.34
GPR43 Screening 76 58.61 0.030

Onset 52 73.12
October 2021 | Volume 12 | Article
(A)GPR distribution in the GI tract according to the Lerner classification of acute GvHD (GvHD 0-1 vs GvHD 2-4). (B)GPR distribution in the GI tract according to the clinical characteristics
of acute GvHD (screening vs onset).
A B

DC

FIGURE 2 | Effect of broad-spectrum antibiotics (Abx) on GPR and FOXP3 expression in the serial biopsies from the gastro-intestinal tract. (A) GPR109A mRNA (B)
GPR43 mRNA (C) FOXP3+ cellular infiltrates and (D) FOXP3 mRNA expression in the gut biopsies of patients without or with broad-spectrum antibiotic exposure at
the time of biopsy retrieval. HPF-high power field. ***p < 0.001, ****p < 0.0001, Mann-Whitney U test.
753287
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p= 0.0001 for GPR43) suggesting that commensal bacteria and
their metabolites are needed for optimal GPR induction. Abx
suppressed not only GPR, but also FOXP3 mRNA, as well as
FOXP3+ regulatory cell (Tregs) infiltrates (Figures 2C, D,
p<0.0001 forboth FOXP3 mRNA and protein). Following these
results, we subsequently classified pts based on cumulative and
long-term antibiotic exposure. The first group did not receive
early Abx (before or at day 0 of transplantation) or at the time of
biopsy. The second group received early Abx but not at the time
of biopsy. The third group had Abx at the time of biopsy but no
early exposure. The fourth group had both early Abx exposure
and at the time of biopsy. The highest GPR expression was
observed in the patient group who never had Ab exposure
(Supplementary Figures 1A, B, p=0.002 for GPR109A,
p=0.016 for GPR43, Kruskal-Wallis test). A similar picture
was obtained for FOXP3 mRNA and Tregs infiltrates
(Supplementary Figures 1C, D, p=0.007 for FOXP3+ cellular
infiltrates, p=0.0004 for FOXP3 mRNA, Kruskal-Wallis test).
Significant loss of GPR was observed in the patient group with
early Abx and Abx at biopsy. This may result from previously
reported rapid loss of commensals after Abx treatment to pts and
is reflected by reduced GPR expression in the gut biopsies. When
we grouped pts according to the clinical GI-aGvHD status at the
time of biopsies (GI-aGvHD free screening biopsies and aGvHD
clinical onset biopsies) and further re-grouped them again
according to the use of Abx, our findings were confirmed in
the serial biopsies. Pts who did not receive Abx showed
significant increases in GPR at the onset of aGvHD (p=0.001
for GPR109A, p=0.014 for GPR43) whereas pts with Abx did not
show GPR upregulation at the aGvHD onset (Figures 3A, B).
Moreover, in the screening biopsies, GPR109A expression was
significantly downregulated in the Abx group (p=0.028) whereas
GPR43 only showed a trend of downregulation. At aGvHD
onset, both GPR showed significant downregulation in the Abx
group (p=0.004 for GPR109A, p=0.021 for GPR43) suggesting a
detrimental effect of Abx in the course of protective GPR
upregulation. When we performed binary logistic regression
comparing aGvHD Lerner stage and Abx use, we identified
antibiotic use but not aGvHD as an independent risk factor for
the loss of GPR as well as FOXP3 (Supplementary Table 2).
Frontiers in Immunology | www.frontiersin.org 6
Association of GPR With FOXP3 and
NLRP3 Expression
As SCFA have been reported to be involved in immunoregulation,
we performed simultaneous PCR for FOXP3 expression in the
serial gut biopsies. A highly significant correlation between GPR
and FOXP3was observed for bothGPR (Figures 4A,B, p<0.0001).
We dichotomized GPR expressions as “high” and “low” categories
based on their median expression (median value: 2.57xE-002 for
GPR109A and 1.5xE-003 for GPR43). Higher GPR expression was
associated with higher FOXP3 expression and vice versa (p=0.000
for both GPR, data not shown). To confirm this association, we
performed immunohistochemistry for FOXP3+ cellular infiltrates.
We found that Tregs infiltration was significantly higher in GPR
“high” category (p=0.001 for GPR109A, p=0.003 for GPR43)
compared to GPR “low” category (Figures 4C, D). In addition,
binary logistic regression confirmed that both GPR109A and
GPR43 independently influence FOXP3 expression (GPR109A:
odds ratio,0.74 [95% CI, 1.24-3.55]; p=0.005, GPR43: odds ratio,
0.61 [95% CI, 1.08-3.17]; p=0.024). We also observed a strong
association of GPRs with inflammasome receptor NLRP3 in a
serial biopsies (Supplementary Figure 2A, B). Patient biopsies
with high GPR43 expression also had significantly higher NLRP3
expression (p=0.003). GPR109A, although not significant, showed
a strong trend of upregulation with higher NLRP3 expression
(p=0.087). Regression model revealed that GPR43, but not
GPR109A, independently influence NLRP3 expression (GPR43:
odds ratio,1.03 [95% CI, 1.1-6.7]; p=0.02, GPR109A: odds ratio,
0.54 [95% CI, 0.71-4.1]; p=0.2). The strong GPR-NLRP3
association was only seen in pts not receiving Abx. Pts on Abx
did not show any GPR-NLRP3 association (Supplementary
Figure 2C, D).

Epithelial Cells and Immune Cells as a
Cellular Source of GPR
To identify the cellular source of GPR, we next performed single
and double immunofluorescence of GPR43 and CD68 on sigmoid
colon biopsies of pts following transplantation. Within the non-
hematopoietic compartment, epithelial cells seemed to be the
major source of GPR expression (Figure 5A) labeled by GPR43
antibody (cytoplasmic domain, LS-A1578). The gut lumen bears
A B

FIGURE 3 | Effect of Abx at the onset of GvHD. (A) GPR109A expression at GvHD onset without or with Abx. (B) GPR43 expression at GvHD onset without or with
Abx. *p < 0.05, **p < 0.01, Mann-Whitney U test. ns, not significant.
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the highest concentration of SCFA and gut epitheliummay express
GPR in a positive feedback loop. In double immunofluorescence of
CD68 and GPR43 (extracellular domain, LS-A6599), two signals
co-localized suggesting macrophages as one of the cellular sources
of GPR within the immune cell compartment (Figure 5B). These
GPR43 positive macrophages seemed to accumulate close to the
epithelium. The involvement of immune cells inGPR expression is
also suggested by the localization dependent expression of GPR.
When we compared GPR expression in serial biopsies obtained
from different anatomical sections of the gastrointestinal tract,
significant higher GPR (p=0.002 for GPR109A, p=0.001 GPR43,
Frontiers in Immunology | www.frontiersin.org 7
Kruskal-Wallis test)wasobserved in ileal biopsies (Supplementary
Figures 3A, B). This might reflect a higher presence of immune
cells in the ileum.

Effect of SCFA on Immune Cells and
Epithelial Cells In Vitro
SCFA Upregulate GPR Expression and Alter
Cytokine Production in mDCs
We next assessed the effect of SCFA in lipopolysaccharide (LPS)
stimulated monocyte-derived dendritic cells (mDCs) from three
healthy donors. 5mM acetate or 2.5 mM propionate or 0.5 mM
A B

FIGURE 5 | Immunofluorescence of GPR43 of a representative patient biopsy. Time from transplant to biopsy: 3.5 years, no GvHD at the time of biopsy. (A) GPR43
staining in the sigmoid colon of a patient. GPR43 is labelled with AlexaFlour (AF) 594 (red). (B) GPR43 and CD68 co-staining in the sigmoid colon of a patient.
GPR43 is labelled with AF594 (red) and CD68 is labelled with AF488 (green). White arrow indicates colocalized signals. Nucleus is counterstained with DAPI (blue).
Scale bar: 50 µm.
A B

DC

FIGURE 4 | Association of GPR with FOXP3 expression. Correlation of (A) GPR109A and (B) GPR43 with FOXP3 mRNA. Association of (C) GPR109A and
(D) GPR43 with FOXP3 cellular infiltrates. **p < 0.01, Mann-Whitney U test; r value, Spearman correlation.
October 2021 | Volume 12 | Article 753287
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butyrate was added together with LPS. The given concentration
of SCFA did not induce cell death of mDCs when compared to
control mDCs as observed by Annexin/7-AAD staining (data not
shown). SCFA, especially butyrate, induced significantly higher
expression of GPR109A and GPR43 in mDCs (Figures 6A, B).
At the functional level, SCFAs were able to suppress the LPS
induced activation of mDCs indicated by a reduction of pro-
inflammatory cytokine IL-12 (Figure 6C) and an upregulation of
anti-inflammatory cytokine IL-10 (Figure 6D).

Butyrate Suppresses Pro-Inflammatory Cytokines
and Induce GPR43 Expression in Caco-2 Cells
Following the immunomodulatory effect of butyrate on dendritic
cells, we sought to investigate the effect of butyrate on epithelial
cell line model Caco-2. In four individual experiments, fully
differentiated Caco-2 cells on a transwell system were stimulated
with 50 ng/ml IL-1b and 100 ng/ml TNF. 5 mM butyrate was
added to the stimulated cells for 24 hours. Butyrate toxicity was
excluded by MTT assay (data not shown). In absence of
stimulation, Caco-2 (control) cells did not produce cytokines.
IL-1 b stimulation was a pre- requisite for cytokine production
by Caco-2 cells. The production of pro-inflammatory cytokine
IL-8 and IL-6 by Caco-2 cells was significantly suppressed on
both apical and basolateral side of the transwell system by the
addition of butyrate (stim+butyrate) when compared to
stimulated condition (stim) (Figures 7A–D). Stimulation also
Frontiers in Immunology | www.frontiersin.org 8
compromised barrier intergrity as shown by significant reduction
of transepithelial electrical resistance (TEER) when compared
to control (Figure 7E). The addition of butyrate showed
rescue effect by significantly increasing TEER (Figure 7E).
When we labelled Caco-2 cells with GPR43 antibody,
we observed a stronger GPR43 signal in butyrate-treated
epithelial cells compared to untreated control or stimulated
control (Figure 7F).
DISCUSSION

The human gut harbors a plethora of microorganisms that are
crucial for development and normal physiological functions. An
imbalance or maladaptations of these essential microorganisms,
also termed dysbiosis, has been linked to numerous intestinal
disorders including GvHD. Several studies have confirmed a
strong association of microbiota damage with the occurrence of
GvHD and associated transplant-related complications (7, 25,
26). Microbiota-derived SCFA such as acetate, propionate, and
butyrate have been described in previous studies to be the key
modulator of inflammation and GvHD by promoting anti-
inflammatory myeloid cells and by maintaining epithelial
barrier integrity (13, 19, 27, 28). These studies also revealed the
involvement of G-protein coupled receptors GPR109A, GPR43,
and GPR41 in the mitigation of GvHD. However, these studies
A B

DC

FIGURE 6 | Effect of SCFA on in-vitro generated human monocyte derived DCs. DCs were cultured for 7 days and were stimulated with 100 ng/ml LPS for 48
hours. (A, B) GPR109A and GPR43 expression in mature DCs in presence of SCFA. (C) IL-12 cytokine release by DCs in presence of SCFA. (D) IL-10 cytokine
release by DCs in presence of SCFA. n= 3 healthy donors. Bar represents mean +/- s.e.m. *p < 0.05, **p < 0.01, Mann-Whitney U test for A, B and D (non-normal
distribution), one way ANOVA with Bonferroni correction for C (normal distribution).
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were performed in mice and no data have previously been
reported regarding the role of GPR expression in adult
human GvHD.

Our clinical data show an increased expression of GPR43 and
GPR109A in patients (pts) suffering from GvHD. Especially
during GvHD onset or at higher grade GI-GvHD (Lerner II-
IV), GPR expression was significantly enhanced. This might
reflect a counter-regulatory mechanism of protective GPR
signaling that is reactively induced to suppress T cell-mediated
injury. There are only a few studies discussing counter-regulatory
mechanisms in the gut of GvHD pts (29, 30). Landfried et al.
showed an increase of IDO in the lower GI tract of GvHD pts (29)
while Lord et al. showed an increase of FOXP3 Tregs in the gastric
biopsies of GvHD pts (30). Takatsuka et al. showed significant
increase of plasma IL-10 inGvHDpatients (31).We speculate that
the actual increase in regulatory parameters such as IDO, FOXP3,
IL-10, and GPR in GvHD is a physiological counter-reaction to
suppress the various inflammatory reactions going on in patients’
system. In addition, it is known that inflammatory stimuli such as
TNF, IL-1, LPS or GM-CSF can induce GPR expression on
monocytes (32) and macrophages (33). Therefore, it is likely
Frontiers in Immunology | www.frontiersin.org 9
that the induction of GPR is, in part, the result of elevated
inflammation in GvHD.

Commensal bacteria are the most prominent SCFA producers
and have been reported to be suppressed after antibiotic
treatment (9, 34). We recently demonstrated that Abx
suppresses butyrogeneic bacteria that are responsible for SCFA
production (35). Consistently, we found that (i) SCFAs induce
GPR expression in human colon cell lines and mDCs and (ii)
Abx significantly suppressed GPR expression in the intestinal
biopsies of allo-SCT pts. Utilizing a regression model, Abx
suppressed GPR expression independent of GvHD. Herein, we
propose that the detrimental effect of Abx are confined not only
to loss of commensals following reduction of SCFA but also to
the loss of GPR expression. Cumulative and long-term antibiotic
exposure revealed that GPR expression was highest in pts who
did not receive Abx either before/at transplantation or before
biopsy retrieval. On contrary, the lowest GPR expression was
observed in pts who received Abx before transplantation and also
at the time of biopsy indicating persistent long-term dysbiosis by
cumulative ABX exposure. The fact that GPR upregulates in
GvHD onset pts only in the absence of Abx but not in presence of
A B

D

E F

C

FIGURE 7 | Effect of butyrate on human epithelial cell. Caco-2 cell were grown on collagen coated transwell for 21 days. Cell were treated with IL-1b and TNF for
24 hours without or with butyrate. (A, B) IL-8 cytokine release on apical and basolateral side of Caco-2 cells. (C, D) IL-6 cytokine release on apical and basolateral
side of Caco-2 cells. (E). Transepithelial electrical resistance (TEER) changes with stimulation (stim) alone or with butyrate. (F) GPR43 staining of Caco-2 cells in
untreated control, stimulated control and butyrate treated condition. GPR43 is labelled with AF 594. Nucleus is counterstained with DAPI. Scale bar: 10µm. n = 4
independent experiments. Bar represents mean +/- s.e.m. *p < 0.05, **p < 0.01, Mann-Whitney U test.
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Abx implicates the potentially protective “commensal-SCFA-
GPR” axis in GvHD patients which is clearly abrogated by Abx.

SCFAs have been reported to expand regulatory T cells (15,
36) and these cells prevent GvHD and promote immune
reconstitution (37–40). We, therefore, addressed the
interrelation of GPR and FOXP3 expression. We observed a
high correlation between GPR and FOXP3 expression on mRNA
level which was also confirmed in pts where immune cell
infiltrates were directly stained for FOXP3 and the positive
cells were counted in high power field (HPF). Strong
association of GPR with Treg infiltrates point towards the
GPR-FOXP3 axis that is again abrogated by the use of Abx. In
addition, we saw a negative correlation between Abx use and
FOXP3 expression suggesting a link between microbiota changes
and immunoregulation although the exact pathways linking
ABX use and FOXP3 suppression need to be further analyzed.
As we used single antibody staining for our immunohistological
analysis of FOXP3+ cells, we are thus far unable to further
characterize the Treg subpopulations in more detail. In the
clinical setting, it is still unclear whether both natural and
induced Tregs are affected by SCFA and future studies using
multiplex staining are required to address these questions.

Previous murine studies reported that the salutary effect of
GPR in mitigating GvHD occurred via non-hematopoietic cells,
namely intestinal epithelial cells in an NLRP3 dependent fashion
(19, 20). In line with murine data, we also observed a strong
association of NLRP3 with GPR expression in patient gut
biopsies supporting the GPR regulation in epithelial cells.
Immunofluorescence revealed intestinal epithelial cells as one
of the cellular sources of GPR43 within the non-hematopoietic
compartment which is in line with a previous study (41). In an
intestinal epithelial cell line model, butyrate suppressed
inflammatory cytokine release, rescued the damaged epithelial
barrier and increased GPR43 expression indicating the positive
feedback loop of ligand-receptor interaction. Within the
hematopoietic compartment, CD68 positive macrophages
coexpressed GPR43. Previous murine and human studies
described leukocyte subpopulation as a source of GPR43 (42, 43).
Immune cells like macrophages, dendritic cells, monocytes, and
neutrophils likely play an inevitable role in GPR-mediated
protection from GvHD and antibiotic treatment abrogates
the necessary protective phenomenon due to dysbiosis, or,
by inhibiting the bacterial translocation that would otherwise
induce immune responses. Upon treatment with SCFA, in-
vitro generated mDCs showed increased expression of
GPR109A and GPR43 followed by reduced pro-inflammatory
IL-12 and an increase in anti-inflammatory IL-10 cytokine
release pointing towards the immunoregulatory phenomenon
of SCFA and are in line with previous reports where bacterial
metabolite exerted immune regulation by modulating antigen-
presenting cells (17, 44). In our study, pts showed higher
expression of both GPR in the ileum and there was a gradual
recovery of GPR over the time after transplantation implicating
the role of hematopoietic cells and recovering epithelial tissue.
Our data is in line with previous murine studies that reported
the involvement of immune cells in GPR-mediated protection
against inflammation (27, 45).
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Our study has some limitations. We were not able to directly
assess microbiome status at the time of biopsy retrieval. This
limited simultaneous analysis of GPR expression and microbial
diversity and prompted us to use antibiotic treatment as a
surrogate in the clinical settings of GvHD. Furthermore,
epithelial interactions of SCFA with GPR are likely to be
directly influenced by luminal metabolites of commensals,
however, we do not know yet about the exact role of
translocated bacteria and tissue metabolites which are likely to
play an additional role due to the leakiness of epithelia in GvHD
and tissue immune regulation (46). Nevertheless, our study is the
first to address the interaction of microbiota and regulation of
adaptive immune responses in human tissue biopsies of SCT pts.
So far, only stimulation of peripheral blood Tregs has been
reported in pts receiving fecal microbiota transplant (FMT)
from healthy donors for treatment of refractory GvHD (11),
thus both observations point to the fact that a diverse microbiota
is needed to mount an adequate Treg cell response. Whether the
observed association of GPR and FOXP3 expression is due to a
direct effect of SCFA on Tregs induction, e.g. via HDAC
inhibition as reported in an earlier study (15), or involves
further mediators released by immune or epithelial cells, needs
further investigation. The negative impact of antibiotic treatment
on Treg cell response in tissues has so far been reported outside
HSCT models. An association of early-life antibiotic exposure
and the development of experimental asthma in murine models
have been observed (47). In a murine model of pulmonary
metastases, antibiotic treatment reduced T regs and increased
the cytotoxic T cell response (48). Similarly, experimental FMT
has been shown to increase Treg cell frequencies in the gut
which were diminished after Abx exposure (49, 50). Overall, our
observations are in line with the protective effects of high SCFA
producing commensals in HSCT-associated complications and
support the concept that microbiota restoration, e.g. by FMT
may be beneficial in GvHD pts. So far, only a small and casuistic
series of successful FMTs in clinical GvHD has been reported,
but thoroughly designed clinical trials are now initiated to
examine the exact contribution of microbiota reconstitution
by FMT or more specific consortia of commensals to
immunomodulation of GvHD.

To conclude, our data suggest so far neglected but deleterious
effects of Abx on GPR expression and immunoregulation in
clinical GvHD. We urge the need for microbiota preservation or
restoration either by FMT, transfer of protective commensal
consortia or by fiber-rich diet (51). In addition, our data strongly
suggest restrictive use of Abx and support careful antibiotic
stewardship to maintain microbiota, metabolites, receptors,
and immunoregulation. This approach might be relevant for
GvHD prophylaxis and treatment as well as several other
diseases where dysbiosis is concerned.
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Supplementary Table 2 | Analysis of factors influencing GPRs and FOXP3
expression. In a multivariable analysis, Abx use is an independent factor to
suppress GPR expression as well as FOXP3 expression. OR, odds ratio; CI,
confidence interval.

Supplementary Figure 1 | Cumulative effect of broad spectrum antibiotics on the
expression of (A) GPR109A, (B) GPR43, (C) FOXP3+ cellular infiltrates and (D)
FOXP3 mRNA. *p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney U test.

Supplementary Figure 2 | Association of (A) GPR109A and (B) GPR43 with
NLRP3 expression. Effect of broad-spectrum antibiotics on (C) GPR43-NLRP3
association and (D) GPR109A-NLRP3 association *p < 0.05, **p < 0.01, ***p <
0.001, Mann-Whitney U test.

Supplementary Figure 3 | Distribution of (A) GPR109A and (B) GPR43 mRNA
expression within the GI tract of patients after allogeneic SCT. Stomach,
duodenum, ileum, colon and sigmoid colon were evaluated in the serial biopsies of
transplanted patients. *p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney U test.
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