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COVID-19 presentations range from mild to moderate through severe disease but also
manifest with persistent illness or viral recrudescence. We hypothesized that the spectrum
of COVID-19 disease manifestations was a consequence of SARS-CoV-2-mediated delay
in the pathogen-associated molecular pattern (PAMP) response, including dampened type
I interferon signaling, thereby shifting the balance of the immune response to be dominated
by damage-associated molecular pattern (DAMP) signaling. To test the hypothesis, we
constructed a parsimonious mechanistic mathematical model. After calibration of the
model for initial viral load and then by varying a few key parameters, we show that the core
model generates four distinct viral load, immune response and associated disease
trajectories termed “patient archetypes”, whose temporal dynamics are reflected in
clinical data from hospitalized COVID-19 patients. The model also accounts for
responses to corticosteroid therapy and predicts that vaccine-induced neutralizing
antibodies and cellular memory will be protective, including from severe COVID-19
disease. This generalizable modeling framework could be used to analyze protective
and pathogenic immune responses to diverse viral infections.

Keywords: COVID-19, SARS-CoV2, mathematical model, immune response, inflammation, DAMP, danger signal
Abbreviations: hs-CRP: high-sensitivity C-Reactive Protein; Ct: cycle time; CVVDialysis: continuous venovenous dialysis;
DAMP: damage-associated molecular pattern; ICU: intensive care unit; iHDialysis: intermittent hemodialysis; IL: interleukin;
PCR: polymerase chain reaction; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; Sim: simulation; SOFA:
Sequential Organ Failure Assessment.
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INTRODUCTION

The COVID-19 pandemic has been characterized by diverse
clinical manifestations that have been associated with varying
host immuno-inflammatory responses to the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus.
These phenotypes, which include large numbers of
asymptomatic carriers (1–3), have ranged from moderate to
severely ill patients (4, 5), those with extra-pulmonary
manifestations (6), and with persistent disease [“long-haulers”
(7–9)]. Patients that have underlying co-morbidities associated
with chronic inflammation, such as obesity (10–12), diabetes
(12–14), and cardiovascular disease (13, 14), are especially
prone to severe disease presentations. An understanding of
why such varied pathophysiologic manifestations occur, and
the development of patient-specific treatment modalities, is of
utmost importance.

In the early stages of the pandemic, attempts had been made
to predict the host immune and inflammatory responses to
SARS-CoV-2 in the context of the known biology of other
coronaviruses (15). More recently, numerous studies have used
approaches drawn from systems immunology to perform high-
dimensional profiling of the immune and inflammatory
responses in COVID-19 patients. These include machine
learning analyses aimed at defining features that may aid
diagnosis or therapy. The studies have emphasized the presence
of an imbalanced or overwhelming immune-inflammatory
response in severe disease (16–18).

SARS-CoV-2 likely generates diverse immune and
pathophysiologic responses because the adaptive immune
system is naïve to it unless there is some cross-immunity due
to prior infection with other coronaviruses (19). To clear a viral
infection, adaptive immunity must be activated, and this
happens in one of two ways. The first is through immune
memory in the form of memory T or B cells. If memory does
not exist [or cross reactivity with other beta coronaviruses is
weak (19)], as will generally be the case with SARS-CoV-2, the
adaptive immune system must be alerted de novo through the
activation of innate immunity; however, recent evidence
suggests that this pathway [specifically the production of type
I interferons (20, 21)] is diminished in COVID-19 patients (15,
18, 22–26).

We hypothesized that SARS-CoV-2 attenuation of pathogen-
associated molecular patterns (PAMPs)-dependent innate
immune responses exposes an alternate pathway for activation
of innate and adaptive immunity which is instigated by cellular
damage. This results in a delay of PAMP-activated innate
immunity as the virus first causes cellular or tissue dysfunction
that induces a nonspecific inflammatory response via the release of
damage-associated molecular pattern molecules (DAMPs) (27–
29). The DAMP-mediated inflammatory response primes the
adaptive immune response through the activation of dendritic
cells and other antigen-presenting cells, resulting in the release of
various pro-inflammatory cytokines (30, 31). Notably, such an
inflammatory response can itself cause additional damage and
dysfunction (27); furthermore, the inflammatory and adaptive
Frontiers in Immunology | www.frontiersin.org 2
immune components can inhibit each other (32, 33). Within such
an overall framework, the relative timing and amplitude of these
complex dynamical interactions could be impacted by genetic
variation as well as by co-morbidities, thereby resulting in the
diverse manifestations of COVID-19 pathophysiology that have
been observed clinically.

To test the core hypothesis as the underlying basis of diverse
manifestations of SARS-CoV-2 infection and COVID-19 disease,
we formulated a parsimonious, mechanistic mathematical model
of viral infection and the ensuing systemic inflammation as well
as innate and adaptive immune cell responses. In accordance
with our hypothesis our model partitioned innate immune cell
activation via either PAMPs or DAMPs, the latter emanating
from virus-infected host cells, both of which can lead to the
induction of an adaptive immune response to viral infection.
Although robust PAMP signaling generally occurs during viral
infections (20, 21), as noted above recent studies suggest that this
can be attenuated significantly in COVID-19 patients, resulting
in impaired type I interferon production (15, 18, 22–26). Thus,
our model was designed and tuned for the context in which virus
infection leads initially to damage/dysfunction and promotes
innate immune responses and systemic inflammation.
Alterations of few key parameters within the model generated
four distinct dynamic patterns of viral load, immune response
and associated disease manifestations. Importantly, these
prototypical infectious disease patterns termed “archetypes”
were qualitatively reflected in clinical data from hospitalized
COVID-19 patients. Simulations with our model also
reproduced key features of anti-inflammatory treatment and
predicted protective responses induced by vaccination.
MATERIALS AND METHODS

The overall design and execution of this study involved 1) the
generation of a parsimonious mathematical model based on our
core hypothesis [namely that a DAMP-centered response to SARS-
CoV-2 can result in dynamically distinct biological and clinical
trajectories (archetypal COVID-19 responses or “COVID-19
archetypes”)] depending on the relative interactions among
virus-infected cells, the innate immune response to DAMPs that
are released from damaged or dysfunctional tissue, and the
adaptive immune response triggered by innate immune
activation); 2) initial calibration of viral inoculum using
published data on experimental SARS-CoV-2 infection; 3)
further calibration of viral inoculum to data from COVID-19
patients followed by model simulations revealing distinct disease
trajectories that correspond with clinical data from exemplary
patients; and finally 4) simulations of anti-inflammatory therapy
and COVID-19 vaccination.

Mathematical Model of the Immune-
Inflammatory Response to SARS-CoV-2
The model used in all simulations obeyed the following
differential equations:
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dCV

dt
= kvgCV 1 − kvsCVð Þf1 1, xvainvAð Þ − kvaACV (1)

dD
dt

= kdvf2 CV , xdvð Þ + kdif2 I,xdið Þ − mdD (2)

dI
dt

= sir
R

mir + R
− miI (3)

dAdt = kai
sa0I

ma0 + kaiI
x21ai

x21ai + I2
+ kagCV

A2

x2ag + A2 − ma + Ae (4)

where

R = kidD + kiiIð Þf1 1, xiainvAð Þ = kidD+kiiI

1 + xiainvAð Þ2 ; (5)

and

f1 x, yð Þ = x
1 + y2

for vaccination simulations but f1 x, yð Þ

= 1 otherwise; and f2 x, yð Þ = x6

y6+x6
:

CV, is scaled such that a value of CV = 10−6 corresponds to one
infected cell. I, D, and A have arbitrary units. Parameters are
described in Table S2. Most of the values were taken from
previous models (34, 35) while others were estimated for the
present application. The viral dynamics were adapted from an
influenza model (36). The dynamical attractors were robust to
wide variations in the parameter values. The differences
between archetypes were due to changes in only four
parameters (kdi; xdi; xiainv; and kai), while the others were
fixed. The detailed derivation and motivation for the model
are in the Supplementary Materials.

Given the abstract nature of the compartments, no attempt
was made to match the model quantitatively to the clinical
scenarios except for the initial value of CV. In SARS-CoV-2
infection of rhesus macaque monkeys (37), the viral peak
Frontiers in Immunology | www.frontiersin.org 3
occurred around day 5 after an initial intratracheal challenge
with SARS-CoV-2 at 1x106 50% tissue-culture infectious doses
(TCID50). At a starting CV value of 1x106, our model predicted
a peak time for the viral infection at 8 days. An exploration of
the impact of increasing initial viral load on the time to peak
infection for each COVID-19 archetype is detailed in Table S2.
Based on this initial calibration, we calculated the typical initial
CV value for human COVID-19 patients. This is difficult to do
based on previously published data [e.g (17)], since those
studies are based on patients that were already infected at the
time of hospitalization and since data were obtained at only a
few time points. We reasoned that granular data on patients
hospitalized for reasons other than COVID-19, either with
recent negative or initially negative screening tests, that
became SARS-CoV-2-positive in the hospital setting (termed
“incidental COVID-19”) would address these shortcomings.
Accordingly, time of symptoms or PCR positivity data were
obtained from “incidental COVID-19” patients hospitalized at
New York Presbyterian Hospital (Columbia) between March 13
- August 5, 2020 (Table 1). SARS-CoV-2 infection was
ascertained by RT-PCR tests in nasal swabs either as a
screening test for procedures or triggered by symptoms
including cough or fever. In this cohort, the time to virus
positivity was estimated to be 11.3 ± 5.3 (n=8 incidental
COVID-19 patients; range 4-22) days. From these data, we
calibrated to a CV peak time of 11.1 ± 4.5 days (n=7 archetypal
scenarios; range 8.5-19.1 days) in subsequent simulations based
on an initial CV dose equivalent to 8 x 105 virus-infected cells
(Table S2), in general agreement with the aforementioned
results in non-human primates.

All computations were performed on MATLAB (version
9.7.0.1190202, R2019b) and XPPAUT; and the model code is
available (see Auxiliary Supplementary Materials for
model code).

Study Population
COVID-19 patient data were obtained from a prospective,
observational COVID-19 cohort study that took place at New
York-Presbyterian Hospital affiliated with Columbia University
TABLE 1 | Incidental Patient data to calculate mean time to positive PCR test.

Age Recent negative
test prior to

hospital admission

SARS-CoV-2 PCR
at Admission

When Symptoms Started Severe
COVID-19

Days from negative
test to Positive Test
or to Symptoms

Initial Test
Positive

Initial Test
Negative

Not
tested

No COVID
symptoms during

admission

Mild
symptoms
present at
admission

Develop
symptoms while

hospitalized

40s X X X 11
50s X X X 22
70s X X X 15
70s X X X 11
70s X X 9
50s X X 8
50s X X 4
50s X X X 10
Octobe
r 2021 | Volu
Incidental patients were admitted for reasons other than COVID-19 and SARS-CoV-2 PCR tests were positive during hospitalization (either with symptoms or on a screening test). These
eight had either prior recent negative SARS-CoV-2 PCR tests, were negative on admission, or were not tested on admission.
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Irving Medical Center in northern Manhattan; the study was
approved by the institutional review board at Columbia
University Irving Medical Center (protocol AAAT0120) and
requirement for informed consent was waived given the study
design and ongoing pandemic. Adult patients (aged > 18 years)
admitted between March 13, 2020 to August 5, 2020 who were
diagnosed with laboratory-confirmed COVID-19 were identified
through daily review of unit admission logs in the electronic
medical record (n=657). Clinical, biomarker, and treatment data
were collected. SARS-CoV-2 testing was performed using
RT-PCR of nasopharyngeal swab samples and processed in
the clinical microbiology laboratory of the New York-
Presbyterian Hospital.

Not all patients from the COVID cohort study were included
in this current study, as a qualitative comparison was intended
rather than a statistical evaluation. Cohort patients were sorted
for priority by the following criteria: (1) admission > 60 days or
patients who died, (2) no treatment with steroids, and (3) most
available values of SOFA scores, high sensitivity C-reactive
protein values, creatinine values, or high sensitivity Troponin-T
values; eight patients were included after comparison with
simulation data. One of these patients had quite prolonged
steroid administration (given for non-COVID-19 medical
reasons) and was included for comparison with the
uncontrolled infection simulation. Eight patients with incidental
COVID-19 infections or recent negative SARS-CoV-2 PCR
testing were identified in the cohort, and their interval times to
symptoms or PCR positivity were summarized. In total, sixteen
patients from the COVID cohort study were included in this
qualitative comparison. Relevant data on this cohort are described
in Table 1 and Auxiliary Supplementary Materials.

Diagnostics and Clinical Biomarkers
Patients were tested for SARS-CoV-2 using Roche Cobas 6800
(Roche Diagnostics, Indianapolis, IN, USA; FDA approved) or
Cepheid Xpert Xpress (Sunnyvale, CA, USA; FDA approved),
depending on testing platform availability. The nucleic acid
amplification testing (NAAT) targeted E gene (SARS-specific)
and SARS-CoV-2 specific N2 gene (Cepheid) or ORF gene
(Roche). Cycle times, when available, are reported graphically
as a visually intuitive index of (45-cycle time).

Laboratory results (from blood) are reported graphically
including creatinine, high-sensitivity Troponin-T, high-sensitivity
C-reactive protein, interleukin-6, D-dimer, and absolute monocyte
count (automated). Creatinine is a biomarker of kidney function
and is measured nearly daily (if not more as indicated) during
hospitalization; reference ranges varied from0.5-0.95mg/dL to 0.7-
1.30 mg/dL and are indicated accurately per patient. High-
sensitivity Troponin-T is a biomarker of cardiac damage, and is
measured as needed during hospitalization, in response to chest
pain, electrocardiogram changes, or hemodynamic instability;
reference ranges varied from < 14 ng/L to <22 ng/L and are
indicated accurately per patient. C-reactive protein (CRP) is made
by the liver and is released into the bloodstream in response to
inflammation.High-sensitivity C-reactive protein wasmeasured in
the context of known COVID infection with varying frequency;
reference range was 0-10 mg/L (high value 3.1-10 mg/L), with a
Frontiers in Immunology | www.frontiersin.org 4
maximum reported value of 300. Interleukin-6 assay (Cobas Elecys
electrochemiluminescence immunoassay; FDAEUA) is elevated in
the presence of an inflammatory response andwasmeasured in the
context of known COVID infection with varying frequency;
reference range is less than or equal to 7 pg/mL, with a maximum
reported value of 315. D-dimer (STAGO immune-turbidimetric
assay) was measured in the context of known COVID infection
with varying frequency; reference range is less than or equal to 0.8
microg/mL FEU. Absolute monocyte counts (automated) were
often measured in routine hospitalized clinical care, as a
differential of the white blood cells within the complete blood
cell panel, this was examined as a surrogate of inflammation; the
reference range varied from 0.1-0.9 x 103/mL to 0.2-0.7 x 103/mL to
0.22-1 x 103/mL and are indicated accurately per patient.
RESULTS

Model Construction: A DAMP-Centered
Theoretical Model Predicts Four COVID-19
Infection and Disease Trajectories
To build our mathematical model, we posited that the virus-
infected epithelial cells in the respiratory tract signal in a
bifurcated manner either via PAMPs or through cellular damage
and/or dysfunction via DAMPs, inducing activation of virus-
specific adaptive immune responses via innate cell activation
(Figure 1). Within the network structure, the model considers
the interactions of four abstract variables that can be thought of as
cellular compartments and their associated molecular processes:
1) Virus-infected epithelial cells, CV; 2) Damaged/dysfunctional
cells/tissue that promote inflammation via the release of DAMPs,
D; 3) Innate Immune/systemic inflammatory components, I; and
4) Adaptive Immune components, A, which incorporate antigen
presenting cells that are part of the innate system (i.e. dendritic
cells) and bridge the feed-forward communication between I and
A. The compartmental mechanistic model is a parsimonious
representation of the myriad immune and inflammatory events
occurring during infection. The details of the model are given in
the Methods and Supplementary Methods.

A baseline set of parameter choices (Table S1) were
motivated by previous work modeling viral infection (38–41)
as well as immune inflammatory dynamics, the latter in the
context of both sepsis (34) and sterile inflammation (35).
Exploration of the parameter space around the baseline set
generated simulations that predicted distinctive viral load and
immune/inflammatory response trajectories that we term
COVID-19 “archetypes”. These distinctive infectious disease
dynamics are shown in Figure 2 and with their diverse
presentations in Figure S1. Notably, the differences among
archetypes were due to changes in only four key parameters
(kdi; xdi; xiainv; and kai), while the others remained fixed. Multiple
parameter sets led to similar manifestations of a response that fell
under one of the four major archetypes. As an example, we chose
seven parameter sets to provide a representation of the
possibilities, all of these arose from changes made to one
parameter set such that the overall differences between the
October 2021 | Volume 12 | Article 754127
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number of parameter values differing from one scenario to the
next was at most three. For instance, the pathways in the model
that lead from the Mild to the Moderate to the Severe scenarios
of the Recovery archetype all result from a change in two
parameters (namely the parameters responsible for inducing D
via I: kdi and xdi). This is not the only pathway to achieve this
progression (see Supplementary Materials).

These initial simulations were initiated with a single virus-
infected cell, and thus the time to peak infection appeared long.
Later, in Figures 3–10 and S2–S6, the simulations were initiated
with a more realistic viral load corresponding to measurements.
Higher viral load shifted all curves to the left, lessening the elapsed
time to reach peaks of infection. Importantly the time courses of
viral infectionand resolutionwere in reasonable accordwith clinical
observations (see below), thus providing independent support for
the particular set of baseline parameters used for the simulations.

As noted above, differences in the possible outcomes arise
from different biologically plausible parameters (Table S1).
These could represent individual differences in genetic
predisposition to infection, propensity for tissue damage/
dysfunction, innate immune activation, adaptive immune
activation, clinical co-morbidity, infection history, and/or
chronic treatments with immunosuppressive agents. We
classify the core outcomes into four distinct clinical archetypes:
Recovery, Uncontrolled Infection, Recrudescence/Persistent Illness,
and Damage-sustained Inflammation. Varying manifestations
are possible within each archetype. In Figure 2 the magnified
graphs to the right of Panel A illustrate that a window of time
exists during which the virus-infected cell population is
Frontiers in Immunology | www.frontiersin.org 5
increasing but the host damage/tissue dysfunction and innate/
inflammatory immune responses are negligible. We equate this
state with asymptomatic COVID-19, in agreement with the
finding of radiographic evidence of infection in otherwise
asymptomatic COVID-19 patients that do not exhibit signs of
systemic inflammation (42). In all archetypes, compartment CV

rises first followed by D, I and A. The difference is in how these
variables resolve. In the Recovery archetype, the four
compartments rise to a peak and then return to low levels. In
the Uncontrolled Infection archetype, the four compartments rise
and remain elevated. In the Recrudescence archetype, CV rises
then falls and rises again (possibly multiple times), which is
followed by the rise and fall of the three other compartments.
Finally, in the Damage-sustained Inflammation archetype, the
four compartments rise but the I and A remain elevated even
after virus is cleared and CV has returned to baseline.

The four archetypes of COVID-19 correspond to dynamical
attractors (43) of the mathematical model of SARS-CoV-2
infection. All time courses will flow towards one of a finite
number of possible attractors that in principle may include
stationary equilibria, oscillating cycles, and possibly chaotic
dynamics (43). The attractors are fully specified by the network
architecture of the immune/inflammatory system but the initial
conditions [e.g. viral load (44), background inflammatory status
(10, 11, 13, 14, 32)], and parameter settings [e.g. abundance and
distribution of ACE2 receptors (45) and possibly also neuropilin-1
(46), as well as immune memory (19)], determine which attractor
is selected. Small changes in the initial conditions and parameters
can lead to different attractors and thus very different outcomes.
FIGURE 1 | Model Interaction Diagram. Beginning at the top left of the diagram and explaining in a clockwise direction: The presence of virus-infected cells, CV,
initiates the induction of damaged or dysfunctional tissue (arrow 1), modeled with the variable D. The lysis of virus-infected cells will lead to subsequent infection of
other cells (arrow 7). The release of DAMPs from virus-infected cells occurs prior to the release of type I interferons due to virus-mediated inhibition of type 1
interferon production. Thus, DAMPs predominate in initiating innate immune activation and systemic inflammation (arrow 3), represented with variable I, that will self-
upregulate (arrow 4). The effects of inflammation can create collateral host tissue damage (arrow 2), providing positive feedback into D. The priming of an adaptive
response, A, is initiated and upregulated by I (arrow 5), and A in turn inhibits the upregulation of I (arrow 9). If the I response becomes strong enough, I switches to
inhibiting the upregulation of A (arrow 8). The adaptive response, A, will also be stimulated in response to PAMP signaling from virus-infected cells, albeit with
somewhat delayed kinetics because of viral proteins that attenuate such signaling mechanisms (arrow 6). When encountering virus-infected cells, A can kill these
cells (CV) by the action of virus-specific cytotoxic T cells and/or neutralize the virus with antibody secreting virus-specific B cells, thereby inhibiting the expansion of
the virus-infected cell population (arrow 10).
October 2021 | Volume 12 | Article 754127
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Model Calibration and Testing:
Predicting Realistic Temporal
Dynamics of Viral Infection
As an initial calibration and a test of the theoretical model, we
sought to accurately recover the temporal dynamics of SARS-CoV-
2 infection based on a realistic initial viral inoculum. In a study of
SARS-CoV-2 infection in rhesus macaque monkeys (37), the viral
peak occurred at approximately day 5 after an initial intratracheal
challenge with SARS-CoV-2 at 1x106 50% tissue-culture infectious
doses (TCID50).Ata startingCVvalueof1x10

6, ourmodelpredicted
a peak time for the viral infection at 8 days. An exploration of the
impact of increasing initial viral load on the time to peak infection
for each COVID-19 archetype is detailed in Table S2.

Based on this initial calibration analysis, we next sought to
calculate the typical initialCV value for humanCOVID-19 patients
and, in the context of model verification, compare model variable
Frontiers in Immunology | www.frontiersin.org 6
trajectories to clinical data. This is quite difficult to do based on
previously publisheddata [e.g (17)], since those studies are basedon
patients thatwere already infected at the time of hospitalization and
sincedatawere obtained at only a few timepoints.We reasoned that
granular data on patients hospitalized for reasons other than
COVID-19, either with recent negative or initially negative
screening tests, that became SARS-CoV-2-positive in the hospital
setting (termed “incidental COVID-19”) would address these
shortcomings. Accordingly, time of symptoms or PCR positivity
data were obtained from “incidental COVID-19” patients
hospitalized at New York Presbyterian Hospital (Columbia)
between March 13 - August 5, 2020 (Table 1).

SARS-CoV-2 infection was ascertained by RT-PCR tests in
nasal swabs either as a screening test for procedures or triggered
by symptoms including cough or fever. In this cohort, the time to
virus positivity was estimated to be 11.3 ± 5.3 (n=8 incidental
A B DC

FIGURE 2 | Illustrations of theoretical response dynamics of the SARS-CoV-2 model. Panels (A–D) display uncalibrated simulations of model variables CV, D, I,
and A where each column illustrates a response profile of these variables for the indicated archetype. Magnified outsets to the immediate right of Panel A
illustrate that a window of time exists during which the virus-infected cell population, CV, is increasing but the host damage/tissue dysfunction (D; Panel (A) 2nd

row) and innate/inflammatory immune response (I; Panel A 3rd row) is negligible. Each simulation set (column) is initiated with the equivalent of one virus-infected
cell at time zero (CV=1; Panels (A–D) top row) into a naïve simulated individual, meaning the specific immunity (A; Panels (A–D) (Panel B), bottom row) to CV is
absent at time zero. Together, each panel (column) of time courses of the model variables represent a potential COVID19 archetype. Initial exposure amounts
along with specific, early dynamics related to viral infectivity of cells are largely intractable aspects of disease processes outside of a controlled experiment. Thus,
we assume that exposures leading to a productive viral infection will have established, at some time, at least one infected cell, from which other cells will
become infected. Assuming larger initial levels of the virus-infected cell population at time zero essentially shift the curves to the left, allowing for a more rapid
expansion of the virus-infected cells as well as the ensuing response.
October 2021 | Volume 12 | Article 754127
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COVID-19 patients; range 4-22) days. From these data, we
calibrated to a CV peak time of 11.1 ± 4.5 days (n=7 archetypal
scenarios; range 8.5-19.1 days) in subsequent simulations based
on an initial CV dose equivalent to 8 x 105 virus-infected cells
(Table S2), in general agreement with the aforementioned results
in non-human primates.

Model Validation: Temporally Calibrated
Theoretical Archetypes Match Individual
COVID-19 Cases Qualitatively
We next sought to gain insights into drivers of different COVID-19
responses and validate key predictions of our theoretical model by
matching archetypal responses (using simulations of the
temporally calibrated model based on a simulated inoculum
(CV) of 8 x 105 virus-infected cells) to clinical phenotypes in our
patient cohort. These simulations were based solely on altering
model parameters (See Table S1) associated with the actions of D,
I, and A but without invoking differences in viral dynamics and
without fitting directly to the clinical data. We compared the
model variables to clinical data as follows: CV was compared to the
results of serial RT-PCR tests. We note categorical RT-PCR data
were used; for all patients, categorical determinations of absence of
Frontiers in Immunology | www.frontiersin.org 7
virus (0), a possible positive result (1), or a certain positive result
(2) were available. D was compared with creatinine (biomarker of
kidney function) and to high-sensitivity troponin T (biomarker of
cardiac injury). Additionally, Sequential Organ Failure Assessment
[SOFA] score (which encompasses organ function across 6 organ
systems; this was available only for some intensive care unit (ICU)
patients), and ventilatory dependence (surrogate of respiratory
distress), were used when available for patients; and I was
compared to serial measurements of high-sensitivity C-reactive
protein [a global but fairly nonspecific biomarker of inflammation
(47) that is also a strong predictor of COVID-19 (48, 49)], the
cytokine interleukin (IL)-6 [also shown to be elevated in COVID-
19 patients (17, 18, 50)], and absolute monocytes (automated)
[another hallmark of COVID-19 (51)]. In the D and I
comparisons, we focus on the initial rise of the respective
variables. This is because D and I represent the net action of
multiple interacting mediators and thus a biological marker
associated with the initial response may not be the one
associated with the later stages of the response. The essential
elements of the D and I dynamics with respect to novel viral
infection is that D activates I followed by positive feedback within
and between the two compartments. Because A is a composite
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FIGURE 3 | Recovery archetype, Mild response scenario: simulation vs. patient data. Using the baseline set of model parameter values, simulated dynamics are
shown of variables CV (Panel A) (Initialized with a CV =8x105 virus-infected cells), D (Panel B), I (Panel C), and A (Panel D). The following six parameters with their
baseline values given are those used in the simulation of the Mild scenario and are the subset of parameters whose values may differ between the Mild scenario and
other scenario simulations as specified within Table S1: kdi=0.3; xdi=1.0, xiainv=0.1; kai=3.0; kii=0.1; kid=0.35. Panels (E, F) show data from a patient in their 60s with
hypertension, diabetes, and chronic kidney disease who tested positive for SARS-CoV-2 while asymptomatic, as a result of screening for a planned procedure. The
patient had the opportunity to be tested several more times over the ensuing weeks while hospitalized for non-related medical problems. For the entirety of their
hospitalization (black vertical lines denote discharge), the patient was not overtly symptomatic for COVID-19.
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variable that encompasses antigen-presenting cells and the
priming of helper CD4 and cytotoxic CD8 T cell responses as
well as antibody responses of B cells, and because it is still unclear
which of these variables is the one that is involved in reducing viral
infection (and when), we did not attempt to directly compare this
variable to a marker. We note, however, that key aspects of A, such
as antibodies to SARS-CoV-2, are very highly correlated with viral
infection (52). Table S3 gives the descriptions of the various
scenario labels under the four archetypes used in this manuscript.

The Recovery archetype encompasses various manifestations
ranging from mild disease course that does not require ICU stay
(Figure 3) to severe disease course with prolonged ICU stay
(Figure 4) (an intermediate, moderate scenario is shown in
Figure S2). In the Mild scenario, viral infection (Figure 3A)
leads to tissue damage/dysfunction (Figure 3B), which only then
Frontiers in Immunology | www.frontiersin.org 8
leads to systemic inflammation (Figure 3C), a predicted rise in
adaptive immunity (Figure 3D), and ultimately to recovery. In
support of model simulations, PCR cycle time is seen on the
decline in the exemplar patient [Figure 3E] with asymptomatic
COVID-19, and the return of C-reactive protein to baseline
[Figure 3F]). This is also seen in both the Moderate (Figure S2)
and Severe (Figure 4) scenarios, which are modeled by altering
parameters kdi and xdi compared to the Mild scenario
(Figure 4A). The exemplar patient for the Severe scenario
became severely critically ill after the peak viral load
(Figure 4G), requiring ventilatory and circulatory support as
well as renal replacement therapy (but was unstable and required
continuous venovenous dialysis) (Figure 4F). The clinical course
improved over the very lengthy hospitalization, with the patient
being able to transition out of the intensive care unit, off of
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FIGURE 4 | Recovery archetype, Severe scenario: simulation vs. patient data. Using modified values of parameters kdi and xdi compared to Mild scenario as shown
in the diagram (Panel A), simulated dynamics are shown of CV (Panel B) (Initialized with a CV =8x105 virus-infected cells), D (Panel C), I (Panel D), and A (Panel E).
Panels (F–I) show data from a patient in their 50s with diabetes who presented with COVID-19 acute respiratory distress syndrome. The patient was most critically ill
from hospital day 14 to 32, requiring intermittent vasopressors and being unable to tolerate intermittent hemodialysis (instead requiring continuous venovenous
dialysis). Despite being ventilator dependent until Hospital Day 93, the patient was able to leave the intensive care unit by Hospital Day 60. They were discharged to
a skilled nursing facility on the 125th day, tolerating a speaking valve (tracheostomy) with a strong voice and walking with assistance but still requiring dialysis.
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vasopressors and tolerating intermittent hemodialysis;
eventually, this patient was liberated from the ventilator
(Figure 4F). The markers of inflammation were high and
elevated for nearly the entire length of hospital stay, with some
decline towards the end (Figures 4H, I).

In these scenarios of the Recovery archetype, viral infection is
cleared; recovery ultimately occurs if the innate-to-adaptive
immune response is sufficiently effective, and the resulting
damage is not too severe. The duration and severity of the
episode can vary greatly depending on how strongly CV-
induced damage incites an inflammatory response and, in turn,
how strongly that response upregulates more inflammation,
providing subsequent I-induced damage in the positive
feedback cycle. Despite the explicit modeling of D before I, our
theoretical model predicts, and clinical data support, the notion
that the peak ofD will be fairly close to the peak of I (and possibly
indistinguishable from the possibility that CV leads initially to I
rather than to D) as the response to viral infection becomes more
Frontiers in Immunology | www.frontiersin.org 9
pronounced and leads to increased disease severity requiring
ICU stay (Figures 4 and S2). Specifically, despite an initially
earlier and much faster rise of D relative to I (Figure S3), this
distinction is essentially undetectable by Day 1.

If the innate immune response and attendant systemic
inflammation causes too much secondary damage/dysfunction
(simulated by modifying values of parameters kdi and xdi
compared to Mild scenario [Figure 5A]), then the positive
feedback loop between D (e.g. by the release of DAMPs) and I
can lead to a condition of Damage-sustained Inflammation as
shown in Figure 5. The exemplar patient for this archetype was
critically ill, requiring ventilatory and circulatory support for the
entirety of their course, ending in death (Figure 5F). The
creatinine course (renal disease/damage biomarker) appears
normalized (Figure 5H) as a consequence of dependence on
renal replacement therapy; however, this patient was too
hemodynamically unstable even for intermittent hemodialysis
and their SOFA score remained high (Figure 5J). Inflammation
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FIGURE 5 | Damage-sustained Inflammation archetype: simulation vs. patient data. Using modified values of parameters kdi and xdi compared to the Recovery
archetype, Mild scenario as shown in the diagram (Panel A), simulated dynamics are shown of CV (Panel B) (Initialized with a CV =8x105 virus-infected cells), D
(Panel C), I (Panel D), and A (Panel E). Panels (F–J) show data from a patient in their 50s with diabetes who presented with hypoxemia and increased work of
breathing after 6 days of shortness of breath and chest pain at home. The patient was found to be in diabetic ketoacidosis and was intubated the day after
admission. The patient developed COVID-19 Acute Respiratory Distress Syndrome and their complex course included deep venous thromboses, limb ischemia,
vasodilatory shock, pulmonary embolus and cardiogenic shock, and renal failure from COVID-19 requiring dialysis. The patient was given a course of
methylprednisolone starting on hospital day 2, and anticoagulated starting on hospital day 7. The patient was given stress steroids from hospital days 29-41 and 44-
53. The patient developed cardiac arrest (pulseless electrical activity) on hospital day 34, and on hospital day 44, their hypoxemia and shock worsened. On hospital
day 58, the patient went into cardiac arrest and ROSC was achieved after 20 minutes, at which time the patient was noted to have bilateral dilated unreactive pupils.
The patient developed pulseless electrical activity and died (red vertical lines).
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biomarkers (CRP and IL-6) were high and elevated for the entirety
of their course (Figure 5I). Here, our modeling suggests
(Figure 5B) and the RT-PCR data support (Figure 5G) the
notion that the adaptive immune system clears the virus
successfully, but inflammation persists until the patient finally
succumbs or is controlled by medical intervention. Additionally,
since the adaptive immune response as modeled incorporates the
role of dendritic cells (and potentially other antigen-
presenting cells) which represent the mechanism by which I
primes A, the adaptive immune response can appear to remain
elevated (Figure 5E) even when virus has been cleared (below
1 virus-infected cell at approximately day 35 of the
simulation) (Figure 5B) and is no longer providing stimulus
feedback to A for expansion. This is in line with recent studies
(53). Our simulations suggest that this is due predominantly
Frontiers in Immunology | www.frontiersin.org 10
to the persistent presence of activated antigen-presenting cells
rather than activated virus-specific B and T cells; recent
findings (54) support these simulation results. We note that
the antigen-presenting cells were included in the A rather than
the I variable though these cells could arguably be included in
either variable (depicted for all archetypes/scenarios Figure
S4, insets).

The sustained inflammation state has often been compared to a
“cytokine storm” in sepsis (32, 55), but we note that the actual levels
of circulating inflammatory mediators need not be elevated
excessively but instead are simply sustained over a prolonged
period, as has been reported by others (56) (compare peak levels
of I and D in Figures 3 or 4 [Recovery archetype] vs. Figure 5
[Damage-sustained Inflammation archetype], as an example). In
the Damage-sustained Inflammation archetype, antiviral therapies
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FIGURE 6 | Recrudescence archetype: simulation vs. patient data. Using modified values of parameters xiainv and xdi compared to the Recovery archetype, Mild
scenario as shown in the diagram (Panel A), simulated dynamics are shown of CV (Panel B), (Initialized with a CV =8x105 virus-infected cells), D (Panel C), I (Panel D),
and A (Panel E). Panels (F–I) show data from a patient in their 60s with hypertension and no known sick contacts who presented after 4 days of fever, chills,
malaise, and headache with mild hypoxemia (oxygen saturation 95%) and mild opacities on chest radiograph, found to be SARS-CoV-2 PCR positive. The patient’s
oxygen requirement steadily increased over four days and they required mechanical ventilation for acute respiratory distress syndrome. While the patient was still
ventilator-dependent, they were able to be de-escalated from the intensive care unit at Hospital Day 50 and required a brief return to intensive care with vasopressor
support at day 103. The patient was still ventilator-dependent by the time of their discharge to a long-term acute care (ventilator-capable) facility on hospital day 146.
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will be ineffective in mitigating sustained inflammation, but anti-
inflammatory therapies such as corticosteroids may help [although
timing and duration is important (see below)]. Therapies that
mitigate damage/dysfunction, most likely organ-supportive care
in the ICU, as well as DAMP-targeted therapies (28, 29) such as
those described in the setting of bacterial sepsis (57), might also be
effective for the Damage-sustained Inflammation archetype of
COVID-19.

The Recrudescence archetype (Figures 6, 7) can arise if the
adaptive immune responsediminishesbefore the virus is eliminated
completely.This state can appearunderwidely divergentdynamical
scenarios [simulated by modifying values of parameters xiainv and
xdi compared to the Mild scenario (Figure 6A) or parameters kai
and xiainv compared to the Mild scenario (Figure 7A)]. This
archetype can arise simply because the adaptive response abates
too quickly, or because the feedback mechanisms among the
Frontiers in Immunology | www.frontiersin.org 11
compartments give rise to oscillations that can either dampen or
grow and thus lead to a healthy resolution or eventual death.
Dynamically, there is little difference between recrudescence and
reinfection. In both cases, the virus has a chance to regrow either by
returning from low levels from a hidden reservoir in the body or by
reintroduction through an exogenous source. The exemplar patient
in Figure 6 has two periods of critical illness (the first more severe
than the second, Figure 6F) that co-occur with recurrent viral
detection (Figure 6G).

The Recrudescence archetype in Figure 7 displays a disease
course that is reminiscent of individuals with long-lasting disease [a
condition colloquially referred to as “long COVID” (7–9, 58)]. In
this representative scenario, it is possible that the predicted second
peak of viral infection (Figure 7B) occurs at levels that are just at the
threshold of detection of current nasal swab RT-PCR tests
(Figure 7G). The exemplar patient was critically ill, requiring
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FIGURE 7 | Recrudescence archetype, Long-lasting Disease scenario: simulation vs. patient data. Using modified values of parameters kai and xiainv compared to
the Recovery archetype, Mild scenario as shown in the diagram (Panel A), simulated dynamics are shown of CV (Panel B) (Initialized with a CV =8x105 virus-infected
cells), D (Panel C), I (Panel D), and A (Panel E). Panels (F–I) show data from a patient in their 60s with diabetes and hypertension who presented with pneumonia
and SARS-CoV-2 positivity. The patient’s course had two distinct periods of critical illness. They required intubation by Hospital Day 5, and their course was
complicated by vasopressor-dependent hypotension and renal failure requiring continuous venovenous hemodialysis from Hospital Days 23-38. The patient was able
to leave the intensive care unit on Hospital Day 39 but returned to intensive care on Hospital Day 92 with new hypotension requiring vasopressors, status epilepticus,
and ischemic stroke. The patient was ventilator-independent by Hospital Day 95, recovered renal function, and was able to be discharged to a skilled nursing facility
on Hospital Day 118 (black vertical lines).
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circulatory and respiratory support followed by renal replacement
therapy (Figure 7F). They were able to be weaned off pressors and
tolerate intermittent hemodialysis and eventual renal recovery,
leaving the ICU for a long period of time (Figure 7F). However,
they experienced a second rise in inflammation (monocyte counts
shown in Figure 7I) as the second (low) viral load is detected
(Figure 7G), followed closely by a second period of critical illness
requiring a shorter period of circulatory support in the context of
seizures and a stroke (Figure 7F).

If adaptive immunity is not activated sufficiently or is not
effective enough in clearing virus-infected cells, then the
Uncontrolled Infection archetype can result, as seen in Figure 8
(where this was simulated by modifying values of parameter kai
compared to the Mild scenario; Figure 8A). Such an archetype
might occur naturally [e.g. in obese individuals (59)]. An
alternative scenario could be that of an immunocompromised
individual or a transplant patient who is receiving chronic
Frontiers in Immunology | www.frontiersin.org 12
immunosuppressive therapy. This latter scenario was the case
in the exemplar patient who was SARS-CoV-2 positive on
admission but developed model-predicted (Figure 7C) mild
renal failure (which resolved; Figure 8H) and an oxygen
requirement (which also resolved; Figure 8F) related to
COVID-19 two weeks into admission. Notably, virus was
detectable for the entirety of the lengthy hospitalization
(Figure 8G). In this state, the simulations (Figures 8B–E)
show that all model variables are elevated, and thus small
changes in model parameters due to therapeutic effects could
redirect the system from uncontrolled infection into sustained
inflammation. Therefore, guiding such a condition back to a
healthy state could require a dynamic therapy that constantly
titrates between controlling the infection and the inflammatory
response (60, 61). For example, the exemplar patient received
the anti-viral drug remdesivir (62, 63) and yet remained virus-
positive (Figure 8G).
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FIGURE 8 | Uncontrolled Infection archetype and Long-duration Anti-inflammatory Treatment: simulation vs. patient data. The Uncontrolled Infection archetype
emerges due to modifying the value of parameter kai compared to the Recovery archetype, Mild scenario; and, when implementing the window of anti-inflammatory
therapy, kii and kid are set to zero as shown in the diagram (Panel A). Simulated dynamics are shown of CV (Panel B) (Initialized with a CV =8x105 virus-infected cells),
D (Panel C), I (Panel D), and A (Panel E) for the Uncontrolled Infection archetype (black, dot-dashed curves, Panels B–E). An anti-inflammatory treatment simulation
of this archetype is overlayed (blue, solid curves, Panels B–E). Panels (F–K) show data from a patient in their 60s who was chronically immunosuppressed after a
solid organ transplant who presented after weeks of diarrhea and failure to thrive. The patient was found to be in renal failure and SARS-CoV-2 PCR positive. The
patient continued on prednisone for most of their hospitalization course. On hospital day 15, the patient developed their first oxygen requirement and was found to
have ground glass opacities on chest computed tomography. The patient was given tocilizumab on hospital day 17 and remdesivir on hospital day 24. They were
then transferred to an intensive care unit on hospital day 38 for closer monitoring and more oxygen supplementation (non-rebreather mask), but never required
invasive or positive pressure ventilation. The patient was discharged home with health services on hospital day 135.
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Model Validation: Simulating
Anti-Inflammatory Therapy
We validated our model by recapitulating core features of the
response to the administration of corticosteroids, a widely used
anti-inflammatory therapy for COVID-19 that has to date been
the only one considered efficacious based on a meta-analysis of
clinical trial results (64). The exemplar patient in Figure 8
received corticosteroids from admission until day 135 (with a
brief interruption from days 18-24, 26, 30-33; and 65).
Frontiers in Immunology | www.frontiersin.org 13
We estimated the therapy window for our simulation to be
continuous from day 5 (to allow for the simulated response to
evolve from the initial conditions) through day 160.
Corticosteroid treatment was simulated as being effective at
suppress ing inflammation by ful ly suppress ing al l
inflammatory induction pathways in the model (i.e. parameters
kii and kid in the I equation were set to zero during treatment
windows). Anti-I treatment for this archetypal patient shown in
Figure 8J suppresses I to levels that resemble a mild recovery
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FIGURE 9 | Short-duration Anti-inflammatory Treatment: Damage-sustained Inflammation archetype simulation with and without treatment vs. patient data. The
Damage-sustained Inflammation archetype emerges due to modifying the values of parameters kdi and xdi compared to the Recovery archetype, Mild scenario; and,
when implementing the window of anti-inflammatory therapy, kii and kid are set to zero as shown in the diagram (Panel A). Simulated dynamics are shown of CV

(Panel B) (Initialized with a CV =8x105 virus-infected cells), D (Panel C), I (Panel D), and A (Panel E) for the Damage-sustained Inflammation archetype [black, dot-
dashed curves, Panels (B–E)]. An anti-inflammatory treatment simulation of this archetype is overlayed [blue, solid curves, Panels (B–E)]. Panels (F–J) show data
from a patient in their 50s with hypertension, chronic kidney disease, and obesity who, after two weeks of symptoms at home, presented hypotensive and in
hypoxemic respiratory failure. The patient was intubated on hospital day 3 and given a methylprednisolone course on hospital days 7-11 as well as hydrocortisone
stress steroids on hospital days 17-19. The patient was liberated from the ventilator by hospital day 86 and discharged to a skilled nursing facility by hospital day
140. Simulated Anti-inflammatory intervention was carried out in the Damage-sustained Inflammation archetype of Figure 5 Panels B-E. By temporarily adjusting
some of the model parameter values governing the generation of inflammation, I, the model simulation emulates the results of applying a broad-spectrum anti-
inflammatory intervention resulting in massive suppression of inflammation. Treatment in the simulation started on day 24 (when virus-infected cells were still elevated,
implying the possibility of a positive PCR result, CV=1.7x10

4 cells), where we estimated this by adjusting for the 14 days of symptoms prior to admission plus
steroids started at day 7. The patient only received 13 days of treatment; however, our estimated window of 21 days used in the simulation resulted in a favorable
outcome as opposed to shorter times investigated (Figure S4). The simulated therapy shows that while inflammation is drastically reduced during the treatment
window, there is a resurgence after the treatment is stopped (See Panel D, blue curve, and Panel I, Data: Monocytes Absolute) due to the continued presence of
inflammation-inducing Damage/Dysfunction (See Panel C, blue curve, and Panel F, Data: Intensive Care and Organ Support). However, the treatment is enough to
reset the response dynamics in the simulation so that resolution is achieved by 150 days, having significantly inhibited the subsequent creation of D and stopping the
positive I to D feedback loop.
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case; however, in this Uncontrolled Infection archetype, this
inhibits A from curbing the growth of CV, which reaches high,
sustained levels (Figure 8B, blue solid curve) above the scenario
without treatment (Figure 8B, dot-dash curve). Damage,
although relatively low, remains sustained as well (Figures 8C,
H, K). The therapy did not curb virus growth (Figures 8B, G),
which could lead to complications later. Indeed, the patient was
discharged while stable (oxygenating well on room air) but frail
with daily nursing care and a palliative care plan.

We next sought to determine if our model could also reproduce
the response to a shorter course of anti-inflammatory therapy, in
this case a patient in their 50s with hypertension, chronic kidney
disease, and obesity who developed severe acute respiratory distress
syndrome due to COVID-19 andwas administered corticosteroids.
Based on the clinical characteristics of the patient, we simulated the
administration of corticosteroids to the Damage-sustained
Inflammation archetype presented in Figure 5. Several short-
term anti-I treatment implementations were explored in which
the duration of the treatment lasted for a 14- or 21-day period and a
variety of treatment start times were chosen. Figure 9 presents the
Frontiers in Immunology | www.frontiersin.org 14
data of the patient described above in comparison with simulation
results of one of these implementations, in which treatment was
initiated in silico on Day 24 and lasted 21 days. The treatment was
considered successful, namely due to the lower levels of virus-
infected cells at the time of treatment compared to peak
(CV=1.7x10

4 vs. CV=9.3x10
6 cells at peak). However, a similar

implementation in which in silico 21-day corticosteroid therapy
was delayeduntilDay36displayed a longer recovery and larger area
under the curve for D (AUCD) over the time window compared to
results with treatment started on Day 24 (AUCD=140 vs.
ACUD=100.3, respectively). Figure S5 shows this alternative
implementation along with all the other theoretical
implementations of corticosteroid therapy as an illustration of
both successful and unsuccessful interventions, illustrating that
the patient represented in Figure 5 may have benefited from a
different administration of corticosteroids.

Model Prediction: Simulating Vaccination
Multiple COVID-19 vaccines are currently being deployed
worldwide (65). As a further test of our underlying hypothesis
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FIGURE 10 | Area under the curve (AUC) calculations for Damage/Tissue Dysfunction and Inflammation/Innate Immunity states in order to compare results of the
non-vaccination to the vaccination scenarios. AUC for the Damage/Tissue Dysfunction state, D, (Panel A) and AUC for Inflammation/Innate Immunity state, I,
(Panel B) in non-vaccination simulations and vaccination simulations are compared for seven scenarios spanning the four archetypes. In (Panel A), the ratios of
AUCD-Vac to AUCD-NoVac for each scenario in (Panel A) are displayed above the respective pair of bar graphs and quantify the relative effectiveness over all the
scenarios of the vaccination in reducing overall damage. These ratios are also graphed in (Panel C) Ratios < 1 show effectiveness of vaccination for reducing overall
AUC in a scenario, whereas Ratios ≥ 1 indicate that vaccination was not helpful and potentially harmful. For the non-vaccination simulations, AUC is calculated over
160 days post infection, whereas the vaccination simulation AUCs are calculated from the time of the first vaccination dosage plus 160 days post infection, 160 + 42
days, to account for damage created from the adjuvant-inducing I response during the vaccination period.
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regarding a role forDAMPs in driving immune responses to SARS-
CoV2, and to further validate our model, we next simulated the
responses to vaccination of the predicted COVID-19 archetypes.
We simulated vaccination in a realistic fashion, by initiating an
adjuvant-inducingdose atDay 0and then againatDay28.This type
of vaccination is assumed to induce I to subsequently prime A in
naïve individuals not previously exposed to SARS-CoV-2 (i.e.
absent immune memory). The crucial difference of the vaccine
relative to viral infection is that it induces innate inflammatory
pathways (I) directlywithout requiring the inductionofdamage (D)
toprimea virus-specific adaptive response (A).Thus, vaccination in
theory provides a safe route for inducing immunity. Although the
ensuing immune responsemaycause symptom-like side-effects, the
amount of damage caused by this adjuvant-induced immune
response (i.e. I ➔D via kdi) are much reduced compared to those
caused by the virus.

A concern we addressed initially was that vaccination would
occur in an environment in which SARS-CoV-2 infection is
likely to occur shortly after vaccination and before any onset of
true immune memory. Accordingly, an infection was initiated
with the equivalent of 8 x 105 infected cells 14 days following the
second vaccination dose. In the simulations, the strength of the
adjuvant to induce I as well as the effectiveness of the specific
antibody response can be adjusted to inhibit the growth of the
virus-infected cell population, CV. The matching control, non-
vaccination scenarios presented assume only cell-mediated
killing of CV. Thus, the vaccination protocol enables A to both
inhibit growth of CV as well as to kill CV directly (See
Supplementary Methods for further details). The development
of long-term memory is not considered in the vaccination
simulations as it is still unclear how long, and by what
mechanisms, this takes to develop in individuals who have
been exposed to SARS-CoV-2.

Figures S6A–G depict the time courses in each of the core
COVID-19 archetypes for both non-vaccination versus
vaccination simulations. Qualitatively, most of the overall
outcomes are unchanged with vaccination except for the
Damage-sustained Inflammation archetype and the Recurrence
scenario of the Recrudescence Archetype, which are both
converted to a Recovery archetype. To further compare
between non-vaccination and the vaccination simulations, we
calculated the area under the curve of D (AUCD-Vac, AUCD-
NoVac) and I (AUCI-Vac, AUCI-NoVac) as well as the ratios of
the AUCD-Vac to AUCD-NoVac for each of the core archetypes
(Figure 10). Scenarios with an AUCD ratio < 1 demonstrate that
the vaccination reduced the amount of overall damage during the
simulation time period; the smaller the ratio, the more effective
the vaccination was in reducing overall damage/dysfunction.
Based on this analysis, we suggest that scenarios related to the
Damage-sustained Inflammation archetype would benefit most
from vaccination, followed by those of the Recovery archetype (in
reverse order of scenario severity) and then those of the
Recrudescence/Persistent Disease archetype, especially the
recurrence scenario which was converted to recovery under
vaccination simulation. For the ratios ≥ 1, this implies that the
vaccination was not effective at reducing overall damage, such as
Frontiers in Immunology | www.frontiersin.org 15
in the Uncontrolled Infection archetype. Ratios much greater
than 1 would imply that vaccination may be harmful, but this
was not observed in the simulations.

We next simulated vaccination in the context of fully developed
immune memory (implemented as a single parameter rather than
adding to the model detailed mechanisms of the formation of
immune memory). We experimented with varying levels of an
existing level of A in the model, implemented as a source constant,
Ae, in theA equation (data not shown) and settled uponAe=0.05A-
units as a reasonable intermediate level of existing immunity based
on the dynamics of CV. The results (Figures S6H–N) suggest that
fully established immunity is effective at improving the overall
outcome of all scenarios compared to the simulations with short-
term immune memory (Figures S6A–G), as all scenarios/
archetypes remained or were converted to a recovery archetype
with existing immunity.
DISCUSSION

The overarching hypothesis of this study was that the SARS-CoV-2-
mediated delay in pathogen-associated molecular pattern (PAMP)
response that includes diminished type I interferon signaling, shifts
the balance of the virus induced immune response to one that is
dictated by damage-associated molecular pattern (DAMP)
molecules. We reasoned that the current paradigm regarding the
sequence of events that ensue in response to viral infection might
miss a crucial role for DAMPs released secondary to tissue damage/
dysfunction following viral infection, as opposed to the current
dogma which focuses on virus-derived PAMPs as the main
initiating response. A parsimonious mathematical model, which is
based on the overarching hypothesis, revealed that this DAMP-
dominated response can manifest different dynamics i.e. result in
distinct viral load and disease trajectories that are referred to as
archetypal COVID-19 responses or “COVID-19 archetypes”.
Importantly, alterations of interactions among virus-infected cells,
the magnitude of the innate immune response to DAMPs that are
released from damaged or dysfunctional tissue, and the ensuing
adaptive immune response triggered by innate immune activation
are shown to underlie the distinct disease dynamics or archetypes.

Multiple groups have generated mechanistic (66–68) and data-
driven (17, 69–71) computational models of SARS-CoV-2 infection
and COVID-19 progression. In our study, we extend this prior work
by treating severe COVID-19 disease as a form of critical illness (72).
Accordingly, we sought to leverage prior mechanistic mathematical
modeling studies in other contexts of critical illness such as sepsis (34,
73–75) and trauma (76–78), all of which incorporate a variable that
accounts for tissue damage/dysfunction (D) as a proxy for DAMP
release. Notably, these earlier models do not include any variables
accounting for adaptive immunity, and yet still predicted multiple,
archetypal responses to infection or injury. Similarly, our theoretical
model predicts distinct COVID-19 archetypes including mild
scenarios, and data from incidental COVID-19 patients reflect
these predictions.

The hypothesis that D is a dominant instigator of I in
COVID-19 is a novel explanation for why asymptomatic cases
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are so prevalent in such a deadly disease. Symptoms such as fever
and malaise arise after I becomes sufficiently high. In the setting
of viral infections for which there is immune memory, I is
activated before or simultaneously with D and thus symptoms
appear rapidly. With SARS-CoV-2 infection, I is induced much
later at least in part due to virus-mediated suppression of anti-
viral mechanisms (15, 18, 22–26), and thus individuals can have
detectable virus in the absence of symptoms. Interestingly, as our
simulations progress from mild to more severe COVID-19, the
peak of I appears much closer to the peak of D, and this might
explain why the current paradigm would emerge in the absence
of extensively granular data on key molecular and cellular
players. In these studies, we compared D to clinical data
elements (e.g. creatinine or SOFA score). However, the
molecular identity of D in the context of COVID-19 (which, in
our model, stimulates I), is as yet unknown, though some have
speculated that HMGB1 might play this role (28, 29). IL-33 is
another key DAMP whose levels are predictive of severe
COVID-19 disease and poor outcomes (79).

A property of dynamical systems such as the mathematical
model of SARS-CoV-2 infection presented herein is that the time
courses flow to attractors, which can include stationary equilibria,
oscillatingcycles, andevenchaoticdynamics (43).Themodelhasan
unstable equilibrium at which A is at a low positive value while the
other three compartments are zero, which is not a dynamical
attractor. The introduction of any amount of CV will take the
system out of this unstable equilibrium and into an attractor. The
attractors for the Recovery and Recrudescence archetypes are
oscillating cycles. The difference between the two archetypes is
the period and dynamic “shape” of the cycle. In the Recrudescence
scenario, the growthofCV inducesD, which in turn induces I andA,
which then suppresses CV. This causes a reduction inD, I, andA. If
these variables decay tooquickly, thenCV can increase againand the
cycle repeats. There are two ways this cycle can be eliminated and
allow for the recovery of the patient. The first is that the period is
infinitely long or at least longer than the lifespan of the patient, and
this suppressesCV to zero and keeps it there. This behavior could be
due to a long-lasting adaptive immunememory. The second is that
CV is suppressed to zero.While suppression to zero cannot occur in
the current differential equation model by design, it could occur if
the innate stochastic fluctuations of the discrete molecule
interactions were included. When the numerical values of
variables are high, these fluctuations are small and do not affect
the dynamics; however, when CV is suppressed sufficiently, these
neglected fluctuations could take CV to zero and eliminate CV

completely. Thus, in someborderline cases, the virus could eitherbe
cleared completely or regrow due purely to random chance. In
support of this assertion, these possibilities (Recovery vs.
Recrudescence) are observed in controlled studies of SARS-CoV-2
infection in rhesus macaque monkeys (37).

The attractor for theDamage-sustained Inflammation archetype
is one in which both D and I flow to an equilibrium at which they
both are elevated due to the positive feedback within and between
the twocompartments.A characteristic ofdynamical systems is that
widely disparate network architectures can lead to the same
attractor. For concreteness, we selected one possible form, but
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there are multiple ways that the two compartments can be
coupled such that the same sustained inflammation attractor will
exist. Thus, while our model may not accurately describe the actual
mechanisms for specific inflammatory and damage markers per se,
it captures the emergent attractor dynamics of the system, forwhich
a large family of mechanisms would follow. The attractor for
uncontrolled infection is a stable equilibrium at which all the
compartments have high values. In this equilibrium, A cannot
diminish CV and thus CV saturates at a high value and keeps the
other variables high as well.

Interventions such antiviral or anti-inflammatory drugs can
switch the system from one attractor to another or change the
shape of an attractor, but do not eliminate or add attractors.
Anti-inflammatory therapies may also not be effective because D
will still be present and sustain the inflammatory state, which will
eventually lead to death. To escape from this attractor, a
coordinated diminution of both D and I is necessary. However,
if a person is in a state of uncontrolled infection, then antiviral
drugs would be effective. One counter-intuitive hypothesis is that
pro-inflammatory stimuli might be beneficial; this has been
suggested previously in other forms of critical illness, such as
sepsis (60, 61) and trauma (80).

This complexity may help explain the conflicting studies about
purported antiviral drugs such as remdesivir: a large initial study
noted beneficial effects (62), but more recent data suggested no
benefit (63). This attractor diagram may also explain the variable
effects of broad-spectrum anti-inflammatory drugs such as
corticosteroids. In a case where I is suppressing A, the dose of the
anti-inflammatory drug needs to be titrated so that I is reduced
enough to no longer suppress A but not so much that it does not
activateA at all; thismaybe one reasonwhy only 1 out of 8COVID-
19 patients responded well to dexamethasone in a recent large trial
(81). Our own simulations of corticosteroid administration suggest
that even relatively similar timing and duration of therapy applied
to the same archetype can result in different overall outcome as well
as durations to recovery, in linewith clinical experience.Ultimately,
we believe that model-based control theory, which exploits the
geometric properties of the dynamics are likely to be necessary for
addressing the complexity of COVID-19 and other forms of critical
illness (82, 83).

Our simulations also offer a nuanced and archetype-specific
view into COVID-19 vaccination. Realistic simulations of
primary vaccine responses, based on an initial activation of
innate immunity due to innate immune sensing of RNA, show
that vaccinated individuals will initially undergo an acute
inflammatory response to the RNA itself. While our
simulations did not point to any setting wherein this
inflammation would reach a level similar to that of any of the
archetypes associated with severe COVID-19, we cannot rule out
individual circumstances wherein this inflammation could
trigger inflammatory pathology. Importantly, once adaptive
immunity is induced sufficiently, our simulations suggest that
overall damage/dysfunction will be reduced in most patients with
less severe or recrudescent/persistent disease manifestations, the
finding that some archetypes (e.g., Uncontrolled Infection)
predicted to die in the absence of vaccination will not be
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rescued by vaccination is sobering. However, this prediction is
for individuals that are infected shortly after vaccination, a
potentially likely scenario in the context of “pandemic fatigue”
and a desire to return to normal activities following vaccination.
Our simulations suggest that given sufficient time for an
appropriate degree of immune memory to take hold, all
COVID-19 archetypes will be protected. These findings would
suggest the need to remain vigilant for 1-3 months after
vaccination. Notably, our simulations are not directly capable
of addressing the issue of further virus transmission by
vaccinated individuals.

There are multiple other limitations to this study. Due to its
parsimonious nature, the mathematical model described herein
does not incorporate details of specific cellular components, their
activation states, and discrete molecular pathways, which are
aggregated into the broad categories of I, A, and D. This
parsimony also means that the model cannot be calibrated
directly to data on the dynamics of infection in individual
patients. We do not consider this a flaw as much as a necessary
tradeoff when the goal is to understand and possibly predict the
evolutionof infectionand immunity in subgroupsofpatients.Aswe
demonstrate, the model can be calibrated for initial number of
virus-infected cells and, in the process, yield quite a goodqualitative
match to clinical and biomarker trajectories inCOVID-19 patients.
We note that multiple parameter sets can lead to similar
manifestations of a response that fall under one of the four major
archetypes presented herein, which can limit the ability to pinpoint
the role of specific biological interactions. Another important
limitation to the studies presented herein (but not to the model
per se) is that the model was calibrated to the initially described
strain of SARS-CoV2; the multiple variants of this virus that have
emerged (84) differ with regard to degree of infectivity and rate of
replication, properties that can be modeled readily using our
framework. The model also does not account for extra-
pulmonary manifestations of COVID-19 and the possibility that
the virus infects sites other than the respiratory tracts.We have also
not explored every possible therapy, nor have we simulated ICU
care per se. While the patients exemplified in our study exhibit viral
and disease dynamics that support our overall hypothesis, we note
that studies using unbiased machine learning approaches with a
large cohorts of temporally profiled COVID-19 patients will be
needed to fully validate our hypothesis. Notably, our studies also
point to the need to assess a role for DAMPs in the diagnostic
molecular panels as these could serve as important predictors of
disease severity and dynamics.

A key concept in the field of complex systems is that of tradeoffs
(85–88). Our studies suggest a novel tradeoff in the context of viral
infection and immunity, in which the degree to which type I
interferon production is delayed, and thus the extent to which
virus-specific host damage/dysfunction is induced, plays a crucial
role in linking innate and adaptive immunity and downstream
pathophysiology. Ultimately, we suggest that our model is
generalizable to other viral infections, with the main tradeoff
being the degree to which I is initially delayed and the amount of
D induced by CV. We posit that seasonal influenza might lead to a
smaller degree ofD as compared to SARS-CoV-2 (with the tradeoff
Frontiers in Immunology | www.frontiersin.org 17
of low individual morbidity but concomitantly low
immunogenicity and hence wider spread) as compared to
infection with SARS-CoV-2, in line with published findings (89).
This may be linked to the consensus that corticosteroids do not
improve outcomes in the context of influenza infection (90–92): we
suggest that influenza infection generally results in lessD and hence
less I as compared to SARS-CoV-2 infection. Inhibiting I with
corticosteroids in the case of influenza infection may benefit some
patients (in cases where the I ➔ D ➔ positive feedback results in
elevated inflammation) while harming those patients in which this
feedback is not predominant (and thus inhibiting I with
corticosteroids results in inhibition of A and consequent
immunosuppression) with a population-level outcome of no net
benefit. In the context of SARS-CoV2 infection,wehypothesize that
corticosteroids help ~30% of patients (64) at least in part due to
direct (via inhibition ofD➔ I➔D) or indirect (by attenuating the
negative feedback of I onA) effects. In contrast, SARS-CoV,MERS,
Ebola, or Marburg virus infection would lead to a much larger D
(with very high individual morbidity and mortality but one that is
inherently self-limiting). This feature of self-limiting infection may
also be part of the reason that the OC43 coronavirus today causes
the common cold despite having been a cause of a pandemic in the
19th century (93). Thus, this feature of SARS-CoV-2-induced D,
namely that seems tohaveevolved tobenot toobigyetnot too small,
may be the fundamental reason that SARS-CoV-2 has resulted in
the COVID-19 pandemic.
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