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Rhesus macaques are a common non-human primate model used in the evaluation of
human monoclonal antibodies, molecules whose effector functions depend on a
conserved N-linked glycan in the Fc region. This carbohydrate is a target of
glycoengineering efforts aimed at altering antibody effector function by modulating the
affinity of Fcg receptors. For example, a reduction in the overall core fucose content is one
such strategy that can increase antibody-mediated cellular cytotoxicity by increasing Fc-
FcgRIIIa affinity. While the position of the Fc glycan is conserved in macaques, differences
in the frequency of glycoforms and the use of an alternate monosaccharide in sialylated
glycan species add a degree of uncertainty to the testing of glycoengineered human
antibodies in rhesus macaques. Using a panel of 16 human IgG1 glycovariants, we
measured the affinities of macaque FcgRs for differing glycoforms via surface plasmon
resonance. Our results suggest that macaques are a tractable species in which to test the
effects of antibody glycoengineering.

Keywords: nonhuman primate, IgG, Fc gamma receptor, N glycan, rhesus macaque, ADCC - antibody dependent
cellular cytotoxicity, phagocytosis, complement dependent cytotoxicity
INTRODUCTION

Like many proteins destined for secretion, human immunoglobulin G (IgG) is subject to a variety of
post-translational modifications as it migrates through the secretory pathway of plasma cells. A
prominent modification is the attachment of an N-linked glycan to both heavy chains in the
crystallizable fragment (Fc) portion (1). While the amino acid sequon is conserved, the precise
identity of the specific N-linked glycoform incorporated is not genetically encoded.
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Among glycosylated IgG Fc domains, there exist a variety of
observed glycoforms – 36 in total for humans (2), eight of which
account for 90% of all IgG in normal sera (3). The frequency of
IgG Fc glycoforms within the distribution of the total glycan
repertoire tends to be predictable in healthy individuals (4), with
some variation due to factors such as age, sex, and pregnancy (5–
11). In general, this profile consists of high levels of fucosylation
(95%), low levels of bisecting GlcNAc (15%), intermediate levels
of galactose (45%), and low sialylation (10%) (3). This balance
can be perturbed by a heightened immune response however (12,
13), and distinct antigen-specific antibody fractions may differ
from each other and from the average serum IgG Fc glycan
profile within a given individual (14–16).

Occupancy of this conserved glycosylation site is critical to
the ability of an IgG molecule to interact with human Fcg
receptors (FcgR), as the absence or removal of the N-glycan
produces an antibody with dramatically diminished or outright
eliminated affinity for FcgR and no detectable effector function
(17, 18). Slight changes in the composition of the Fc glycan can
impart changes to the Fc-FcgR dynamic that may resonate all the
way to the severity of clinical presentation (19–27). More
specifically, an increase in galactose content has been
associated with increased propensity of the Fc domain to
hexamerize (28), as well as with a slight (≤2 fold) increase in
affinity for most of the low affinity (i.e., not FcgRI) FcgRs (29, 30),
while the absence of a fucose molecule branching from the
asparagine-proximal N-acetylglucosamine (GlcNAc) has been
credited with up to an astounding 50-fold increase in affinity for
FcgRIIIa/b (31–33). This increase in affinity translates to
improvement in antibody-dependent cellular cytotoxicity by
FcgRIIIa-bearing natural killer (NK) cells (34, 35), which has
made it an attractive tool for enhancing the efficacy of
therapeutic monoclonal antibodies (mAbs) (36, 37).

Pre-clinical animal models serve as an important bridge for
such glycoengineered mAbs migrating from the lab to the clinic.
Like that of humans, macaque IgG features a conserved N-linked
glycan motif, which is necessary for binding to macaque FcgR
(38, 39). Despite having a degree of homology to humans that
makes them a tractable and popular animal model for biomedical
research, like all models, macaques can be sufficiently
immunologically distinct that care should be exercised when
attempting to extrapolate observations in non-human primates
to humans (40). Whereas the macaque IgG subclasses are more
functionally monolithic than those in humans (39), genetic
diversity among FcgR is significantly greater among macaques
than in humans, particularly for FcgRII (41). Additionally,
macaques do not express an equivalent of the GPI-linked
human FcgRIIIb, and the clinically-relevant functional
differences in high and low FcgRIIIa binding affinity allotypes
observed in humans are not reflected among frequent alleles in
macaques (42). These characteristics help to set expectations and
guide design and interpretation of experiments conducted in
these models. Yet, other aspects of antibody immunobiology
have yet to be fully investigated; the impact of antibody
glycosylation on receptor binding is one such area of concern.
Macaque IgG is more likely to feature a bisecting GlcNAc residue
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and shows greater variability in galactose content than human
IgG Fc (43, 44). Furthermore, human IgG Fc sialylation is carried
out with N-acetylneuraminic acid (NANA) whereas macaques
use N-glycolylneuraminic acid (NGNA) (43). The most striking
effect of glycovariation in human IgG is very clearly the “fucose
effect” for FcgRIII, which has been proposed to be mediated by
disruption of glycan-glycan contacts (45, 46) or via altered
conformational sampling (47). Regardless of mechanism, this
effect is readily observed from mice to humans (48), and the
receptor glycosylation site associated with it is conserved in
rhesus macaques (38). The available data suggest that the effect
of afucosylation on macaque FcgRIIIa affinity is also conserved
(49), although perhaps with more modest fold-change increases
in affinity than what has been observed in humans.

Using a panel of glycoengineered human IgG1 antibodies, we
report the affinities of the low affinity rhesus macaque (RM) Fcg
receptors for each of 16 glycoforms, and further validate our
observations by analysis of relationships between rhesus serum
IgG Fc glycan profiles and FcgR binding levels. This work
provides a more complete picture of the glycopreferences of
macaque FcgRs, allowing for more confident design of
experiments and interpretation of data when engineered
human antibodies are tested in non-human primate models.
RESULTS AND DISCUSSION

A panel of 16 previously described IgG Fc glycovariants
generated via a series of chemical and genetic methods that
alter the dominant species of glycan within production runs of an
anti-trinitrophenol (TNP) human IgG1 monoclonal antibody
(mAb) (50, 51) was used to investigate the glycopreferences of
rhesus macaque FcgR recognition (Supplemental Table 1).
Briefly, these tools selectively achieved a greater than nine-fold
reduction in the amount of core fucose (from 95% to 10%), a
ten-fold or greater increase in the frequency of bisected species
(from 5% to >50%), and terminal sialylation (3% to >40%), as
previously reported in greater detail (51). Variation in galactose
content ranged from 10% to 80%. Collectively, this panel of
variants represents well the diversity of glycan changes that exist
within human serum and in recombinant expressed and
glycoengineering monoclonal antibodies.

The affinity of the low affinity macaque FcgRs for these
variable glycoforms was measured using a multiplexed surface
plasmon resonance (SPR) approach in which the glycovariants
were covalently linked to a sensor chip and the FcgRs were the
analyte in solution. Some of the differences imparted by
modulating the Fc glycan were readily apparent from raw
sensorgrams (Figure 1). While all the interactions exhibit a
fast-on association dynamic, the off-rate was noticeably slower
in the case of the higher affinity FcgRIIIa. This observation was
particularly striking for interactions with afucosylated IgG
wherein dissociation was not always complete by the end of
the 5-minute step.

Equilibrium dissociation constants (KD) were fitted to the
responses at steady state to define binding affinities for each
October 2021 | Volume 12 | Article 754710
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receptor and IgG Fc glycoform variant in two separate
experiments that compared the set of glycovariants with each
modification to the set without (Figure 2). Among glycan
modifications, reduction in core fucose of human IgG1
resulted in the most dramatic change in receptor binding
affinity — improving the affinity of rhesus macaque FcgRIII as
compared to Fc glycoforms without intentionally reduced fucose
content (Figure 2A). While there was some variability in the
magnitude and statistical confidence in the effect of reduced
fucose between experimental runs and across the major FcgR
allotypes (Figure 3), these results were generally consistent with
a prior report of the sensitivity of RM FcgRIIIa to IgG Fc
fucosylation (49).
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In contrast, the presence or absence of bisecting GlcNAc did
not have a statistically significant effect on the binding affinity of
any RM FcgR tested (Figures 2B, 3). While a prior study
suggested that the presence of bisecting GlcNAc resulted in
improved effector function in the context of human FcgR (52),
other work has suggested that these observations were instead
driven by variable fucosylation (51, 53). The observation that
bisected glycans cannot subsequently become fucosylated
appears to have resulted in some confounding of cause and
effect with respect to the role of bisection (54).

Nor was there an impact associated with variable terminal sialic
acid content (Figures 2C, 3). Again, while some studies have
suggested that sialic acid influences receptor binding affinity
FIGURE 1 | Exemplary sensor data of FcgR-IgG interactions. Sensorgams depicting the association and dissociation of FcgR from IgG over time for prevalent FcgRII
(2 and 3) and FcgRIII (1 and 3) allotypes (rows) and differentially glycosylated IgG (columns). The equilibrium dissociation constants reported in this work were
calculated using the response measured at the end of the association phase when interactions had achieved steady state. Each receptor was evaluated over a three
order of magnitude concentration range.
A B DC

FIGURE 2 | Affinity of rhesus macaque FcgRs for a panel of human IgG1 glycovariants. Equilibrium dissociation constants (KD) of rhesus macaque alleles having unique
extracellular domains observed in two independent experiments (rows). Within each experiment, glycovariants were printed in replicate and each replicate is
plotted. Results are presented such that each panel emphasizes a different category of glycomodification, including variable fucosylation (F) (A), bisecting N-Acetylglucosamine
(B) (B), sialylation (S) (C), and galactosylation (G) (D). A natively glycosylated preparation (black) is plotted along with variants with (+) or lacking (-) the glycan
emphasized in that panel. Statistically significant differences were tested using an unpaired t test comparing glycovariants with (+) and without (-) the modification (*p <
0.05, ***p < 0.0005, ****p < 0.0001).
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(55, 56), others have reported contradictory results (30, 57). Using
this same well-characterized panel of glycovariants, variation in
sialic acid content between 12-64% appeared to have essentially no
general effect on binding affinity across diverse human FcgR (51).

Further mirroring their human counterparts, rhesus macaque
FcgRs hadmarginally, but often statistically significantly, heightened
affinities for IgG with increased levels of galactosylation
(Figures 2D, 3). To address these differences with improved
resolution, analysis of the effect of variable galactosylation when
fucose, sialic acid, and bisecting GlcNAc were held constant were
analyzed in paired comparisons (Figure 4). As in the global data
analysis, both experimental data sets showed a small but
reproducible improvement to FcgRII binding affinity with
increasing galactose content when other glycan attributes such as
extent of fucosylation or bisection were held constant. These results
are consistent with the phenotype observed in humans, where
increasing galactose content improved affinity in a small but
consistent manner among the low affinity FcgRs (30, 51). Similar
Frontiers in Immunology | www.frontiersin.org 4
paired analysis of fucose, bisecting GlcNAc, and sialic acid showed a
small but statistically significant enhancement of binding affinity to
FcgRII among otherwise matched but variably bisected variants
when data from all FcgRII receptors and both experiments were
considered (Supplemental Figure 1). However, this relationship
was not observed to hold in both individual experimental replicates.

Because the effect of variable fucose content is of clinical relevance
in both natural immune responses (19–24) and in optimization of
antibody therapy (31, 53), we further probed this aspect of RM
receptor binding profiles with additional antibody specificities.
Rhesusized antibody to CD20 engineered to lack fucose
(Supplemental Figure 2) showed improved binding affinity to RM
FcgRIII, as did a Dual Variable Domain (DVD) format bispecific
(Figure 5) that was similarly modified to reduce fucose content
(Supplemental Figure 3). These experiments show that fucose effect
is consistent across both rhesus and human IgG1 Fc domains in the
contextof distinct antibody specificities andeven formats. Indeed, the
slowed dissociation rate of afucosylated IgG Fc forms was apparent
across data collected in this study, including theexperiment forwhich
that effect was obscured by concomitant changes to the association
rate for FcgRIIIa-3 that appeared to affect the equilibrium affinities
reportedhere. Importantly, the functional consequences of improved
FcgRIII binding affordedby afucosylation arewell established inmice
and humans, where improvements in ADCC activity are readily
observed to result [summarized in (58)].While it appears that similar
observations have yet to be reported in assays conducted with
macaque effecter cells, whose receptor expression profiles are
poorly defined and genetic diversity in receptors is extensive, the
sameglycosylation site associatedwith this phenotype is conserved in
rhesus FcgRIII allotypes. The lack of this glycosylation site in other
FcgR (e.g.: FcgRI and FcgRII) explains the receptor-specific nature of
the “fucose effect”.

Lastly, to begin to further generalize these observations about
glycan binding preferences beyond the human IgG1 backbone, we
analyzed serum IgG glycoprevalences among a small set of healthy
RM, and investigated relationships between galactose and fucose
content and binding to RM FcgR. Though confidence in correlative
relationships between glycan profiles and receptor binding signals
are limited by small sample size and the potential effect of differing
FIGURE 3 | Summary of receptor affinity differences. Statistical significance of differences in affinity associated with variable glycosylation. Glycan modifications are
tabulated by row and receptors by column, for each of the two independent experimental runs. Confidence in differences is indicated in color. Crosshatches indicate
missing data. The effect of varying (+ versus -) sialic acid, bisecting GlcNAc, and fucose were evaluated by unpaired t test, and for galactose [+G, unmodified (base),
and -G] with an ordinary one-way ANOVA corrected for multiple comparisons.
FIGURE 4 | Increased galactosylation is associated with improved affinity for
FcgRII. The effect of increased and decreased galactose content on binding to
FcgRII variants among IgG Fc glycotypes for which other glycan characteristics
(e.g., fucosylation, sialylation, bisection) were held constant. Statistically
significant differences were tested using a mixed effect model with Tukey’s test
of multiple comparisons (*p < 0.05, **p < 0.01, ***p < 0.001). ns, not significant.
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levels of serum IgG between animals, increased binding of serum
samples with greater levels of Fc galactosylation was observed across
diverse FcgRII and FcgRIII allotypes, as was the effect of reduced
fucosylation for FcgRIII (Figure 6). Collectively, these observations
support further generalization of the effects these glycoprofiles have
on FcgR binding to polyclonal pools of mixed specificity, light chain
usage, and subclasses of rhesus macaque IgG.
CONCLUSIONS

This work establishes that the low affinity Fcg receptors of RM
demonstrate preferences for glycoforms of human IgG1 that
largely mirror that of their human equivalents. Rhesus macaques
therefore likely serve as an appropriate model for the evaluation
of glycoengineered human antibodies. While the panel of
glycovariants focused on human IgG1, this subclass is
overwhelmingly represented among therapeutic monoclonal
antibodies, and where evaluated, the glycan preferences appear
to hold across human IgG subclasses (32, 59). We show here that
the effect of fucose on RM FcgRIII recognition is generalizable
across both human and rhesus monoclonal antibodies with
distinct variable domains, a dual variable domain bispecific
construct, and to polyclonal rhesus serum IgG. These results
have important implications for the use of RM to study
recombinant glycoengineered antibodies in preclinical and
mechanistic studies of antibody therapies, as well as in
attempting to relate antibody glycotypes raised in response to
vaccination (60–62) or via vectored antibody delivery (63), to in
vitro effector activities or in vivo outcomes.
METHODS

Protein Expression and Purification
The engineering and characterization of the variably glycosylated
panel of anti-TNP human IgG1s (50, 51) and rhesusmacaque FcgRs
(38) have been described previously. These modifications include
Frontiers in Immunology | www.frontiersin.org 5
manipulation of fucose (F), bisecting GlcNAc (B), sialic acid (S), and
galactose (G) content (Supplemental Table 1). Unmodified anti-
CD20 [anti-CD20 (2B8R1), Nonhuman Primate Reagent Resource
Cat# PR-2287, RRID: AB_2716323] and afucosylated anti-CD20
[anti-CD20 (2B8R1F8), Nonhuman Primate Reagent Resource
Cat# PR-8288, RRID: AB_2819341] were derived from rituximab
and grafted into rhesus variable regions. Representative mass
spectrometry-based glycoprofiles of these reagents are shown in
Supplemental Figure 2. Unmodified and afucosylated forms of an
HIV-specific double variable domain bispecific Ab that binds to
both gp120 and gp41 of the envelope protein through fusion of CD4
(d2) with gp41-specific 7B2 monoclonal antibody linked through
the H4 linker CD4 (d2)-H4-7B2 (64, 65) were constitutively
expressed in either wild type or fucosyl-transferase Fut8-/- CHO
cells. Unmodified and afucosylated DVDs showed equivalent
binding to antigen by ELISA, but differential interaction with
biotinylated fucose-specific Lens culinaris lectin, and the human
CD16-expressing KHYG-1 Natural Killer cells (66) (kindly
provided by Dr. David Evans, Wisconsin National Primate
Research Center) (Supplemental Figure 3).

Surface Plasmon Resonance
Antibodies were covalently coupled to a carboxymethyldextran-
functionalized sensor (CMD200M, Xantec Bioanalytics) using
carboiimide chemistry. A Continuous Flow Microspotter (CFM)
(Carterra) allowed the complete panel, with replicates, to be printed
on a single sensor chip. The sensor surface was activated by a
mixture of 10.4 mM EDC (ThermoFisher, 77149) and 2.8 mM
sulfo-N-hydroxysuccinimide (ThermoFisher, A39269) formulated
in 10 mMMES (pH 5.0). Antibodies formulated in 10 mM sodium
acetate (pH 5.0) at 50 and 100 nM were applied to the activated
regions for 10 minutes. The regions were then washed with sodium
acetate for 5 minutes. Unreacted substrate was capped using 1 M
ethanolamine (Sigma-Aldrich, 15014-100ML) applied by the flow
cell of the imaging-based surface plasmon resonance instrument
(SPRi) (MX96, IBIS Technologies). Remaining ligand was removed
and the overall capacity of the sensor tested using successive
injections (5 rounds in total) of 25 mg/mL anti-human Fc and
10 mM glycine (pH 3.0).
A B

FIGURE 5 | The fucose effect is generalizable across antibodies but not receptors. (A) Representative sensorgrams showing association and dissociation profiles
of RM FcgRIIIa-3 from unmodified and afucosylated forms of a rhesusized version of rituximab. (B) Equilibrium binding affinities of CDR grafted CD20-specific
antibodies with rhesus IgG1 Fc domains (left), and a dual variable domain (DVD) bispecific antibody (right) in unmodified and afucosylated forms, and in comparison
to an unmodified rhesus IgG1 antibody of a differing specificity (control).
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The Fc receptor analytes were formulated at 20 mM in a running
buffer consisting of 1x phosphate buffered saline containing 0.05%
Tween 20. Each receptor was tested over an 8-point series of 1:3
dilutions, running from the lowest concentration to the highest.
Association was measured over a 5-minute period before switching
the flow cell to running buffer to capture 5 minutes of dissociation.
Two blank injections of the running buffer following each receptor
series were sufficient to completely dissociate these low-affinity
analytes and prepare the sensor for the next receptor.

Raw data was processed using SprintX (IBIS Technologies).
The background signal of the nearest unconjugated interspot was
subtracted from the adjacent regions of interest to account for
bulk shift and non-specific binding. The blank injection
immediately preceding each series of receptor was also
subtracted from each concentration of receptor. Equilibrium
affinity values (KD) for each receptor-glycovariant pair were
calculated in Scrubber 2 (BioLogic Software) using the average
signal during a ten-second window at the end of the association
phase when the system had reached equilibrium. The maximum
response (Rmax) predicted for a saturated system was calculated
for each region of interest. Regions with an Rmax of less than 25
were discarded for insufficient signal.

Rhesus Serum IgG Receptor Binding and
Glycan Analysis
Serumsamples fromsevenhealthy rhesusmacaqueswereprofiled for
binding to rhesusFcgR-conjugatedfluorescentbeads inamultiplexed
Frontiers in Immunology | www.frontiersin.org 6
assay (67). Briefly, recombinant rhesus FcgRwere covalently coupled
to uniquelyfluorescently codedmagneticmicrospheres, incubated in
dilute serum, and bound antibodywas detectedwith a phycoerythin-
conjugated anti-IgGdetection antibody prior to data acquisition on a
Luminex FlexMap. Median fluorescent intensities were reported for
each sample for each FcgR.

For glycan analysis, rhesus macaque IgG was purified from
serum via Melon Gel (manufacturer), followed by digestion with
both SpeB and IdeA enzymes (Genovis), and purification of
cleaved Fc domains by Protein A affinity chromatography (GE
Life Sciences), each according to the manufacturer ’s
recommendations. IgG glycan analysis was performed as
described previously (68). Briefly, purified Fc was treated with
PNGase F (New England Biolabs). Subsequently, protein was
precipitated with ethanol and released glycans were evaporatively
concentrated prior to fluorescent labeling with 2-aminobenzamide.
After washing and removal of excess dye, glycans were analyzed
using HILIC HPLC on a 150 3 2-mm TSKgel Amide-80 column
(Tosoh Bioscience) with 3-mm packing material on a 1200 series
HPLC (Agilent Technologies). Peak identities were confirmed via
use of a glycan standard (Ludger). Quantification by area-under-
the-curve analysis was performed with ChemStation software
(Agilent Technologies).

Statistical Analysis
Statistical analysis was performed in Graphpad Prism version 9.
Global comparisons (Figure 2) of glycovariants with (+) and
A B

FIGURE 6 | Similar FcgR binding glycopreferences are observed for RM serum IgG. (A) Correlations of receptor binding signal in multiplex assay and glycan species
prevalence in rhesus macaque serum IgG for each allotypic variant of RM FcgRIIa and FcgRIIIa. Unadjusted Spearman correlation coefficient (RS) strength and
direction are indicated in color, and confidence (p value) in size. (B) Exemplary scatter plots of relatively stronger correlative relationships between relative galactose
and fucose content (% peak area) in relation to FcgR binding median fluorescent intensity (MFI). Correlation coefficients and exact p values are indicated in inset.
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without (-) fucose, bisecting GlcNAc, and sialic acid modifications
were evaluated for each individual receptor allotype by t test.
Galactose content, which was alternatively increased, unmodified,
or decreased, was evaluated by one-way ANOVA adjusted for
multiple comparisons according to the procedure of Benjamini,
Krieger, and Yekutieli. Paired comparisons (Figure 4 and
Supplemental Figure 1) of glycovariants with and without fucose,
bisecting GlcNAc, and sialic acid modifications but for which other
glycan modifications were held constant (i.e.: for fucose content, +G
was paired with -F+G, and +G+S was paired with -F+G+S) were
evaluated by paired t test across of FcgRII types and allotypes and
FcgRIII allotypes. Paired comparisons evaluating the effect of
variable galactosylation were evaluated using a mixed effect model
with Tukey’s test of multiple comparisons, comparing the effect of
each galactose characteristic (+G, unmodified G, and -G) when
other modifications (F, B, and S)) were held constant. Strength and
direction of relationships between Fc glycoform prevalences in
rhesus serum IgG and FcgR binding signals were evaluated by
Spearman’s rank correlation coefficient and statistic.
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