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T-lymphocytes (T cells) play a major role in adaptive immunity and current immune
checkpoint inhibitor-based cancer treatments. The regulation of their function is complex,
and in addition to cytokines, receptors and transcription factors, several non-coding RNAs
(ncRNAs) have been shown to affect differentiation and function of T cells. Among these
non-coding RNAs, certain small microRNAs (miRNAs) including miR-15a/16-1, miR-125b-
5p, miR-99a-5p, miR-128-3p, let-7 family, miR-210, miR-182-5p, miR-181, miR-155 and
miR-10a have been well recognized. Meanwhile, IFNG-AS1, lnc-ITSN1-2, lncRNA-CD160,
NEAT1, MEG3, GAS5, NKILA, lnc-EGFR and PVT1 are among long non-coding RNAs
(lncRNAs) that efficiently influence the function of T cells. Recent studies have underscored
the effects of a number of circular RNAs, namely circ_0001806, hsa_circ_0045272,
hsa_circ_0012919, hsa_circ_0005519 and circHIPK3 in the modulation of T-cell
apoptosis, differentiation and secretion of cytokines. This review summarizes the latest
news and regulatory roles of these ncRNAs on the function of T cells, with widespread
implications on the pathophysiology of autoimmune disorders and cancer.

Keywords: miRNA, lncRNA, circRNA, T cell, cancer, autoimmune
INTRODUCTION

T-lymphocytes (T-cells) play a central role in adaptive immunity and are involved in the
pathogenesis of immune-related disorders and cancer, thus several therapeutic strategies have
been developed to stimulate their effector functions (1). During the process of maturation in the
thymus, T cells express T cell receptors (TCR) on their surface. Moreover, they can express either
CD8 or CD4 glycoproteins, thus being categorized as glycoprotein on their surface and are called
CD8+ (cytotoxic) or CD4+ cells (helper) T cells (2). Based on the distinctive cytokine profiles, T
helper (Th) cells can be categorized to Th1, Th2, Th9, Th17, Th22, regulatory T cells (Tregs), and
follicular helper T cells (Tfhs) subtypes (3). Each cell type can be recognized by epigenetic and
genetic signatures. For instance, Treg cells are described by over-expression of the FOXP3
org November 2021 | Volume 12 | Article 7560421
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transcription factor (4) Demethylation of the intronic conserved
non-coding sequence 2 is required for maintenance of FOXP3
expression and regulation of stability of Tregs upon re-exposure
to cytokines (5). In Tregs, this intronic sequence acts a sensor for
IL-2 and STAT5 (5). The expression of a number of transcription
factors has been shown to be altered in CD8+ T cells during
clearing an Bacterial or Viral infection (6). Notably, it is possible
to predict the potential of these cells to make memory cells based
on gene signatures (6). For instance, expressions of Bcl-2 and
Cdh-1 have been shown to be surged in the memory subset of
CD8+ T cells (6). In addition, chromatin configurations have
been found to influence the function of T cells (6). Non-coding
RNAs (ncRNAs) carry a regulatory function in several biological
processes including implications in immune checkpoint
inhibitor treatment (7). Recent studies have highlighted the
impact of different classes of non-coding RNAs in T cell
functions. In this review, we highlight the function of
microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and
circular RNAs (circRNAs) in regulation of T cells. These three
classes of ncRNAs have regulatory effects on expression of
mRNA coding genes. In fact, lncRNAs and circRNAs can
sequester miRNAs and decrease availability of miRNAs. Since
miRNAs can inhibit expression of target mRNAs, the
sequestering effects of circRNAs and lncRNAs on miRNAs
release miRNA targets from inhibitory effects of miRNAs (8).
miRNAs AND T CELL REGULATION

miRNAs are about 22 nucleotides in length and regulate
expression of their target transcripts mostly through binding to
their 3’ UTR (9, 10). These small molecules are generated in the
forms of precursors by RNA polymerases II and III. The mature
miRNA is generated through a series of cleavage events in the
nucleus and cytoplasm (9). Given their various regulatory
functions, miRNAs are important players in the regulation of
several physiologic and pathophysiologic processes (11). As for
the regulation of T-cell differentiation, several examples of
important miRNAs have been reported. For instance, miR-15/
16 hampers T cell cycle, their survival and differentiation to
memory T cells. Experiments in miR-15/16 deficient T cells have
shown that these miRNAs directly inhibit the expression of a
broad network of genes contributing in the regulation of cell
cycle progression, survival, and development of memory cells
(12). Another study has shown miR-15a/16-1 silencing in CD4+
T cells leads to the production of higher levels of IL-22, while up-
regulation of miR-15a/16-1 results in down-regulation of the IL-
22 expression through suppression of the aryl hydrocarbon
receptor. miR-15a/16-1 silenced CD4+ T cells were superior to
wild-type CD4+ T cells in terms of tissue repair capacity because
of their higher capability in production of IL-22. Furthermore,
IL-22 has been shown to decrease miR-15a/16-1 levels through
activation of phosphorylated STAT3-c-myc signaling (13).

A high throughput miRNA profiling in human peripheral gd
T cells of healthy subjects has led to identification of 14
differentially expressed miRNAs between ab and gd T cells.
Frontiers in Immunology | www.frontiersin.org 2
While miR-150-5p, miR-450a-5p, miR-193b-3p, miR-365a-3p,
miR-31-5p, miR-125b-5p and miR-99a-5p have been up-
regulated in gd T cells, miR-34a-5p, miR-16-5p, miR-15b-5p,
miR-24-3p, miR-22-3p, miR-22-5p and miR-9-5p have had the
opposite trend (14). Notably, miR-125b-5p and miR-99a-5p
have been found to attenuate the activity of gd T cells and
decrease their cytotoxic effects against tumor cells. Up-regulation
of miR-125b-5p or miR-99a-5p in gd T cells was shown to
suppress the activity of gd T cells and induced their apoptosis.
Moreover, miR-125b-5p silencing has increased cytotoxic effects
of gd T cells against tumor cells through enhancing the
production of IFN-g and TNF-a (14). Overexpression of miR-
125b has also promoted Treg cells differentiation and suppressed
Th17 cell differentiation (15). In addition, miR-125a, a miRNA
which has only recently been reported to be involved in
myelogenous leukemogenesis (16), could inhibit production of
proinflammatory cytokines in CD4+ T cells and Th1/Th17 cell
differentiation by targeting ETS-1 (17).

Let-7 family miRNAs are also involved in the regulation of T
cells functions. In vivo experiments demonstrated that, let-7g-5p
may attenuate the frequency of Th17 cells of rheumatoid arthritis
(RA) and block Th17 differentiation (18). Let-7f-5p inhibits
Th17 differentiation through targeting STAT3. This miRNA
has been found to be downregulated in CD4+ T cells of
patients with multiple sclerosis (MS) (19). Finally, let-7d-3p
regulates the expression of IL-17 in CD4 + T cells by targeting
AKT1 and modulation of AKT1/mTOR signaling pathway (20).

miR-210 is another miRNA whose deletion enhances T cell
differentiation and Th17 polarization under hypoxic situation
through modulation of HIF-1a expression (21). Expression of
this miRNA has also been found to be over-expressed in both
psoriasis patients and psoriasis animal models where it
stimulates Th17 and Th1 cell differentiation but suppresses
Th2 differentiation via inhibiting expressions of STAT6 and
LYN. Ablation of miR-210 in animals and intradermal
injection of miR-210 antagonist has reversed the immune
imbalance and blocked the development of psoriasis-like
inflammatory response in an animal model of psoriasis. TGF-b
and IL-23 have been shown to increase the expression of miR-
210 through the induction of HIF-1a, and subsequent
recruitment of P300 and enhancement of histone H3
acetylation in miR-210 promoter (22).

miR-181c has been shown to enhance Th17 differentiation
and promote autoimmunity through targeting Smad7 and
modulating TGF-b pathway and IL-2 expression (13).
Overexpression of miR-181c has suppressed activation of T
cell, impaired cytoskeleton arrangement in T cells by targeting
BRK1 (23). Meanwhile, miR-181a has been reported to restrict
IFN-g production by targeting Id2 so regulating IFN-g-mediated
CD8+ T cell responses mediated by (24). This miRNA also
promotes expression of TGF-b and IL-10 and inhibits function
of Tregs through modulating the PI3K/Akt pathway (25).
Figure 1 illustrates the role of various ncRNAs in regulating
the differentiation of T cells via the PI3K/Akt/mTOR and
MAPK/ERK signaling pathways. Table 1 summarizes the
impact of miRNAs on regulation of function of T cells.
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LncRNAs AND T CELL REGULATION

LncRNAs are typically longer than 200 nucleotides and may also
be several kilobases long (69). They exert diverse effects on
chromatin structure, transcription of genes and post-
transcriptional regulation of gene expression (70). These effects
are exerted through both chromatin-based mechanisms and the
interaction with other types of transcripts. Moreover, by serving
as decoy, scaffold, and enhancers, lncRNAs influence genes
Frontiers in Immunology | www.frontiersin.org 3
expressions though various mechanisms (71). Several lncRNAs
have been found to influence the function of T cells. For instance,
IFNG-AS1 is up-regulated in the intestinal tissue of patients with
active inflammatory bowel disease (IBD). Specific over-
expression of IFNG-AS1 in T cells has led to significant
enhancement of inflammatory cytokines, while attenuation of
production of anti-inflammatory cytokines. Media from IFNG-
AS1-overexpressing T cells has induced a potent inflammatory
response in primary human peripheral blood mononuclear cells
(PBMCs) (72). Lnc-ITSN1-2 is another lncRNA that affect T
cells differentiation. This lncRNA has been shown to increased
proliferation and activation of CD4+ T Cells and promote their
differentiation to Th1/Th17 through targeting miR-125a and
upregulating IL-23R (73).

The regulatory role of NEAT1 on T cells functions has been
validated in different contexts, including sepsis, primary
Sjögren’s syndrome, RA and hepatocellular carcinoma (HCC)
(74, 75). Downregulation of NEAT1 has restricted immune
response in mouse model of sepsis and induced T cell
apoptosis through modulating miR-125/MCEMP1 axis (76).
This lncRNA has been shown to promote expression of
CXCL8 and TNF-a and activate MAPK signaling pathway.
NEAT1 expression has been up-regulated in CD4+ and CD8+
T cells of patients with primary Sjögren’s syndrome (34).
Similarly, this lncRNA has been found to be up-regulated in
peripheral blood mononuclear cells of RA patients. Its silencing
has led to inhibited differentiation of Th17 cells from CD4+ T
cells by downregulating STAT3 through modulating its
ubiquitination (77). Finally, NEAT1 has been found to be up-
regulated in PBMCs of HCC patients parallel with up-regulation
of Tim-3. NEAT1 silencing has blocked apoptosis of CD8+T
cells and increased their cytolysis function. Further, NEAT1
has been shown to exert such effects through miR-155/Tim-3
pathway. Taken together, NEAT1 has been suggested as an
impor tan t ta rge t fo r enhanc ing the e ffic i ency o f
immunotherapy (78).

MALAT1 is another lncRNA with prominent role in the
regulation of T cell function. This lncRNA regulates Th1/Th2
ratio by sponging miR-155 and modulating expression of CTLA4
(79). On the other hand, MEG3 has been found to enhance
proportion of Th17 cells and regulate Treg/Th17 ratio by
sponging miR-17 and upregulating RORgt (80). Moreover, this
lncRNA decreases proliferation of CD4+T cell and inhibits Th1
and Th17 differentiation by absorbing miR-23a and modulating
expression of TIGIT (81). Figure 2 represents the role of various
ncRNAs in regulating the JAK2/STAT3 and NF-kB signaling
pathways in the regulation of function of T cells. Table 2
summarizes the impact of lncRNAs on T cell function.
CircRNAs AND T CELL REGULATION

CircRNAs are another group of ncRNAs that can be
occasionally translated into proteins. The enclosed structure
of circRNAs has endowed them a certain resistance to RNases
and thus increases the stability in different body compartments
FIGURE 1 | A schematic representation of the role of various non-coding
RNAs in modulating the differentiation of T cells via the PI3K/Akt/mTOR and
MAPK/ERK signaling cascades. a) The MAPK/ERK pathway can be triggered
via several growth factors including PDGF, EGF, NGF, and insulin. Upon
receptor dimerization, activation of its tyrosine kinase module could be
triggered, subsequently recruiting Grb2 and SOSto the phosphorylated domain,
thus creating the Grb2-SOS complex. Furthermore, the GTP binding protein
RAS interacts with the Grb-2-SOS complex that in turn leads to the activation
of RAS. Activated GTP-bound RAS plays an effective role in upregulating the
phosphorylation of MEK1/2 (MAPKK), which then phosphorylates ERK1/2
(MAPK). Eventually, ERK is transferred to the nucleus where it triggers the
activation of various target genes involved in a variety of cellular processes (26–
29). b) The PI3K/Akt/mTOR signaling is activated by a subset of growth factors
such as PI3KCI, which phosphorylates PIP2 to PIP3. PIP3 has an important
role in recruiting AKT which gets activated through double phosphorylation (via
PDK1 and mTORC2). In addition, activated AKT suppresses TSC2 through
phosphorylation. Inactive TSC1/2 complex is able to bind RHEB, which
eventually triggers the activation of mTORC1. The mTORC1 has a significant
impact on many downstream proteins, such as S6K1/2 and 4EBP1 (30, 31).
Besides, exposure to IL-17 results in receptor-mediated activation of Src,
MAPKs, and PI3K/Akt signaling cascades (32). Moreover, subsequent to JAK
activation, CRKL is phosphorylated by TYK2 that could result in CRKL
complexation with STAT5. STATs in turn interacts with individual mediators
of the PI3K/AKT signaling cascade (33). Accumulating finding has
demonstrated that miR-let-7d-3p via directly suppressing AKT1 could
regulate expression level of IL-17 in CD4+ T cells through the AKT1/mTOR
signaling pathway (20). In addition, another research has authenticated that
overexpression of lncRNA NEAT1 could promote the expression levels of
CXCL8 and TNF-a in Sjögren’s syndrome via positively regulating MAPK
signaling (34). Green arrows indicate upregulation of target genes modulated
via ncRNAs (lncRNAs, and miRNAs), red arrows depict inhibition by these
ncRNAs. All the information regarding the role of these ncRNAs in
modulating T call differentiation can be seen in and.
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TABLE 1 | miRNAs and T cell regulation.

microRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

miR-15/16 – – miR-15/16 deficient
mouse model

CD4(+) T cells
obtained from mice

– – Constrains
formation of
memory T cells and
confines T cell
survival and cell
cycle through
modulating complex
network of their
target genes
implicated in cell
cycle and survival

(12)

miR-15a/
16-1

– – C57BL/6 mice Naïve CD4+
T cells

AHR – Decreasing IL-22
secretion of CD4+
T cells through
targeting AHR

(13)

miR-125b-
5p
miR-99a-
5p

Downregulated
(in gd T cells
compared with
ab T cells)

– Peripheral blood obtained
from 21 healthy donors

ab T cells and gd T
cells purified from
peripheral blood

– – upregulation inhibits
activation of gd T
cells and
cytotoxicity to tumor
cells by decreasing
secretion of IFN-g
and TNF-a.

(14)

miR-125b Downregulated (in
in PBMCs and
CD4+ T cells of
patients)

Juvenile idiopathic
arthritis (JIA)

Peripheral blood obtained
from 16 JIA patients and
22 healthy volunteers, 24
male DBA/1J mice

CD4+ T cells – – overexpression
promotes Treg cells
differentiation and
suppresses Th17
cell differentiation.

(15)

miR-125a Downregulated (in
PBMC of IBD
patients)

Inflammatory
bowel diseases
(IBD)

Blood samples from 106
IBD patients and 16
healthy controls, Female
C57BL/6 mice

CD4+ T cells ETS-1↑ – Inhibited production
of proinflammatory
cytokines in CD4+ T
cells and Th1/Th17
cell differentiation by
targeting ETS-1

(17)

miR-128-
3p

Upregulated (in T
cells RA patients)

Rheumatoid
arthritis (RA)

Blood samples from 20
patients with RA and 20
healthy subjects, C57BL/6
mice

Patient derived T cells TNFAIP3 NF-kB
signaling
pathway

silencing represses
activation of T cells
by upregulating
TNFAIP3 and
inhibiting NF-kB
signaling pathway

(35)

let-7g-5p Downregulated (in
plasma of RA
patients)

Rheumatoid
arthritis (RA)

Plasma samples from RA
patients and healthy
controls, C57BL/6 mice,
DBA 1/J mice

CD4+
T cells

– – Upregulation
attenuates Th17
frequency in RA
mouse model and
blockes Th17
differentiation.

(18)

let-7f-5p Downregulated (in
CD4+ T cells of
patients with MS)

Multiple sclerosis
(MS)

Blood samples from 16
RRMS patients and 16
healthy controls, Female
C57BL/6J mice

CD4+ T cell STAT3↑ – Overexpression
inhibits Th17
differentiation
through targeting
STAT3.

(19)

miR-let-7d-
3p

– Primary Sjögren’s
syndrome (pSS)

Blood samples from pSS
patients and healthy
controls

CD4+ T cells AKT1 AKT1/
mTOR
signaling
pathway

Regulates
expression of IL-17
in CD4 + T cells by
targeting AKT1 and
modulation of
AKT1/mTOR
signaling pathway

(20)

miR-183
miR-96

Upregulated
Upregulated
(in patients’ T
cells and

Graves’
orbitopathy (GO)

Blood samples from
patients with GO and
normal subjects, TCR-HA/
Thy.1.1 transgenic mice,
INS-HA/Rag2KO

CD4(+) T cells from
human blood samples
and mice

EGR-1 – overexpression was
associated with
lowered EGR-1
expression and
augmented

(36)

(Continued)
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TABLE 1 | Continued

microRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

activated T cells
from controls)

transgenic mice and
BALB/c mice

proliferation while
their downregulation
had reverse effects

miR-210 Upregulated (in
activated T cells)

Chronic colitis Mir210 conditional
knockout mice

Naive T cells, TH17
cells

HIF-1a – deletion potentiates
T cell differentiation
and TH17
polarization by
modulation of HIF-
1a expression

(21)

miR-210 Upregulated (in
psoriasis patients)

Psoriasis Blood samples and skin
tissues specimens from
63 psoriasis patients and
80 normal volunteers,
C57BL/6J and BALB/c
mice

CD4+ T STAT6,
LYN

– Enhances Th1 and
Th17 differentiation
and represses Th2
differentiation by
targeting STAT6
and LYN

(22)

miR-182-
5p

Downregulated (in
Th17 cells of EAU
mice)

Uveitis Blood samples from 15
patients with Behçet’s
disease with uveitis, 15
patients with active
sympathetic ophthalmia
with uveitis and 15 healthy
subjects, C57BL/6 mice

CD4+ T-cells, EL4
murine T cell line

TAF15 STAT3
signaling
pathway

overexpression
inhibits Th17
development and
lowers diseased
severity in
experimental
autoimmune uveitis
by targeting TAF15
and modulating
STAT3 pathway

(37)

miR-182 Upregulated (in
CD4+ T cells of
RRMS patients)

Relapse and
remitting multiple
sclerosis (RRMS)

Blood samples from
RRMS patients and
healthy controls, female
C57BL/6 mice

CD4+ T cells HIF-1a – Its overexpression
led to promoted
differentiation of
naïve T cells to Th1
and Th17 through
targeting HIF-1a
and rising IFN-g
expression.

(38)

miR-181c – Multiple sclerosis
(MS)

Female C57BL/6 mice CD4+ CD62L+
T helper cells

Smad7 TGF-b
signaling
pathway

Enhanced Th17
differentiation and
promoted
autoimmunity
through targeting
Smad7 and
modulating TGF-b
pathway and IL-2
expression

(13)

miR-181c Downregulated (in
activated T cells)

– – MCF7, HeLa, CD3+ T
cells, (Jurkat T cells

BRK1 – Its overexpression
suppressed
activation of T cell,
impaired
cytoskeleton
arrangement in T
cells by targeting
BRK1.

(23)

miR-181a – – C57BL/6J mice CD8+ T cell Id2 – Restricted IFN-g
production by
targeting Id2 so
regulated CD8+ T
cell responses
mediated by IFN-g

(24)

miR-181a – Allergic rhinitis
(AR)

C57BL/6 mice CD4+ T cells, Treg
cells

– PI3K/Akt
pathway

Promoted
expression of TGF-
b and IL-10 and
inhibited function of
Tregs through

(25)

(Continued)
Frontiers in Im
munology | www.f
rontiersin.org
 5
 November 20
21 | Volume 12 | Art
icle 756042

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Taheri et al. T-Cells and ncRNAs
TABLE 1 | Continued

microRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

modulating PI3K/
Akt pathway

miR-202-
5P

Upregulated (in
PBMCs, Tregs,
and CD4+ T cells
of AR patients)

Allergic rhinitis
(AR)

Blood samples from 30
AR cases and 10 normal
controls

Tregs cells, CD4+ T
cells

MATN2 – Repressed
differentiation of
Tregs by targeting
MATN2

(39)

miR-155 – Allergic rhinitis
(AR)

C57BL/6 mice CD4+ T cells, Treg
cells

– SOCS1
and SIRT1
signaling
pathway

Elevated
proliferation of Treg
cells by modulating
SOCS1 and SIRT1
signaling pathway
but no influence on
T cell function
suppression

(25)

miR-155 Upregulated (in
donor T cells in
aGVHD patients)

Acute graft versus
host disease
(aGVHD)

C57BL/6 (B6, H2b),
C57BL/6-Tg(CAG-EGFP)
1Osb/J (B6 GFP, H2b),
Cg-miR-155tm1.1Rsky/j
(miR-155−/−, H2b),
B6D2F1 (F1, H2b/d),
BALB/c (H2d), and
C3.SW-H2b/SnJ (H2b)

– – – Its expression in
CD8+ and CD4+ T
cells is necessary
for pathogenesis of
aGVHD through
regulation of
migration,
expansion and
effector function of
T cell

(40)

miR-155 – Viral infection C57BL/6, MiR-155−/−,
wild-type (WT) and
ovalbumin-specific Tcra/
Tcrb transgenic (OTII)
mice

CD4+ T – – Is implicated in
regulation of
proliferation,
activation and
cytokine production
of CD4+ T

(41)

miR-155 – Vitiligo Blood samples from one
vitiligo patient and one
healthy donor

naïve T and CD8+ T
cells

– – Its overexpression
decreased
proliferation of CD8
+ T cells and
enhanced Treg
percentage

(42)

miR-155 – Glioma C57BL/6 mice GL261, T cell FoxO3a Akt and
Stat5
signaling
pathway

Its upregulation
promoted
proliferation and
activation of T cells
and increased their
cytotoxicity by
targeting FoxO3a
and modulating Akt
and Stat5 signaling
pathway

(43)

miR-149-
3p

Downregulated (in
CD8+ T cells
overexpressing
PD-1)

Breast cancer Female BALB/c mice 4T1, CD8+ T cell – – Its overexpression
reduced T cell
apoptosis and
expression of T cell
inhibitor receptors,
also promoted
activation of T cells

(39)

miR-143 Upregulated (in
naïve and
memory T cells
compared with
effector T cells)

Esophageal
squamous cell
carcinoma
(ESCC)

13 tumor tissues and
adjacent normal tissues
from 13 ESCC patients
and blood samples from
10 healthy donors

CD8+ T cell, HER2-
CAR T cells

Glut-1 – Its upregulation
promoted
differentiation of
CD8+ T cell to
memory T cells,
raised T cell
cytotoxicity and
decreased
apoptosis by

(44)

(Continued)
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TABLE 1 | Continued

microRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

targeting Glut-1 and
regulation of
metabolism

miR-17-92 – Chronic graft-
versus-host
disease (cGVHD)

miR-17-92 conditional
knockout (KO) mice

CD4+ T – – Increased
differentiation of Th1
and Th17 cells,
elevated production
of follicular Th cells
and associated with
scleroderma and
bronchiolitis

(45)

miR-10a – – 3 Adipose
Tissue healthy subjects,
female C57BL/6 mice

Naïve CD4+
T cell, adipose tissue
derived mesenchymal
stem cells (AD-MSCs)

– – Transfection with
miR-10a-loaded
exosomes derived
from AD-MSCs
elevated expression
of RORgt and
Foxp3 and reduced
expression of T-bet
and led to
differentiation of
naive T cells to
Th17 and Treg

(46)

miR-10a-
3p

Downregulated (in
PBMC of LN
patients)

Lupus nephritis
(LN)

Blood samples from 94
LN patients and 38
healthy subjects

– REG3A↑ JAK2/
STAT3
pathway

Its upregulation
enhanced Treg cells
and lessened Th17/
Treg ratio and
alleviated renal
function by
targeting REG3A

(47)

miR-633 Downregulated (in
CD4+T cells of
SLE patients)

Systemic lupus
erythematosus
(SLE)

Blood samples from 20
SLE patients and 19
healthy controls

CD4+T cells, Jurkat
cells

AKT1↑ AKT/
mTOR
pathway

Its downregulation
increased IL-17,
and IFN-g
production and
activated AKT/
mTOR pathway in
CD4+T cells
through modulating
AKT1

(48)

miR-142-
3p

Upregulated (in
CD4+ T cells of
T1D patients)

Type 1 diabetes
(T1D)

Blood samples form T1D
patients, CBy.PL(B6)-
Thy1a/ScrJ (CD90.1
BALB/c), Balb/cByJ
(CD90.2 BALB/c), Balb/
c.Cg-Foxp3tm2Tch/J
(BALB/c Foxp3GFP), and
NOD/ShiLtJ mice,
NOD.Cg-Prkdcscid H2-
Ab1tm1Gru Il2rgtm1Wjl Tg
(HLA-DQA1,HLA-DQB1)
1Dv//Sz mice

CD4+ T cells Tet2 – Inhibited
differentiation of
Treg cells and
decreased stability
of Tregs by
targeting Tet2 and
its depletion
collapsed islet
autoimmunity in
mouse models of
diabetes

(49)

miR-142-
3p

– Acute graft versus
host disease
(GVHD)

Blood samples form
volunteer donors, NOD/
SCID/mice

Thymic-derived
regulatory T cell (tTreg)
(CD4 + CD25 + CD127-
tTreg)

ATG16L1 – Its knockdown
enhances survival
and proliferation of
tTregs by
upregulating
expression of
ATG16L1 and
modulating
autophagy

(50)

miR-142-
3p

– – Blood samples from
healthy volunteers, NOD

Naïve CD4+CD45RA+
T cells

KDM6A – Its knockdown
improved regulatory

(51)
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TABLE 1 | Continued

microRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

CRISPR Prkdc Il2r
gamma (NCG) mice

function and
expression of
cytokines and
suppressed
apoptosis in iTregs
by upregulating
KDM6A

miR-26b-
5p

Downregulated (in
HCC tissues and
CD4+ and CD8+
T cells)

Hepatocellular
carcinoma (HCC)

42 HCC tissues and
ANTs, SPF C57BL/6 and
nude mice

CD4+ and CD8+ T
cells

PIM-2 – Its overexpression
improved cytokine
secretion of CD4+
and CD8+ T cells
by targeting PIM-2

(48)

miR-34a – – Blood samples from
healthy donors

CD4+ and CD8+ T
cells

PLCG1,
CD3E,
PIK3CB,
TAB2,
NFkBIA

NF-kB
signaling
pathway

Its overexpression
suppressed
expression of its
target genes in CD4
+ and CD8+ T cells
and lowered
cytotoxic ability of T
cells through
modulating NF-kB
signaling

(52)

miR-34a Downregulated (in
tumor-infiltrating T
cells)

Gastric cancer
(GC)

Blood samples from 73
GC patients and 58
healthy controls

Jurkat cell LDHA – Its overexpression
decreased lactate
level in T cells and
increased IFN-g
expression through
targeting LDHA

(53)

miR-140-
5p

Downregulated (in
encephalomyelitic
CD4+T cells)

Experimental
autoimmune
encephalomyelitis
(EAE)

Female C57BL/6 mice CD4+T cells – – Its upregulation
constrained Th1
differentiation
through regulating
methylation of
STAT1 and Tbx and
modulation of
mitochondrial
respiration

(17)

miR-130a
−3p

Downregulated (T
cells AS patients)

Ankylosing
spondylitis (AS)

Blood samples from 30
HLA-B27-positive AS
patients and 30 HLA-B27-
negative healthy controls

Jurkat T cells HOXB1 – Its overexpression
resulted in
increased
proliferation and
decreased
apoptosis rate in T
cells through
targeting HOXB1

(54)

miR-126 – Acute
autoimmune
colitis

Friend leukaemia virus B
(FVB)/N miR‐126 knock
down mice

CD4+ T cells IRS-1 AKT and
NF-kB
pathways

Its knockdown was
associated with
elevated
proliferation and
activation of CD4+
T cells and
augmented
expression of IFN-g

(55)

miR-425 Upregulated (in
PBMC of IBD
patients)

Inflammatory
bowel disease
(IBD)

Blood samples from 124
IBD patients and healthy
controls, Female BALB/c
mice

CD4+ T cells Foxo1↓ – Promoted Th17
differentiation from
CD4+ T cells
through targeting
Foxo1

(56)

miR-219a-
5p

Downregulated (in
CD4+ T cells of
IBD patients)

Inflammatory
bowel disease
(IBD)

Blood samples from 33
IBD patients and 23
healthy individuals, female
BALB/c mice

CD4+ T cells ETV5↑ – Its overexpression
inhibited Th1/Th17
cell differentiation by
targeting ETV5 and

(57)
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TABLE 1 | Continued

microRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

regulating
phosphorylation of
STAT3 and STAT4

miR-22 Upregulated (in
intestinal tissues
and CD4+ T cells
of IBD patients)

Inflammatory
bowel disease
(IBD)

Intestinal tissues and
blood samples from 99
IBD patients, 15 intestinal
tissues from patients with
colonic polyps and 20
blood samples from
healthy controls

CD4+ T cells HDAC4 – Elevated Th17
differentiation and
inflammatory
cytokines
production by
targeting HDAC4

(58)

miR-21-5p Downregulated (in
PBMC of vitiligo
patients)

Vitiligo Blood samples from 15
vitiligo patients and 15
healthy controls

CD4+ T cells STAT3↓ – Its overexpression
increased Treg cells
proportion and
decreased effector
T cells (Teff), so
balanced Treg/Teff
ratio by targeting
STAT3

(59)

miR-223-
3p

Upregulated (in
Th17 cells)

Experimental
autoimmune
uveitis

Female C57BL/6 CD4+ T cells FOXO3 – Induced
autoreactive Th17
responses by
targeting FOXO3
and modulation of
IL-23 receptor
expression

(60)

miR-669b-
3p

– – C57BL/6 (H-2b) and
BALB/c (H-2d) mice

CD4+ T cells – – Increased
proliferation of CD4
+ T cells and
restrained apoptosis
of these cells by
negative regulation
of IDO

(61)

miR-146a Upregulated (in
CD27- gd T cells)

– C57BL/6J and CD45.1
mice, Rag2−/− mice,
Il17a-GFP knock-in mice,
miR-146a−/− mice, Nod1
−/− and Atf2−/− mice

CD27- gd T cells and
CD27+ gd T cells, CD4
+ T cells

NOD1 Decreased IFN-g
production and
restricted functional
plasticity of gd T
cells through
targeting NOD1

(62)

miR-29b Upregulated (in
CD4+ T cells of
OLP patients)

Oral lichen planus
(OLP)

Blood samples form 18
OLP patients and 18 age-
and gender-matched
controls

CD4+
T cells

– – Inhibited IFN-g
expression and
secretion in CD4+ T
cells, also
suppressed
expression of
DNMT1 induced
global DNA
hypomethylation in
CD4+ T cells to Th1
responses

(63)

miR-31 Upregulated (in
peripheral blood
of CHD patients)

Coronary heart
disease (CHD)

Blood samples from 56
CHD patients and 47 non-
CHD individuals

CD4+ T cells Bach2 – Increased Th22
differentiation by
targeting Bach2

(64)

miR-653 Downregulated (in
thymic tissues of
MG mice)

Myasthenia gravis
(MG)

Thymic tissues from 42
MG patients, BALB/c
male nude mice

Thymocytes obtained
from thymic tissues

TRIM9 – Its overexpression
decreased viability
of thymocytes and
induced cell cycle
arrest and
apoptosis in these
cells by targeting
TRIM9

(65)

miR-192 Downregulated (in
plasma and CD4+

Childhood
asthma

Blood samples from 18
children with childhood

CD4+ T cells CXCR5 – Its overexpression
impeded activation

(66)
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(108). A genome wide transcriptome profiling of circRNAs has
revealed that the median length of circRNAs is about 530 nt
(109). Four categories of circRNA shave been identified: exonic
circRNAs, circRNAs from introns, exon-intron circRNAs and
intergenic circRNAs (110). The impact of this group of
transcripts on T cell functions has been discovered during the
recent decade. Several studies have shown that circRNAs can
bind with miRNAs, thus decreasing bioavailability of miRNAs
and releasing miRNA targets from their inhibitory effects. This
kind of interactions between circRNAs and miRNAs has critical
biological impacts. A high-throughput microarray study found
down-regulation of circ_0001806 in patients with cryptococcal
meningitis as compared to healthy controls. Circ_0001806
silencing has increased the intensity of fungal infection in the
animal models and decreased their survival. Circ_0001806 has
been suggested to regulate molecular cascades associated with
the host antimicrobial response in T cells. Functionally,
circ_0001806 has been shown to increase ADM level,
decrease cell apoptosis and reverse G1/S arrest in T cells
through sequestering miR-126. Thus, circRNA-1806/miR-126
cascade has an essential role in the regulation of cell cycle and
apoptosis in T cells (111).

Another high throughput circRNA profiling in patients with
systemic lupus erythematosus (SLE) has led to identification of
127 differentially expressed circRNAs in T cells of these
patients. Among them, circRNA hsa_circ_0045272 has been
reported to be the down-regulated. Functional studies have
shown that hsa_circ_0045272 silencing increases early
apoptosis of Jurkat cells and enhances production of IL-2 by
activated Jurkat cells. Binding of this circRNA with hsa-miR-
6127 has been validated through functional studies (112).
Hsa_circ_0012919 has been reported to be up-regulated in
CD4+ T cells of SLE patients in two independent studies. In a
microarray study of circRNAs signature in these patients,
hsa_circ_0012919 has been among differentially expressed
circRNAs between SLE patients and healthy subjects.
Frontiers in Immunology | www.frontiersin.org 10
Expression of this circRNA has been associated with SLE
features. Down-regulation of hsa_circ_0012919 has enhanced
expression of DNMT1, decreased CD70 and CD11a levels and
inverted the DNA hypomethylation of these genes in CD4+ T
cells of SLE. Hsa_circ_0012919 has been found to regulate
expressions of KLF13 and RANTES through sequestering miR-
125a (113). This circRNA has also been found to increase the
expression of MDA5 in CD4+ T cells through downregulating
miR-125a-3p (114). Hsa_circ_0005519 is another circRNA
influencing T cell function. This circRNA has been found to
be up-regulated in CD4+ T cells of asthmatic patients.
Expression of this circRNA has been inversely correlated with
hsa-let-7a-5p levels. Expression of hsa_circ_0005519 in CD4+
T cells has been correlated with fraction of exhaled nitric oxide
and eosinophil ratio in the circulation of these patients.
Hsa_circ_0005519 has been predicted to sequester hsa-let-7a-
5p and release IL-13/IL-6 from its inhibitory effect (115). Being
up-regulated circRNA in nasal mucosa of patients with allergic
rhinitis, circHIPK3 has been found to promote differentiation
of CD4+ T cells to Th2 by targeting miR-495 and increasing
expression of GATA-3 (116). Figure 3 illustrates the role of
different ncRNAs in Th2-cell differentiation through
modulating the IL-4-STAT6-GATA3 axis. Table 3 shows the
impact of circRNAs on T cell function.
SUMMARY

Numerous miRNAs, lncRNAs and circRNAs have been found to
influence activity, survival or differentiation of T cells under
physiologic or pathologic conditions. These molecules can affect
pathophysiology of autoimmune conditions such as MS, SLE,
RA, IBD and asthma via this route. Moreover, several of these
non-coding RNAs influence immune evasion of cancer cells and
their response to immunotherapeutic modalities.
TABLE 1 | Continued

microRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

T cells of asthma
patients)

asthma and 15 healthy
children

of T follicular helper
cells by targeting
CXCR5

miR-23a-
3p

Downregulated (in
CD4+ T cells of
GD patients)

Graves’ disease
(GD)

Blood samples from 32
GD patients and 20
healthy individuals, female
Balb/c mice

CD4+ T cell, 293T SIRT1 – Its overexpression
enhanced Treg
frequency and
improved function
of Tregs by
targeting SIRT1 and
modulating FOXP3
expression and
acetylation

(67)

miR-133a/
133b

Upregulated (in
PBMC of IgAN
patients)

IgA nephropathy
(IgAN)

Blood samples form 20
IgAN patients and heakthy
controls

CD4+ T cells FOXP3 – Inhibited Treg
differentiation and
decreased Treg
frequency by
downregulating
FOXP3

(68)
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Notably, both lncRNAs and circRNAs can serve as sponges
for miRNAs. Through this molecular mechanism, lncRNAs and
circRNAs bind with certain miRNAs to decrease their
bioavailability. Thus, circRNAs and lncRNAs can indirectly
Frontiers in Immunology | www.frontiersin.org 11
affect expression of miRNAs targets. Circ_0001806/miR-126,
hsa_circ_0045272/hsa-miR‐6127, hsa_circ_0012919/miR-125,
hsa_circ_0005519/hsa-let-7a-5p, circHIPK3/miR-495 are
examples of circRNA/miRNA axes regulating T cell functions.
In addition, lnc-ITSN1-2/miR-125a, NEAT1/miR-125, NEAT1/
miR-155, MALAT1/miR-155, MEG3/miR-17, MEG3/miR-23a,
Gm15575/miR-686 are examples of lncRNA/miRNA pairs in
this regard. These examples not only indicate the intricate
network between these classes of transcripts, but also provide
clues to find the most important modules in the regulation of T
cell functions. Contribution of miR-125, miR-155, MEG3 and
NEAT1 in more than one of these molecular axes suggests their
significance in the regulation of T cell function. Most notably, all
of these four non-coding RNAs have essential roles in cancer
development or suppression (118–120), further highlighting
the intercalation of cancer-related and immune-related
molecular pathways.

GATA3, RORgt, NF-kB, SIRT1, STAT3 and FOXO3 as major
regulators of T cell function have been shown to be influenced by
non-coding RNAs. For instance, GATA3 is influenced by Dreg1
and GATA3-AS1 lncRNAs; RORgt is regulated by MEG3; SIRT1
is modulated by miR-155 and miR-23a-3p; STAT3 is regulated
by let-7f-5p, miR-182-5p and miR-10a-3p, miR-21-5p and
NEAT1; and FOXO3 is controlled by miR-155. Therefore,
non-coding RNAs affect T cel ls functions through
different routes.

Consistent with the important roles of lncRNAs, circRNAs and
miRNAs in the regulation of function of T cells and their impact
on differentiation of different classes of T cells, therapeutic
targeting of these ncRNAs represent an efficient tool for
management of disorders related with abnormal function of T
cells. Forced up-regulation or silencing of these transcript can
affect signaling pathways that modulate T cell responses, thus
alleviating tissue damage caused by abnormal T cell responses.
Moreover, assessment of ncRNAs signature is a probable strategy
for prediction of course of T cell-related disorders.

Taken together, the significant impact of non-coding RNAs
on differentiation, survival, cytokine production and activity of T
cells potentiates these molecules as important targets for
treatment of various disorders, particularly cancer. Moreover,
non-coding RNAs participate in the pathogenesis of
autoimmune disorders via affecting epigenetic regulation of
genes with crucial roles in the regulation of effector T cells as
well as Tregs (121). Thus, identification of the role of these
transcripts in the regulation of T cell functions can provide new
modalities for treatment of this kind of disorders as well. High
throughput sequencing method and assessment of the competing
endogenous RNA network through bioinformatics methods is an
efficient strategy in identification of appropriate targets for
therapeutic interventions.
FUTURE PERSPECTIVES

High throughput sequencing strategies and identification
of differential expressions of lncRNAs, circRNAs, miRNAs
FIGURE 2 | A schematic illustration of the role of various noncoding-RNAs in
modulating the JAK2/STAT3 and NF-kB signaling pathway as major regulators
of T cell function. a) In JAK/STAT pathway, JAKs bind to the receptor, and
upon multimerization, upregulation of JAK proteins is mediated via trans-
phosphorylation. Consequently, JAKs have a significant part in STATs
phosphorylation. After dimerization of STATs, they translocate to the nucleus,
where they either activate or suppress several target genes. This cascade is
remarkably involved in the control of immune responses. Dysregulation of JAK-
STAT signaling is associated with different immune disorders (82, 83). Besides,
REG3A, acts as a key molecule for overexpression of the JAK2/STAT3
pathway which effectively contributes to triggering inflammation (84). b) The
NF-kB canonical or classical signaling pathway is initiated from the cell surface
receptor of pro-inflammatory cytokines and PAMPs containing TNFR, TLR and
T/B cell receptor. The activation of IKK complex is triggered via binding of
ligand molecules to transfer the signal across the cell surface. This complex
generally comprises heterodimer of IKKa and IKKb catalytic subunits and an
IKKg regulatory subunit. The released NF-kB dimers (most generally the p50–
P65 dimer) could be translocated to the nucleus, and bind to DNA to trigger
activation of the down-stream gene transcription (85–87). In addition, NF-kB
signaling cascade could be regulated via TNFAIP3 through deubiquitinating
TNFR1-RIP1, IL-1R/TLR4-TRAF6, and NOD2-RIP2 pathways (88). Moreover,
canonical NF-kB cascade could be activated by various members of the
TNFRSF including GITR, TNFR2, 4-1BB, and DR3 but not OX40 in Treg cells
and modulates induction of Foxp3, markers of Th2/Th17 response (89).
Mounting studies have revealed that multiple ncRNAs (lncRNAs and miRNAs)
have an effective role in as major regulators of T cell function through regulating
the JAK/STAT and NF-kB cascades. As an illustration, recent research has
detected that downregulation of miR-128-3p could notably reduce the
inflammation response of rheumatoid arthritis via attenuating the activity of NF-
kB pathway and promote expression of TNFAIP3 (35). Another study has
figured out that reducing the expression of lncRNA NEAT1 could lead to
suppression of Th17/CD4+ T cell differentiation via downregulating STAT3
expression in rheumatoid arthritis patients (77). Furthermore, upregulation of
DQ786243 could play a remarkable role in elevating the expression level of
miR-146a through modulating Foxp3, and thereby suppressing the NF-kB
signaling cascade in oral lichen planus disease (90). Green arrows indicate
upregulation of target genes modulated via ncRNAs (lncRNAs, and miRNAs),
red arrows depict inhibition by these ncRNAs. All the information regarding the
role of these ncRNAs in modulating T call differentiation can be seen in
Tables 1, 2.
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TABLE 2 | LncRNAs and T cell regulation.

lncRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

IFNG-AS1 Upregulation (in
colonic tissues
of IBD patients)

Inflammatory
bowel diseases
(IBD)

Colonic tissues from 11
IBD patients,

PBMCs from
anonymous
donors,
Jurkat cells

– – Its overexpression
augmented inflammatory
cytokines expression and
decrease anti-inflammatory
cytokines expression in T
cells.

(72)

lnc-ITSN1-2 Upregulation (in
intestinal
mucosa and
PBMC of IBD
patients)

Inflammatory
bowel diseases
(IBD)

Blood samples and
intestinal mucosa
specimens from 120
IBD patients and 30
healthy controls

CD4+ T Cells miR-125a,
IL-23R

– Increased proliferation and
activation of CD4+ T Cells
and promoted their
differentiation to Th1/Th17
by targeting miR-125a and
upregulation of IL-23R

(73)

lncRNA-CD160 Upregulated (in
CD8+ T cells of
HBV infected
patients)

Chronic
hepatitis B
virus (HBV)
infection

Blood samples from
164 patients with
chronic HBV infection
and 67 healthy
volunteers, C3H/HeN
mice

CD160− CD8
+ T cells and
CD160+ CD8
+ T cells

– – Decreased secretion of
IFN-g and TNF-a and
repressed function of CD8
+ T cells by recruiting
HDAC11 to promoters of
IFN-g and TNF-a and
elevating methylation of
H3K9Me1

(91)

NEAT1 – Sepsis 130 specific pathogen-
free C57BL/6 male mice

CD4+
CD25+ T
cells

miR-125,
MCEMP1

– Downregulation of NEAT1
has restricted immune
response in mouse model
of sepsis and induced T
cell apoptosis through
modulating miR-125/
MCEMP1 axis

(76)

NEAT1 Upregulated (in
CD4+ and CD8
+ T cells of
pSS patients)

Primary
Sjögren’s
syndrome
(pSS)

Blood samples from 20
pSS patients and 10
healthy subjects

CD4+, CD8+
and CD19+ T
cells, Jurkat
cells

– MAPK
signaling
pathway

Promoted expression of
CXCL8 and TNF-a and
activated MAPK signaling
pathway

(34)

NEAT1 Upregulated (in
the PBMCs of
patients with
RA)

Rheumatoid
arthritis (RA)

Blood samples from 25
RA patients and 20
healthy controls, Male
DBA/1J mice

CD4+ T cell STAT3 – Its silencing prevented
differentiation of Th17 cells
from CD4+ T cells by
downregulating STAT3
through modulating its
ubiquitination.

(77)

NEAT1 Upregulated (in
PBMCs of
HCC patients)

Hepatocellular
carcinoma
(HCC)

Blood samples from 20
HCC patients and 20
healthy controls

CD8+ T cells miR-155,
Tim-3↑

– Its knockdown decreased
apoptosis and raised
cytotoxicity of CD8+ T cells
by miR-155-mediated
downregulation of Tim-3.

(78)

lnc-EGFR Upregulated (in
Treg cells of
HCC patients)

Hepatocellular
carcinoma
(HCC)

Blood and tissue
samples from 70 HCC
patients and 55 healthy
controls

CD4+ T cells,
tumor
infiltrated
lymphocytes
(TIL), 97H,
Huh7

EGFR – Induced differentiation of
Treg cells and impeded
CTLs function through
stabilizing EGFR by
interfering with its
ubiquitination

(92)

PVT1 Upregulated (in
the CD4+T
cells of patients
with SS)

Sjögren’s
syndrome (SS)

Blood samples and
labial salivary gland
tissues from SS patients
and healthy controls,
female C57BL/6 mice,
NOD/ShiLtj mice and
wild-type ICR mice

CD4+ T cell Myc – Its downregulation
decreased CD4+ T cells
proliferation and impeded
effector function in these
cells through
downregulation of Myc and
controlling glycolysis

(93)

lncRNA Morrbid – Viral infection C57BL/6 (WT), B6.SJL-
Ptprca Pepcb/Boy
(B6.SJL), and
B6.129S1-
Bcl2l11tm1.1Ast/J (Bcl2l11
knock-out) mice,
Ifnar1tm1.1Ees (Ifnar1flox),

CD8+ T cells – PI3K-AKT
signaling
pathway

Regulates proliferation,
survival and effector
functions of CD8+ T cells
by modulating Bcl2l11
expression and PI3K-AKT
signaling pathway

(94)
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TABLE 2 | Continued

lncRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

TgCD4-Cre (CD4-cre),
and Tg(TcrLCMV) (P14)
mice

RP11-340F14.6 Upregulated (in
JIA patients)

Juvenile
idiopathic
arthritis (JIA)

Blood samples from JIA
and healthy controls

T cell P2X7R – Increased Th17
differentiation and inhibited
Treg distribution by binding
to P2X7R and inducing its
expression

(95)

MALAT1 – Asthma Blood samples from
772 asthma patients
and 441 healthy
controls

CD4+ T cells miR-155,
CTLA4

– Regulated Th1/Th2 ratio by
sponging miR-155 and
modulating expression of
CTLA4

(79)

MEG3 Upregulated (in
CD4 + T cells of
patients with
asthma)

Asthma Blood samples from 52
asthma patients and 45
healthy controls

CD4 + T cells miR-17↓,
RORgt

– Elevated proportion of
Th17 cells and regulated
Treg/Th17 ratio by
sponging miR-17 and
upregulating RORgt

(80)

MEG3 Downregulated
(in CD4 + T
cells of AA
patients)

Aplastic
anemia (AA)

Blood samples from 15
AA patients and 10
healthy controls

CD4+T cell miR-23a,
TIGIT

– Its overexpression
decreased proliferation of
CD4+T cell and inhibited
Th1 and Th17
differentiation by absorbing
miR-23a and modulating
expression of TIGIT

(81)

DQ786243 Upregulated (in
CD4+ cells of
OLP patients)

Oral lichen
planus (OLP)

Blood samples from 10
OLP patients and 10
healthy volunteers

CD4+ T cell miR-146a,
Foxp3

NF-kB
signaling
pathway

Its overexpression
increased Treg cells
percentage and Foxp3
expression and promoted
suppressive function of
these cells by modulating
Foxp3-miR-146a-NF-kB
axis

(90)

AW112010 Upregulated (in
activated CD4+
T cells)

– Female C57BL/6J mice CD4+ T cells KDM5A – Induces differentiation of
inflammatory T cells
through inhibiting
expression of IL-10 via
interacting with KDM5A
and histone demethylation

(96)

GAS5 Downregulated
(in CD4+ T
cells of HIV
infected
patients)

AIDS Blood samples from
142 HIV infected
patients and 58 healthy
controls

CD4+ T cells – – Regulated apoptosis rate
and function of CD4+ T
cells during HIV infection
by modulating miR-21

(97)

LINC00176 Upregulated (in
CD4+T cells of
patients with
SLE)

Systemic lupus
erythematosus
(SLE)

Blood samples from
SLE patients and
healthy individuals

CD4+ T cells WIF1 WNT5a
signaling
pathway

Raised proliferation and
adhesion of CD4+T cells
by reducing WIF1 levels
and WNT5a pathway
activation

(98)

lncRNA028466 Downregulated
(in CD4+ T
cells of mice
immunized with
rEg.P29
antigen)

– Female BALB/c mic CD4+ T cell,
CD8+ T cell

– – Implicated in regulation of
cytokine expression from
CD4+ T cells

(99)

NONHSAT196558.1
(TANCR)

– – Blood samples normal
volunteers

Primary gd T
cells, Jurkat
cells

TRAIL – Increased activation and
cytotoxicity of gd T cells by
modulating expression of
TRAIL in cis manner

(100)

Dreg1 – – Male C57BL/6 mice splenic CD4+
T cells from
mice and
human

Gata3 – Its expression was
associated with expression
of Gata3 during Th2
differentiation and

(101)
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TABLE 2 | Continued

lncRNA Expression
pattern

Disease Sample Cell line Interaction Signaling
pathway

Function Reference

regulated Gata3
expression during
development of immune
system

Gm15575 Upregulated (in
Th17 cells and
spleen tissues
of EAE mice)

Multiple
sclerosis (MS)

C57BL/6 mice CD4+ T cells miR-686,
CCL7

– Promoted Th17
differentiation by sponging
miR-686 and upregulating
expression of CCL7

(102)

lncDDIT4 Upregulated (in
CD4+ T cells
and PBMCs of
patients with
MS)

Multiple
sclerosis (MS)

Blood samples from 36
MS patients and 26
healthy controls

naive CD4+ T
cells

DDIT4 DDIT4/
mTOR
Pathway

Suppressed Th17
differentiation by targeting
DDIT4 and inhibiting
DDIT4/mTOR signaling

(103)

linc-MAF-4 Upregulated (in
PBMCs of
patients with
MS)

Multiple
sclerosis (MS)

Blood samples from 34
MS patients and 26
healthy subjects

Naive CD4+
T cells

MAF – Suppressed Th2
differentiation and
promoted Th17
differentiation by inhibiting
MAF expression

(104)

NKILA Upregulated (in
CTLs and TH1
cells of patients
with breast and
lung cancer)

Non-small cell
lung cancer
(NSCLC) and
breast cancer

Tissue samples and
blood samples from
576 h invasive breast
carcinoma patients and
256 NSCLC patients,
blood samples from
healthy donors,
NOD.SCID mice

CD8+ and
CD4+ T cells,
cytotoxic T
lymphocyte
(CTL), Th1,
Th2 and Treg

NF-kB – Sensitized CTLs and Th1
cells to activation-induced
cell death in tumor
microenvironment and
facilitated tumor immune
evasion through
suppression of NF-kB
activity

(105)

IFNA-AS1 Downregulated
(in PBMCs of
patients with
MG)

Myasthenia
gravis (MG)

Blood samples from 32
MG patients and 20
healthy volunteers,
female C57/BL6 mice

CD4+ T cell,
Jurkat T cell

HLA-DRB1 – Is implicated in regulation
of Th1/Treg cell
proliferation and activation
of CD4 + T cells by
influencing HLA-DRB1

(106)

GATA3-AS1 – – Blood samples from
healthy volunteers

Human
PBMC

GATA3 – Regulated polarization of
Th2 cells by increasing
expression of GATA3

(107)
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FIGURE 3 | A schematic diagram of the role of some ncRNAs in modulating the IL-4-STAT6-GATA3 axis in Th2-cell differentiation. Th2 cell differentiation requires
considerable metabolic reprogramming. Upon encountering cognate antigen in the lymph node, naive CD4 T helper cells are differentiated into Th2 cells under the
effect of the IL-4-STAT6-GATA3 axis. GATA3 could, in turn, alter the IL4– IL13–IL5 locus to generate a conformation that is reachable by different other transcription
factors that are involved in triggering the differentiation of T cells into T H2 cells (117). Growing evidence has confirmed that the interactions between CircHIPK3,
LncGAS5, and miR-495 could play a crucial role in the modulation of Th2 differentiation in allergic rhinitis (116). Green arrows indicate upregulation of target genes by
ncRNAs (lncRNA, and circRNA), red arrows depict inhibitory effects of by these ncRNAs.
icle 756042
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and mRNAs in different stages of T cells development
would help in recognition of role of each transcript in
development of this group of blood cells. Further knock-in
and knock-out studies in different disease conditions can
help in identification of specific treatment strategies for
related disorders.
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