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Rosacea is significantly associated with dementia, particularly Alzheimer’s disease (AD).
However, the common underlying molecular mechanism connecting these two diseases
remains limited. This study aimed to reveal the common molecular regulatory networks
and identify the potential therapeutic drugs for rosacea and AD. There were 747
overlapped DEGs (ol-DEGs) that were detected in AD and rosacea, enriched in
inflammation-, metabolism-, and apoptosis-related pathways. Using the TF regulatory
network analysis, 37 common TFs and target genes were identified as hub genes. They
were used to predict the therapeutic drugs for rosacea and AD using the DGIdb/CMap
database. Among the 113 predicted drugs, melatonin (MLT) was co-associated with both
RORA and IFN-g in AD and rosacea. Subsequently, network pharmacology analysis
identified 19 pharmacological targets of MLT and demonstrated that MLT could help in
treating AD/rosacea partly by modulating inflammatory and vascular signaling pathways.
Finally, we verified the therapeutic role and mechanism of MLT on rosacea in vivo and
in vitro. We found that MLT treatment significantly improved rosacea-like skin lesion by
reducing keratinocyte-mediated inflammatory cytokine secretion and repressing the
migration of HUVEC cells. In conclusion, this study contributes to common pathologies
shared by rosacea and AD and identified MLT as an effective treatment strategy for
rosacea and AD via regulating inflammation and angiogenesis.
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INTRODUCTION

Rosacea is a chronic inflammatory skin disease with a global
prevalence of over 5% (1). It is clinically characterized by erythema,
telangiectasia, papules, or pustules and could be triggered or
exacerbated by spicy food and beverages and by physical and
psychological stimuli (2). Although immune and neurovascular
dysregulation was reported to play an essential role in rosacea, the
exact pathogenesis of rosacea remains unclear (3). Due to the lack of
effective treatments, rosacea remains an incurable disease for the vast
majority of patients (4).

Accumulating studies showed that rosacea develops as a
manifestation of systemic illnesses that are linked to metabolic,
psychiatric, and neurologic disorders, including Alzheimer’s disease
(AD) (5, 6). Thyssen et al. clinically observed an increased risk of AD
in patients with rosacea (6). AD is a common neurodegenerative
disease, characterized by a progressive deterioration in cognitive and
memory abilities, whichhasbecome agrowing threat topublic health
(7). Studies showed that dysregulation of the inflammatory system is
an essential factor to cognitive impairment in AD (8). Although
chronic inflammation and vascular dysfunction are shared in the
pathogenesis of both rosacea and AD (9, 10), the detailed molecular
mechanism linking AD and rosacea remains limited. The common
pathologies shared by rosacea andAD throughmolecular interaction
networksmay contribute to the drug discovery for rosacea treatment
and AD prevention.

Melatonin (MLT), a neurohormone produced by the pineal
gland, has multiple regulatory roles in circadian rhythms, sleep, and
neuroendocrine activity (11, 12). In recent years, MLT has been
implicated in immunomodulatory, antiangiogenic, and antioxidant
activities (13, 14). MLT deficiency could increase the risk of
neurodegeneration, immunoregulation disorder, and senescence
(15–17). MLT levels have previously been reported to be lower in
patients with AD (18, 19), which may contribute to oxidative
damage of brain cells of AD patients (20, 21). Beyond that, MLT
was reported as an effective treatment for AD, but the mechanisms
by which MLT benefits AD are ill-defined. Interestingly, MLT is
also widely applied in treating cutaneous diseases, such as atopic
dermatitis (22), androgenic alopecia (23), and vitiligo (22).
However, the potential therapeutic role of MLT on rosacea and
its detailed pharmacological mechanisms still need to be studied.

In the present study, bioinformatics analyses revealed the
biological functions, transcription factor (TF) regulatory network,
and core targets in both AD and rosacea. Moreover, the network
pharmacology approach identified the MLT pharmacological target
network and revealed the mechanism that MLT could help in
treating AD/rosacea partly by modulating inflammatory and
vascular signaling pathways. Finally, the therapeutic role and
mechanism of MLT were verified in rosacea.
MATERIALS AND METHODS

Differentially Expressed Genes in AD
and Rosacea
As shown in Figure 1, the data were downloaded from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/): 23 tissues (10
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hippocampus tissues with AD and 13 control hippocampus
tissues) in GSE5281 (GPL570 platform) and 30 tissues (22
hippocampus tissues with AD and 8 control hippocampus
tissues) in GSE28146 (GPL570 platform). The 38 rosacea tissues
and 20 control tissues in GSE65914 were also downloaded from
GEO. The data were standardized and the batch effects were
removed using “limma” and “sva” (Figures S1A, S2A).
Differentially expressed genes (DEGs) between the disease and
control tissues were identified using the R “limma” package with
the threshold of |logFC| >0.5 and FDR <0.05.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analyses
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were carried out using R
“clusterProfiler”, “enrichplot”, and “ggplot2” packages.

The Protein–Protein Interaction Networks
The protein–protein interaction (PPI) network was constructed
using the STRING database (https://string-db.org/) with a
combined score >0.7. “cytoHubba” was used to calculate the
weight of each gene and explore the hub genes of the PPI
network, and “MCODE” was used to identify the representative
modules using Cytoscape software 3.8.1 (https://cytoscape.org).

Transcription Factor–Target Networks
The TF–targets were downloaded from the TRRUST database
(https://www.grnpedia.org/trrust/). The differently expressed
TFs in AD and rosacea, which could regulate DEGs in
AD/rosacea, were identified as key TFs. The differently
expressed TFs and target genes were used to construct the TF–
target networks using Cytoscape software.

DGIbd and Connectivity Map Were Used
for Drug Prediction
To prioritize the list of drugs for AD/rosacea, key TF and target
genes were used for potential candidate drugs using the DGIbd
database (24, 25), and then the Connectivity Map (CMap)
database was also used to verify the candidate drugs for AD
and rosacea (26).

Prediction of the MLT Pharmacological
Target
The potential pharmacological targets of MLT were obtained
from accessible online tools, including the Traditional Chinese
Medicine Systems Pharmacology Database and Analysis
Platform (TCMSP), SwissTargetPrediction, and TargetNet (27).
The candidate genes were corrected and identified using the
UniProt database (28).

Molecular Docking
The molecular structure of MLT (CID_4091) was downloaded
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/).
The protein structures of MMP9_6ESM were downloaded from
the PDB database (https://www.rcsb.org/). The maestro software
was used for molecular docking analysis as previously described.
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Reagents
The synthetic peptide LL37 (LLGDFFRKSKEKIGKEF
KRIVQRIKDFLRNLVPRTES) used in this study was purchased
from Sangon Biotech (Shanghai, China). All peptides were HPLC
purified (purity >95%) and characterized by mass spectrometry.
Melatonin was purchased from Sigma Company (USA). Human
recombinant human TNF-a was purchased f rom
PeproTech (USA).

Mouse Experiment
Specific pathogen-free female BALB/c mice (6 to 7 weeks old;
weight, 20–25 g) were purchased from SLAC Laboratory Animal
Co., Ltd. (Shanghai, China). Before the experiment, all the
animals were acclimated to experimental conditions for
1 week. The mouse model of rosacea was constructed as
described before (29). All the 8-week-old BALB/c mice (7 to
8 weeks old, weight, 20–25g) were divided into four groups
(control group, LL37 group, MLT group, LL37 + MLT group)
randomly. Mice were sacrificed 12 h after the final injection, and
mice dorsal lesion skins were collected. The inflammation
severity of the rosacea mice model was evaluated according to
the area of skin lesions, erythema, and thickness (30), and the
skin tissues were divided into three parts for RNA extraction, HE
staining, and immunofluorescence staining, respectively. Once
the experiments were not to be carried out immediately, tissues
were stored at −80°C until use. All mice were housed in sterile
conditions at 23°C ± 2°C (12 h light/dark). All experimental
Frontiers in Immunology | www.frontiersin.org 3
protocols followed the guidelines of animal experimentation and
were approved by the Ethical Committee of Xiangya Hospital of
Central South University (Approval No. 201611610).

Histological Analysis
Fresh mouse dorsal skin tissues were fixed in 4%
paraformaldehyde (PFA), embedded in paraffin, and sectioned
at 6 µm. Subsequently, hematoxylin and eosin (H&E) staining
was performed on paraffin sections for observation under a light
microscope (Olympus, Japan), and the number of dermis-
infiltrating cells was then averaged and assessed statistically.

Cell Culture and Treatment
Human immortalized keratinocyte (HaCaT) cells were cultured
in complete calcium-free DMEM media (Gibco, USA)
containing 10% fetal bovine serum (FBS) (Gibco, USA), 1% L-
glutamine (Gibco, USA), and 1% penicillin/streptomycin (Gibco,
USA), at 37°C in 5% CO2 in an incubator. When HaCaT cells
reached 70% confluence (logarithmic phase HaCaT cells were
inoculated into a 24-well plate with cell-climbing slices at the
concentration of 1 × 104/well, if HaCaT cells were prepared for
immunofluorescence experiments), the culture medium was
replaced with serum-free calcium-containing DMEM medium.
After HaCaT cells were starved for 12 h, they were then treated
with melatonin (1 mM) for 24 h and stimulated with 8 mM LL37
or 100 ng/ml TNF-a for 12 h, and then RNA extraction or
immunofluorescence was performed. For the immunoblot
FIGURE 1 | Workflow of the study.
November 2021 | Volume 12 | Article 756550
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experiments, after HaCaT cells reached 70% confluence, they
were then treated with melatonin (1 mM) for 6 h and then
stimulated with TNF-a (100 ng/ml) for 15 min, and then the cell
protein was collected (the other conditions were the same
as above).

Human umbilical vein endothelial (HUVEC) cells were
cultured in complete RPMI 1640 medium (Thermo Fisher
Scientific, USA) containing 10% FBS (Gibco, USA) and 1%
penicillin/streptomycin (Gibco, USA) in an incubator (37°C,
5% CO2). For the detailed research methods of chemotaxis and
migration assay, refer to the following specific section.

RNA Extraction, Reverse Transcription,
and RT-PCR
Total RNA in cells and tissue samples was extracted using the
standard RNA extraction method with TRIzol (Invitrogen Life
Technologies, USA). After a NanoDrop spectrophotometer
determined RNA concentration, reverse transcription was
performed on 2 mg RNA, using the Maxima H Minus First-
Strand cDNA Synthesis Kit with dsDNase (Thermo Scientific,
K1682, USA) to synthesize the cDNA strand, and gene
expression was analyzed using an Applied Biosystems ® 7500
machine (Life Technologies, USA) with the qPCR SYBR Green
Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China). The
primers are shown in Table S11.

Immunofluorescence
Fresh mouse dorsal skin tissues were embedded in optimal
cutting temperature compound and 6- to 8-mm frozen sections
were cut. Then, the frozen tissues or HaCaT cells were fixed in
4% PFA for 15 min. Afterwards, the samples were permeabilized
and blocked using blocking buffer (0.2% Triton-X/5% donkey
serum) for 1 h. Next, the skin sections were incubated with
different antibodies: rat anti-mouse CD4 antibody (1:100), rat
anti-mouse CD31 antibody (1:100), and rat anti-mouse F4/80
antibody (1:100), and these antibodies were purchased from
eBioscience. HaCaT cells were incubated with rabbit anti-
phospho-NF-kB p65 antibody (1:200, Cell Signaling, USA) at
4°C overnight. Anti-rat Alexa 488 (1:200; Invitrogen, USA) and
anti-rabbit Alexa 594 (1:200; Invitrogen, USA) were used as the
secondary antibody for staining samples 1 h at room
temperature. Finally, all samples were stained with 4′,6-
diamidino-2-phenylindole (DAPI) for 5 min to visualize
nuclei. Fluorescence images were acquired under a fluorescence
microscope (Zeiss, Germany).

Western Blot Assays
Proteins of cells were extracted with RIPA lysis buffer containing
protease and phosphatase inhibitor cocktail. Then, the protein
concentration was measured by BCA protein assay kits (Thermo
Fisher Scientific, USA). Twenty micrograms of total protein was
resolved on 10% SDS polyacrylamide gels and transferred onto a
polyvinylidene fluoride (PVDF) membrane. After transferring,
membranes were blocked with 5% non-fat milk and then the
PVDF was incubated with the primary antibodies (rabbit anti-
p65, 1:1,000; rabbit anti-phospho-p65, 1:1,000; and rabbit anti-
GAPDH, 1:5,000) at 4°C overnight. After washing with TBST,
Frontiers in Immunology | www.frontiersin.org 4
the membranes were incubated with secondary horseradish
peroxidase-conjugated antibodies (1:5,000, room temperature
for 1 h). Finally, the immunoreactive bands were visualized
using a chemiluminescent HRP substrate (Millipore, USA) and
imaged using a ChemiDocTM XRS+ System (Bio-Rad, CA, USA).
GAPDH expression was used as the endogenous control.

HUVEC Cell Chemotaxis Assay
HUVEC chemotaxis was performed with transwell chambers
(8 mm, Millipore, Billerica, MA, USA). In a 24-well culture plate,
after being treated with 1 mM MLT or equal volumes of the
vehicle solution for 24 h, HUVEC cells were seeded into each
upper chamber at a density of 2 × 104 cells with 100 ml serum-
free RPMI 1640 medium. Then, the plate was placed in an
incubator (37°C, 5% CO2). Non-migratory cells on the upper
surface of the membrane were wiped off gently with a cotton
swab after the following 24 h. Afterwards, the chamber was fixed
with 4% paraformaldehyde for 15 min, and 0.1% crystal violet
solution was used to stain the cells on the lower layer for 30 min.
Finally, the number of invaded cells was counted under a light
microscope (Olympus, Japan).

HUVEC Cell Migration Assay
The HUVEC suspension with a 6 × 105/ml density was
inoculated on a six-well plate at 2 ml per well. At a confluency
of 95%, the 200-ml pipetting tip was drawn vertically on the
culture plate, and the non-adherent cells were rinsed with PBS
three times. Then, the images were captured by using an optical
microscope (Olympus, Japan) to determine the distance of
scratch for 0 h. Following HUVEC incubation with RPMI 1640
medium with 3% FBS co-incubated with 1 mM melatonin or its
vehicle in an incubator at 37°C for 24 h, photographs were
retaken under the same conditions. The measurement tool of
Image-Pro Plus software was used to measure the distance of the
cell scratch boundary before and after treatment, and the
distance before treatment was subtracted from the distance
after treatment, which was the migration distance of the cells
at 24 h.

Statistical Analysis
All data were analyzed with SPSS 17.0 statistical software and
were presented as means ± SEM. One-way ANOVA analyzed the
data between groups, and the LSD method was used for pairwise
comparison. *, P < 0.05; **, P < 0.01; and ***, P < 0.001 are
considered significant.
RESULTS

The DEGs and PPI network in AD and
Rosacea
After integrated bioinformatics analyses for GSE5281 and
GSE28146, a total of 5,091 DEGs were identified in AD tissues
compared with normal tissues (Figure S1B). The GO analysis of
DEGs was mainly related to cellular respiration, ATP metabolic
process, and ATP metabolic process (Figure S1C and Table S1).
November 2021 | Volume 12 | Article 756550
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Furthermore, KEGG enrichment analysis disclosed that these
DEGs were significantly associated with pathways of
neurodegeneration-multiple diseases, tight junction, virus
infection, and so on (Figure S1D and Table S2).

Next, we constructed the PPI network and used “cytoHubba”
to explore the hub genes (Figure S2). The top 5 representative
modules were extracted from the PPI network using “MCODE”,
and the module genes were enriched in mRNA splicing, clathrin-
mediated endocytosis, G2/M transition, translation, G alpha (q)
signaling events, and so on (Table 1).

For rosacea, 3,016 DEGs were identified in rosacea tissues
compared with normal tissues (Figure S3B). GO enrichment
indicated that rosacea was associated with immune-related
biological processes (Figure S3C and Table S3). KEGG
enrichment results showed immune-related pathways, the
PPAR pathway, virus infection, bacterial infections,
metabolism-related pathways, and so on (Figure S3D and
Table S4). “cytoHubba” was used to explore the hub genes of
the PPI network (Figure S4), and the top 5 representative
modules were extracted from the PPI network using
“MCODE” (Figure S4). The module genes were enriched in G
alpha (i) signaling events, interferon signaling, neutrophil
Frontiers in Immunology | www.frontiersin.org 5
degranulation, cornification, neutrophil degranulation, and so
on (Table 2).

The Co-Expressed DEGs and Enriched
Pathways in Both AD and Rosacea
To reveal the shared regulatory network, 747 overlapped DEGs
(ol-DEGs) were detected in AD and rosacea (Figure 2A). GO
enrichment analysis showed that the ol-DEGs were related to
immune-related processes and lipid metabolic processes
(Figure 2B). The KEGG enrichment results showed that ol-
DEGs were related to cytokine/chemokine pathways, infectious/
inflammatory disease, and metabolism-related pathways
(Figure 2C). Consistent with these results, inflammation-,
metabolism-, and apoptosis-related pathways were enriched
using the Metascape database (Figure 2D). Moreover, the
enrichment analysis showed that ol-DEGs were related to
inflammation-, vascular-, and infection-related diseases in
DisGeNET (Figure 2E). Transcription factor–target analysis
showed that many ol-DEGs were regulated by TFs in the
TRRUST database (Figure 2F), indicating that the TF
regulatory network may play an essential role in the
progression of AD and rosacea.
TABLE 1 | MCODE enrichment analysis in AD.

MCODE GO Description Log10(P)

MCODE_1 hsa72163 mRNA splicing—major pathway −33.9
MCODE_1 hsa72172 mRNA splicing −33.4
MCODE_1 hsa72203 Processing of capped intron-containing pre-mRNA −30.9
MCODE_2 hsa8856828 Clathrin-mediated endocytosis −36.9
MCODE_2 hsa199991 Membrane trafficking −26.4
MCODE_2 hsa5653656 Vesicle-mediated transport −26
MCODE_3 hsa69275 G2/M transition −33.3
MCODE_3 hsa453274 Mitotic G2-G2/M phases −33.2
MCODE_3 hsa69278 Cell cycle, mitotic −29.5
MCODE_4 hsa72766 Translation −27.1
MCODE_4 ko03010 Ribosome −22.4
MCODE_4 hsa03010 Ribosome −22.4
MCODE_5 hsa416476 G alpha (q) signaling events −16
MCODE_5 hsa373076 Class A/1 (rhodopsin-like receptors) −14.5
MCODE_5 hsa500792 GPCR ligand binding −13.3
November 2021 | Volume 12 | Artic
TABLE 2 | MCODE enrichment analysis in rosacea.

MCODE GO Description Log10(P)

MCODE_1 hsa418594 G alpha (i) signaling events −55
MCODE_1 hsa373076 Class A/1 (rhodopsin-like receptors) −51.0
MCODE_1 hsa375276 Peptide ligand-binding receptors −50.8
MCODE_2 hsa913531 Interferon signaling −42.1
MCODE_2 hsa1280215 Cytokine signaling in the immune system −30.7
MCODE_2 GO:0034341 Response to interferon-gamma −25.3
MCODE_3 hsa6798695 Neutrophil degranulation −32.4
MCODE_3 GO:0043312 Neutrophil degranulation −32.3
MCODE_3 GO:0002283 Neutrophil activation involved in immune response −32.2
MCODE_4 GO:0070268 Cornification −43.8
MCODE_4 hsa6809371 Formation of the cornified envelope −42.6
MCODE_4 hsa6805567 Keratinization −38.5
MCODE_5 hsa6798695 Neutrophil degranulation −12.4
MCODE_5 GO:0043312 Neutrophil degranulation −12.4
MCODE_5 GO:0002283 Neutrophil activation involved in immune response −12.3
le 756550
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The TF Regulatory Network and Potential
Drugs for AD and Rosacea
To further reveal the TF regulatory network in both AD and
rosacea, we analyzed the differently expressed TFs with potential
targets differently expressed in AD and rosacea. Twenty-four hub
TFs are identified in Figure 3A. The TF regulatory network in AD
and rosacea is shown in Figure 3B and Table S5. The TFs and
targets were enriched in inflammatory-, blood vessel development-,
and apoptosis-related signaling pathways (Figure 3C). In
Figure 3D, four models were observed to be enriched in
atherosclerosis-, IL-17-, proteoglycan-, and inflammatory
response-related signaling pathways (Figure 3D and Table 3).
These results indicated that inflammatory- and blood vessel-
related pathways are crucial during the pathogenesis of AD
and rosacea.

Next, we analyzed the potential drugs for AD and rosacea.
Using the DGIbd database (https://dgidb.org/), 12 of the 37 hub
Frontiers in Immunology | www.frontiersin.org 6
genes were observed as targets of the 113 predicted drugs (Table
S6). We compared the 74 drugs for AD, the 44 drugs for rosacea,
and the 113 predicted drugs for hub genes. Three drugs (aspirin,
thalidomide, and hydroxychloroquine) overlapped in AD and
rosacea, and two (aspirin and thalidomide) of these were
observed in the predicted drugs (Figure 3E), proving that the
candidate drugs for AD/rosacea have high credibility. Moreover,
three predicted drugs (MLT, olanzapine, and citalopram) have
been used for AD treatment. The Sankey diagram revealed the
correlation between disease, drugs, and targets (Figure 3F).
These results indicated that the three predicted drugs (MLT,
olanzapine, and citalopram) could be effective therapeutic
strategies for rosacea. Among these potential drugs, MLT was
co-associated both with retinoid-related orphan receptor alpha
(RORA) as well as IFN-g. MLT was predicted as a candidate drug
using the CMap database (Table S7). So, MLT was selected for
further function assay.
A

B

D

E

F

C

FIGURE 2 | The co-differentially expressed genes (DEGs) in Alzheimer’s disease (AD) and rosacea. (A) The Venn graph of ol-DEGs in both AD and rosacea. (B) GO
enrichment analysis of ol-DEGs. (C) The KEGG analysis of co-DEGs. (D) The pathway enrichment analysis of co-DEGs using Metascape. (E) The disease enrichment
analysis of ol-DEGs in DisGeNET using Metascape. (F) The transcription factor (TF) enrichment analysis of ol-DEGs in TRRUST using Metascape.
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A B

D
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FIGURE 3 | The TF regulatory network and candidate drugs for AD and rosacea. (A) The common TFs in AD and rosacea. (B) The TF regulatory network in AD and
rosacea. (C) The enrichment of TF–target genes using the Metascape database. Network of enriched terms colored by cluster ID and the identities of the gene lists.
(D) MCODE components identified in TF–targets in rosacea and AD. (E) The Venn diagram revealed the intersection among AD drugs, rosacea drugs, and predicted
drugs. (F) The Sankey diagram revealed the correlation between the disease, drugs, and targets.
TABLE 3 | MCODE enrichment analysis of TF–targets in rosacea and AD.

MCODE GO Description Log10(P)

MCODE_1 hsa05200 Pathways in cancer −6.9
MCODE_1 ko05418 Fluid shear stress and atherosclerosis −6.9
MCODE_1 hsa05418 Fluid shear stress and atherosclerosis −6.8
MCODE_2 ko04657 IL-17 signaling pathway −10.7
MCODE_2 hsa04657 IL-17 signaling pathway −10.7
MCODE_2 hsa04668 TNF signaling pathway −10.2
MCODE_3 ko05205 Proteoglycans in cancer −10.0
MCODE_3 hsa05205 Proteoglycans in cancer −9.8
MCODE_3 GO:2000243 Positive regulation of reproductive process −9.0
MCODE_4 GO:0009617 Response to bacterium −4.8
MCODE_4 GO:0006954 Inflammatory response −4.7
Frontiers in Immunology | www.frontiersi
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Identifying MLT Targets in AD
and Rosacea
Five hundred twenty-nine pharmacological targets of MLT were
predicted using the TCMSP, TargetNet, and SwissTargetPrediction
databases, and then the repetitive genes were deleted using the
UniProt database. An overlap of 128 AD/rosacea TF–targets with
MLT pharmacological targets identified 19 intersection genes of
MLT against AD/rosacea (Figure 4A and Table S8). GO analyses
of the 19 genes indicated that MLT could affect the regulation of
inflammatory response, collagen metabolic process, response to
oxygen levels, vascular-associated smooth muscle cell proliferation,
and so on (Figure 4B and Table S9). Additionally, 51 KEGG
Frontiers in Immunology | www.frontiersin.org 8
pathways were significantly enriched (P-adjusted < 0.05), including
the AGE-RAGE signaling pathway in diabetic complications, lipid
metabolism and atherosclerosis, NF-kappa B signaling pathway,
IL-17 signaling pathway, PPAR signaling pathway, and TNF
signaling pathway (Figure 4B and Table S10). Next, the PPI
network of the 19 intersection targets was analyzed using
STRING (Figure 4C), cytoHubba was used to identify eight core
gene targets, namely, CCND1, EGFR, ICAM1, MMP2, MMP9,
PTGS2, SERPINE1, and TNF (Figure 4C).

Next, molecular docking was performed to identify the
possible binding between MLT and eight core targets. The
result showed that MLT could bind to CCND1, EGFR, ICAM1,
A

B

D

C

FIGURE 4 | Pharmacological targets of melatonin (MLT) in AD and rosacea. (A) Nineteen intersection genes of MLT against AD/rosacea. (B) GO and KEGG
enrichment analysis of the 19 MLT targets. (C) PPI network of the 19 MLT targets. (D) Molecular docking revealed the binding of MLT to its targets.
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MMP9, PTGS2, and SERPINE1 with docking scores of −5.86,
−7.16, −6.02, −5.95, −6.52, and −6.81, respectively (Figure 4D).
THE POTENTIAL MLT ALLEVIATED
ROSACEA-LIKE PHENOTYPES IN MICE

To verify the therapeutic effect of MLT on rosacea, rosacea-like mice
were treated with MLT for 4 days (29). We found that MLT
significantly ameliorated LL37-induced rosacea-like phenotypes
(Figure 5A). The redness area, redness score, skin thickness, and
inflammatory cell infiltration were dramatically decreased by MLT
treatment (Figures 5B–F). Moreover, MLT repressed the expression
of proinflammatory cytokines, such as IL-6, TNF-a, TLR2, TGF-b1,
MMP9, and VEGF in rosacea-like dermatitis (Figure 5G).

As described in previous studies, the infiltration of CD4+ T
cells and Th1/Th17 polarized cells is essential in the pathogenesis
of rosacea (31–33). In this study, immunofluorescence and qPCR
analysis showed that MLT significantly reduced the infiltration
of CD4+ T cells in rosacea-like dermatitis (Figures 6A, B) and
suppressed the expression of Th1-related genes (IFN-g, CCR5,
CXCL9, CXCL10) and Th17-related genes (STAT3 and IL-20)
(34) in rosacea-like dermatitis (Figure 6C).

Macrophages have also played an important role in rosacea
(35). To investigate whether MLT can inhibit macrophage
activity in rosacea-like dermatitis, we detected the infiltration
of F4/80+ cells. The number of infiltrated F4/80+ cells was
significantly attenuated (Figures 6D, E) and the expression of
macrophage-related genes (MIF, CCL3, CCL22, and CCR4) was
evidently reduced by MLT treatment in rosacea-like dermatitis
(Figure 6F). Collectively, these data suggested that MLT
suppressed the immune response in rosacea.

MLT Reduced the Secretion of
Inflammatory Factors From Keratinocytes
Studies showed that keratinocyte-mediated secretion of
inflammatory chemokines and cytokines plays a pivotal role in
the progression of rosacea (29). Here, we explored the effects of
MLT on chemokine and cytokine expression in LL37-treated
HaCaT cells. The results showed that 1 mM MLT significantly
reduced LL37-induced CCL2, CCL20, MMP9, KLK5, IL-6, IL-8
and VEGF-c expression (Figure 7A). What is more, the
expression of NF-kB downstream genes (IL-1a and IL-1b) was
significantly repressed by MLT. To further assess the precise
anti-inflammatory mechanism of MLT, we stimulated the
HaCaT cells with TNF-a (100 ng/ml), one of the most potent
inducers of NF-kB activation (36). We found that TNF-a
induced the mRNA levels of chemokines and cytokines,
including CCL2, CCL20, IL-8, KLK5, TGF-b1, TLR2, IL-1a,
and IL-1b, which were abrogated by MLT treatment obviously
(Figure 7B). Moreover, immunofluorescence results also
revealed the inhibition of MLT on TNF-a-induced p65
translocation (Figures 7C, D) and phosphorylation of p65/NF-
kB (Figure 7E). Collectively, these data suggest that MLT
ameliorated HaCaT-mediated inflammation partly by
modulating NF-kB signaling.
Frontiers in Immunology | www.frontiersin.org 9
MLT Decreases Angiogenesis by
Repressing the Migration and
Chemotaxis of HUVEC
We next analyzed the effects of MLT on angiogenesis in rosacea
using immunostaining. As shown in Figures 8A, B, the number
of CD31+ vessels was significantly reduced by MLT treatment.
MLT suppressed LL37-induced HUVEC chemotaxis
(Figures 8C, D) and migration (Figures 8E, F). Collectively,
these data provide novel evidence that MLT may be a promising
therapeutic strategy for vascular dysfunction in rosacea.
DISCUSSION

Rosacea is a chronic facial inflammatory skin disease, with a global
prevalence of over 5% (1). Due to the lack of effective and safe
treatments, rosacea may develop as a manifestation of systemic
diseases and is significantly associated with metabolic, psychiatric,
and neurologic disorders, including AD (37). Therefore, a novel,
effective, and safe therapeutic strategy for rosacea is urgently needed.
This study revealed the common TF regulatory network in AD/
rosacea and identified MLT as a candidate drug for rosacea. The
therapeutic effect and mechanism of MLT were verified in vivo and
in vitro, and the network pharmacology analysis revealed the MLT-
related molecular functions and pharmacological targets for treating
AD and rosacea.

Although the exact etiology of rosacea is still uncertain, it is well
known that vascular and immunologic dysregulation play a crucial
role in rosacea pathogenesis. Chronic neuroinflammation is
essential for the pathogenesis of AD significantly (6). Egeberg
et al. observed an increased risk of AD in patients with rosacea,
partly because of the overlap of proinflammatory mediators
between rosacea and AD (6). Consistent with rosacea, vascular
dysfunction was also observed in AD (9). In this study, 747 ol-DEGs
were detected in AD and rosacea, which were enriched in immune-
and metabolism-related pathways. Moreover, the enrichment
analysis showed that ol-DEGs were related to inflammation-,
vascular-, and infection-related diseases in DisGeNET. These
results indicated that inflammatory- and blood vessel-related
pathways play a critical role in the pathogenesis of AD and rosacea.

Based on the ol-DEGs, we revealed the TF regulatory network in
AD/rosacea, indicating a central role of the 24 TFs in regulating the
pathogenesis of AD and rosacea, including PPARG, STAT4, sox9,
and RORA. PPARG (PPARg), a member of the nuclear receptor
superfamily, is mainly expressed in adipose tissues and regulates
lipid metabolism (38). Recently, studies described the regulation of
PPARg on inflammation by inhibiting cytokines and MMPs and
regulating oxidative stress-sensitive pathways and NF-kB pathways
(38). Moreover, PPARg plays a crucial role in the pathogenesis of
AD by regulating mitochondrial function, and it is also considered a
promising target for pharmacological-based therapies (39). STAT4
is an essential mediator of inflammation by regulating IFN-g (40,
41), which is closely related to the progression of AD and rosacea
(32, 42). RORA, a lipid-sensing nuclear receptor, was reported to
have diverse biologic functions, including the regulation of
inflammation, lipid metabolism, and angiogenesis (43–46). RORA
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FIGURE 5 | The treatment effects of MLT on rosacea. (A) MLT significantly alleviated rosacea-like phenotype in mice. The effects of MLT on lesion area (B), skin
thickness (C), and redness score (D) in rosacea-like mice. (E) H&E staining of rosacea-like lesion. Scale bars: 100 mm. (F) Dermal inflammatory cell infiltration was
quantified in rosacea-like mice. (G) The mRNA expression of rosacea-related markers in mice. All results are representative of at least three independent
experiments. Data expressed as individual values with mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.01.
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FIGURE 6 | MLT inhibits immune cell infiltration in rosacea-like mice. (A) Immunostaining of CD4+ T cells in rosacea-like mice. Scale bar: 50 mm. (B) The infiltrated
CD4+ T cells were quantified. (C) qPCR analysis detected the expression of Th1- and Th17-related genes in rosacea-skin lesions. (D) Immunostaining of
macrophages in rosacea-like mice. Scale bar: 50 mm. (E) The infiltration of macrophage cells was quantified in rosacea-like mice. (F) qPCR analysis detected the
expression of macrophage-related genes. All results are representative of at least three independent experiments. Data expressed as individual values with mean ±
SEM. *P < 0.05, **P < 0.01, ***P < 0.01.
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is distinctly upregulated and reported to play a central role in AD
(47). Taken together, these key TFs could be involved in the
regulation of inflammation and angiogenesis by targeting their
target genes in AD and rosacea. Then, the key TFs and their
targets were subsequently submitted to the DGIdb database for
predicting the drugs for AD and rosacea, and 113 candidate drugs
were identified. In AD and rosacea, two (aspirin and thalidomide) of
the three overlapped drugs (aspirin, thalidomide, and
hydroxychloroquine) were observed in the predicted drugs,
proving that the candidate drugs for AD/rosacea have high
credibility. Moreover, three predicted drugs (MLT, olanzapine,
and citalopram) have been used for AD treatment. Among these,
MLT was found to be the drug that could target both RORA as well
as IFN-g. Moreover, the potential therapeutic effect of MLT on AD
Frontiers in Immunology | www.frontiersin.org 12
and rosacea was also verified using CMap. These findings indicated
that MLT could be an effective therapeutic strategy for rosacea.

MLT is a neurohormone that acts as the major regulator of the
daily biological rhythm (48) and plays an essential role in diverse
physiological processes, including the aging process (13),
neuroprotection (49), immune regulation (50), and repressing
angiogenesis (51). MLT is safe, has low toxicity, and shows
beneficial action against various diseases including AD (52, 53).
Hossain et al. showed thatMLT can improve sleep quality tomitigate
AD neuropathology (54). Our previous study showed that rosacea
patients presented poorer sleep quality, which might subsequently
aggravate rosacea through regulating inflammatory factors (55). So,
we speculate that MLT may relieve rosacea partly by regulating
sleep quality.
A
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FIGURE 7 | MLT reduced the secretion of inflammatory factors from keratinocyte. qPCR analysis revealed the effects of MLT on the expression of inflammatory
cytokines in LL37-treated HaCaT cells (A) and TNF-a-treated HaCaT cells (B). (C) Immunofluorescence analysis revealed the TNF-a-induced p65 translocation.
(D) Percentage of p65-positive cells in the nucleus. (E) Immunoblotting of p-p65 and p65 HaCaT cells. All results are representative of at least t independent
experiments. Data expressed as individual values with mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001. A two-tailed unpaired Student’s t-test was used.
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MLT normally orchestrates daily and seasonal rhythms by acting
on theMT(1) andMT(2) receptors (56).Moreover, RORa andRORb,
nuclear MLT receptors, are involved in MLT-mediated regulation of
pathological and physiological cardiac hypertrophy (57). Recently,
several direct MLT targets and interacting proteins were identified in
AD and SARS-CoV-2 treatment, including DAPK1, calmodulin
(CALM) 1, and CALM 2 (58, 59). To further reveal the potential
molecular mechanism of MLT on AD/rosacea treatment, we used
network pharmacologymethods to analyze the detailed anti-AD/anti-
rosacea mechanisms of MLT. Nineteen genes in the TF regulatory
Frontiers in Immunology | www.frontiersin.org 13
network were identified as potential pharmacological targets of MLT
against AD and rosacea. The GO/KEGG enrichment results indicated
that anti-ADandanti-rosacea effects exertedbyMLTweredirected via
regulating vascular-associated signaling pathways and inflammation-
related signaling pathways, including IL-17, NF-kB, and TNF. Based
on the above results, we detected the therapeutic role of MLT on
rosacea. The results showed that MLT significantly improved the
rosacea-like phenotype in vivo. MLT treatment reduced the CD4+ T-
cell and macrophage infiltration and Th1/Th17 polarization partly by
repressing keratinocyte-mediated cytokine secretion. Moreover, MLT
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FIGURE 8 | MLT suppresses angiogenesis in rosacea. (A) Immunostaining of CD31+ cells in rosacea-like lesions. Scale bar: 50 mm. (B) The CD31+ microvessels
were quantified. (C, D) The transwell assay was used to detect the chemotaxis ability of HUVEC cells. (E, F) The transwell assay was used to detect the migration
ability of HUVEC cells. All results are representative of at least three independent experiments. Data expressed as individual values with mean ± SEM. *P < 0.05,
**P < 0.01, ***P < 0.01. One-way ANOVA with Bonferroni’s post-hoc test or two-tailed unpaired Student’s t-test was used.
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dramatically suppressed the angiogenesis in the rosacea-like mouse
model, partly by inhibiting chemotaxis andmigrationofHUVECsand
VEGF expression. The NF-kB signaling pathway was reported to be
activatedandfunctionedasa therapeutic target inADandrosacea (60–
62). MLT was reported to repress the NF-kB signaling pathway in
treatingneuroinflammationandneurodegeneration(63). In this study,
we found that MLT inhibited the activation of the NF-kB pathway in
TNF-a-induced inflammatory HaCaT cell, and MLT remarkably
decreased the expression of NF-kB downstream genes, IL-1a and IL-
1b, inLL37-orTNF-a-treatedHaCaTcells.Moreover,TNF-a and IL-
17Awere also reported as the key cytokines inADand rosacea (32, 64,
65). Here, we also noted the repression of MLT on IL-17A/TNF-a in
rosacea-like mice. These results indicated that MLT attenuates the
inflammation of AD/rosacea partly via the NF-kB/IL-17 pathways.
Considering the repression of MLT on IL-17, NF-kB, and TNF
signaling pathways, MLT could be a potential candidate treatment
for patients with autoimmune diseases including psoriasis and vitiligo.

Finally, molecular docking analysis revealed the direct MLT
targets, including MMP9, CCND1, EGFR, ICAM1, PTGS2, and
SERPINE1, which were inflammation- and angiogenesis-related
genes. MMP9 was reported as a key inflammatory factor and as a
therapeutic target in both rosacea andAD.Notably, some drugs with
an MMP inhibitor function, such as doxycycline and tetracycline,
were used for rosacea treatment (66), and the MMP9 inhibitor
improved specific neurobehavioral deficits in AD mouse (67).
CyclinD1 (CCND1), a prime amplified gene in various cancers
(68), was also reported to participate in angiogenesis by repressing
the proliferation of endothelial cells (69). ICAM1, an intercellular
adhesion molecule, exerts proinflammatory actions via facilitating
adhesion and subsequent transmigration of leukocyte (70),
increasing the permeability of endothelial and epithelial barrier
(71), and promoting immune cell activity (72). The expression of
ICAM1 was upregulated in rosacea and AD (73, 74). SERPINE1, a
serpin peptidase inhibitor, is related to immune response in gastric
cancer (75). PTGS2, also known as COX-2, has a critical role in
initiating inflammatory response and angiogenesis (76, 77).
Moreover, studies demonstrated the potential relationship between
MLT target genes (MMP9, CCND1, EGFR, ICAM1, PTGS2, and
SERPINE1) and rosacea-related key genes (IL-6, IL-1b, IFNg, IL-17,
andTNF-a) (78, 79). So,we speculated thatMLTrepressed the IL-17,
NF-kB, and TNF signaling pathways by targeting these
pharmacological targets, subsequently leading to inflammation and
angiogenesis in AD and rosacea (Figure S5).
CONCLUSIONS

In this study, bioinformatics analysis revealed the shared TF
regulatory network and the potential drugs for AD and rosacea.
Moreover, the potent pharmacological targets and the
Frontiers in Immunology | www.frontiersin.org 14
therapeutic mechanism of MLT against AD/rosacea were
identified by network pharmacology and verified in in vivo/in
vitro experiments. In conclusion, this study contributes to the
common pathologies shared by rosacea and AD and identified
MLT as an effective treatment strategy for rosacea and AD via
regulating inflammation and angiogenesis.
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