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Non-Small Cell Lung Cancer (NSCLC) is a disease with high morbidity andmortality, which
has sex-related differences in prognosis and immunotherapy efficacy. However, the
difference in the mechanisms remains unclear. Macrophages, characterized by high
plasticity and heterogeneity, act as one of the key cells that exert anti-tumor effects in
the tumor microenvironment (TME) and play a complicated role in the process of tumor
progression. To elucidate the subtype composition and functional heterogeneity of tumor-
associated macrophages (TAMs) in NSCLC and further compare the sex-mediated
differences, we conducted a single-cell level analysis in early-stage smoking NSCLC
patients, combined with ssGSEA analysis, pseudotime ordering, and SCENIC analysis.
We found two universally presented immune-suppressive TAMs with different functional
and metabolic characteristics in the TME of NSCLC. Specifically, CCL18+ macrophages
exerted immune-suppressive effects by inhibiting the production of inflammatory factors
and manifested high levels of fatty acid oxidative phosphorylation metabolism. Conversely,
the main metabolism pathway for SPP1+ macrophage was glycolysis which contributed
to tumor metastasis by promoting angiogenesis and matrix remodeling. In terms of the
differentially expressed genes, the complement gene C1QC and the matrix remodeling
relevant genes FN1 and SPP1 were differentially expressed in the TAMs between sexes, of
which the male upregulated SPP1 showed the potential as an ideal target for adjuvant
immunotherapy and improving the efficacy of immunotherapy. According to the early-
stage TCGA-NSCLC cohort, high expression of the above three genes in immune cells
were associated with poor prognosis and acted as independent prognostic factors.
Moreover, through verification at the transcription factor, transcriptome, and protein
levels, we found that TAMs from women showed stronger immunogenicity with higher
interferon-producing and antigen-presenting ability, while men-derived TAMs upregulated
the PPARs and matrix remodeling related pathways, thus were more inclined to be
immunosuppressive. Deconstruction of the TAMs at the single-cell level deepens our
org November 2021 | Volume 12 | Article 7567221
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understanding of the mechanism for tumor occurrence and progress, which could be
helpful to achieve the precise sex-specific tumor treatment sooner.
Keywords: Non-small cell lung cancer, tumor-associated macrophage, sex, single-cell RNA sequencing,
immune microenvironment
INTRODUCTION

Lung cancer is the most common tumor worldwide. Apart from
high incidence rate, it is also the leading cause of cancer-related
deaths in both sexes (1). Non-Small Cell Lung Cancer (NSCLC)
accounts for 85% of all lung cancers. The WHO further divides
NSCLC into Adeno Carcinoma, Squamous Cell Carcinoma, and
Large Cell Lung Cancer (2). Epidemiological research suggests
that the progress of lung cancer is related to many factors such as
sex, age, smoking status, and living environment (2). Among
them, the relationship between sex and the prognosis of NSCLC
is full of controversy. Researchers in 1990 first proposed the
relationship between survival time and sex in lung cancer (3).
After years of debate, recent data showed that after balancing the
age factor, the incidence and mortality of lung cancer in men are
higher than those in women (4). Smoking is a key factor that
caused the clinical difference between sexes in NSCLC. However,
more and more data shows that the sex-related incidence
discrepancy of lung cancer cannot be explained simply by
smoking behaviors. For smokers, when exposed to comparable
smoking status, most studies suggest women have a higher
susceptibility to lung cancer than men (5), whereas data from
Park et al. indicated that men had an increased risk to develop
lung cancer than women in East Asia (6). For non-smokers,
women hold a higher chance of lung cancer than men (7), and
the most recent data also showed that among young people who
were less affected by tobacco, the incidence of lung cancer among
young women was higher than that of men (8). The above results
suggest that apart from behavioral differences like smoking,
sexual physiology itself is also a non-negligible factor that can
influence the incidence and prognosis of NSCLC.

Report indicated that the sex-related difference in the
prognosis of NSCLC is mainly concentrated on the immune
response variation (9). At present, it is believed that women
perform stronger innate and adaptive immunity compared to
men. 80% of autoimmune diseases occur in women, but the risk
of men dying from malignant tumors is about twice than that of
women (10). In NSCLC, immune checkpoint inhibitors (ICIs),
which target the immune system, play an important role in
prolonging the survival rate of advanced patients (1).
Increasingly data shows that the efficacy of ICIs is related to
sex. Studies have found that men benefited more from ICI
monotherapy, while women gained more from the
combination of ICIs+chemotherapy (11). However, there was
also article reported that sex was not related with the efficacy of
ICIs in NSCLC (12). Therefore, studying the sex-mediated
differences in the tumor immune microenvironment (TIME) at
the single-cell level will help us find the resolution and
understand male and female tumor pathogenesis in more depth.
org 2
Single-cell RNA Sequencing technology (scRNA-seq) reveals
the highly complex cel l composit ion of the tumor
microenvironment (TME) in high resolution. It may also be a
powerful tool for exploring common features and key differences
among various immune cell subsets of the TIME in the future
(13). Presently, there is no single-cell analysis study on the
differences in sex-mediated immune cell infiltration in NSCLC
(14–16). According to our research, myeloid cells exhibited great
proportion difference in the TIME of NSCLC between sexes. As
the most important component of myeloid cells, tumor-
associated macrophages (TAMs) have been reported to be
related to prognosis and ICI efficacy in many tumors and thus
became the primary focus of our research (17, 18).

Normally, macrophages regulate the immune process
through phagocytizing, antigen presentation, and secreting
various signal molecules. However, in tumors, macrophages
are induced into a classically-activated M1 phenotype with
anti-tumor effects or alternatively activated M2 phenotype with
anti-inflammatory effects under the induction of pro-
inflammatory or anti-inflammatory factors (18). Significantly,
more evidence has shown that TAMs have high diversity and
plasticity, and the traditional binary system cannot accurately
descr ibe in v ivo macrophage polymorphism (19) .
Concomitantly, the polymorphism of TAMs during tumor
progression may affect the efficacy of immunotherapy (18).
Therefore, focusing on TAMs in NSCLC, we found two
ubiquitous M2 phenotype TAMs with different transcription
characteristics and further elucidated the gene expression and
functional heterogeneity of TAMs between sexes. What we have
done will deepen our understanding of the role of TAMs in the
TME and also reveal a potential immune mechanism of tumor
progression in each sex from the perspective of TAMs.
MATERIALS AND METHODS

Single-Cell RNA Sequencing Datasets
Acquisition and Processing
Raw data of the NSCLC single-cell discovery cohort (10x
Genomics) was downloaded from the ArrayExpress website (E-
MTAB-6149, E-MTAB-6653) (14). Cell Ranger (version 2.0.0,
http://software.10xgenomics.com/single-cell/overview/welcome)
was used to process the raw data of each sample so as to obtain
the gene expression counts. Reads were mapped to human
reference genome h19. Unfortunately, the data for samples 1 to
2 contained in E-MTAB-6149 could not generate the expression
matrix during the raw data processing, and the final cohorts in
our article included samples 3 to 8. We keep the name of the
samples consistent with Supplementary Table 1 provided by the
November 2021 | Volume 12 | Article 756722
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original article. The normalized expression matrix of NSCLC
single-cell validation dataset 1 (GSE127465) and validation
dataset 2 (GSE117570) were downloaded from the Gene
Expression Omnibus website (GEO) (15, 20).

Quality Control and Downstream Analysis
In NSCLC single-cell discovery data, the Seurat package (version
3.1.4) was used to accomplish the scRNA-seq associated analysis
(21). Firstly, we used the expression of XIST and RPS4Y1 to
distinguish the sex of the samples, concretely, XIST indicates
females, while RPS4Y1 specifically expressed on males (22).
Contrary to the materials provided by the original article,
samples 4 and 6 expressed a high level of female-specific XIST,
while samples 3, 5, 7, and 8 were male-derived cells
(Supplementary Figure 1B). Confirming the sex information
of the samples, we further conducted quality control. Cells with
100~6000 detected genes, over 200 UMIs, and less than 10%
mitochondrial genes were kept for downstream analysis. Before
executing the standard steps, including normalization,
generating hypervariable genes, and PCA analysis, we checked
the cell-cycle-related variation source among cells. The standard
steps were conducted with default parameters, while the
Harmony package was used to eliminate the batch effects.
Principal components which cumulatively contributed 80% of
the standard deviation entered the clustering step. Resolution
value was determined through numerous attempts, and
visualization was accomplished by t-SNE. To promote the
accuracy of cell annotation, we did not distinguish between
tumor and normal samples in the first annotation and focused
on deconstructing the main cell types in the TME. In the first
round of cell annotation, cells were identified by the following
markers: immune cell (PTPRC), fibroblast (COL1A2, ACTA2),
endothelial cell (CLDN5, RAMP2), alveolar cell (AQP4, PEBP4),
epithelial cell (CAPS, TMEM190), tumor cell (EPCAM), and
erythrocyte (HBD, HBM). Second, the tumor-derived immune
cells were extracted for further annotation, specifically: B cell
(CD19, CD79A), plasma cell (CD79A, SDC1), CD4+ T cell
(CD3D, CD4), CD8+ T cell (CD3D, CD8A), and myeloid
cell (MARCO, CD14, CD68). Clusters that expressed several
cell-specific markers (for instance: CD3E and CD79A) were
defined as “low quality” and abandoned for downstream
analysis (Supplementary Figure 1E). Next, 5,588 myeloid cells
from the tumor samples were extracted and re-clustered using
the standard Seurat steps. Detailed markers used for cell
annotation were shown in Supplementary Figure 2E. Of note,
the FindAllMarkers() function of the Seurat package was used to
explore the differential genes among groups, and the Wilcox test
was used to calculate the significance of the differences while the
remaining parameters were kept at the default. DEGs of each
myeloid cell were shown in Supplementary Table 3, and part of
the visualization was accomplished by Seurat version 4.0.1 (23).

7 samples were included in the NSCLC single-cell validation
data 1 (GSE127465), of which one sample was excluded because
of drug-treatment history before sampling. The final cohort
included 3 males and 3 females. Specific clinical features were
in Supplementary Table 1, and labels of samples were consistent
with the original article. The expression matrix of tumor-derived
Frontiers in Immunology | www.frontiersin.org 3
macrophages was extracted based on the annotation information
provided by the original article. They were re-clustered and
annotated by the same flow as outlined above. Single-cell RNA
sequencing data of 2 early-stage NSCLC patients with smoking
history were analyzed and defined as validation dataset 2
(GSE117570). The immune and non-immune cells were
annotated firstly, then we re-clustered the Mon&Macro cluster
and extracted the 864 macrophages for further analysis. Analysis
was accomplished by Seurat version 4.0.1, detailed markers used
for cell annotation were presented in Supplementary Figure 6.

ssGSEA and Pathway Analyses
The ‘GSVA’ package (24) was used for single-sample Gene set
enrichment analysis (ssGSEA) to evaluate the gene-sets enrichment
score of each cell. Gene sets were downloaded from the Molecular
Signature Database (MSigDB) (25), including C2: curated gene sets
and C5: ontology gene sets. ssGSEA scores for each cell were
calculated using the gsva() function with ‘method’ set to ‘ssgsea.’
Limma package was used to compare (26) the differentially
expressed gene-sets among groups, and p<0.05 indicated
significant differences. The most differentially expressed immune
and metabolism-associated gene-sets were selected and further
visualized by the ggplot2 package (https://doi.org/10.1002/wics.
147). In terms of the gene-sets used when comparing the
functional characteristics of different TAMs subsets, M1/M2 and
matrix remodeling signatures were defined byCheng et al. (16) and
Bagaev et al. (27), while the others were downloaded fromMSigDB.
For detailed information about the gene sets, please see
Supplementary Table 2.

Trajectory Analysis
We used Monocle (version 2.14.0) (28) to explore the evolution
of TAMs subsets. Firstly, differential genes were generated by
differentialGeneTest(), and genes with qval < 0.05 entered the
next analysis, and the DDRTree method was used to reduce
dimension. After sorted cells based on the expression of
monocyte-like molecules CD14 and FCN1, which had higher
expression in macrophages at the early stage of differentiation
(Supplementary Figures 3D, E), plot_cell_trajectory() and
plot_genes_in_pseudotime() were used to visualize the results.

SCENIC Analysis
The standard SCENIC procedures were conducted to analyze the
activated regulons of each TAMs subgroup (29). Particularly, a
co-expression network of TFs and sets of genes was constructed
with the runGenie package. Then the RcisTarget package was
used to analyze the potential direct binding targets of
transcription factors. Finally, the AUCell package calculated
the regulon activity scores of each cell. Wilcox test was used to
evaluate the statistical significance of regulons expression in
TAMs between groups, and the p-values were corrected using
the Holm–Bonferroni method.

Bulk-RNA Datasets Acquisition and
Processing
The NSCLC immunotherapy cohort used in this paper was
acquired from Supplementary Table 2 of Miao et al., in which
November 2021 | Volume 12 | Article 756722
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32 female and 24 male NSCLC patients were included (30). The
mRNA values of C1QC, FN1, SPP1, and PTPRC in TCGA
cohorts (BLCA, SKCM, HNSC, PAAD, NSCLC, BRCA, and
THCA), together with the relevant clinical and survival
information of patients, were downloaded from the genomic
data commons (GDC) data portal (https://gdc.cancer.gov/about-
data/publications/pancanatlas). The log2 converted transcripts
per kilobase million (TPMs) of mRNA were calculated for
further analysis. FN1 and SPP1 genes could be expressed in
various cells. Thus their TPMs were divided by PTPRC (CD45)
to indicate their expression in immune cells. To explore the
relationships between the expression of the above three genes
survival, the cut-off values of high or low expression were defined
by the surv_cutpoint() function from the survminer package.
The log-rank test was used to achieve survival analysis. P <0.05
represented a statistical correlation. Further, univariate and
multivariate regression analyses were used to determine
whether the expression of the above genes in immune cells
were independent prognostic factors. The Cox regression
analysis was performed by the survival package, while
univariate and multivariate forest plots were realized by the
forestplot() function of the ggforestplot package and ggforest() of
the survminer package.

Information about the GSE58661 (31) and GSE75037 (32)
were downloaded from GEO through the GEOquery package
(33), GSE58661 including 89 NSCLC samples, namely 29 females
and 80 males, and 51 early-stage Adenocarcinoma samples with
smoking history were included (34 females vs 17 males) in
GSE75037. Transcriptome expression values of C1QC, FN1,
SPP1, and PTPRC were extracted and compared between sexes.

The protein expression of Fibronectin in LUAD and LUSC
was downloaded from TCPA (The cancer proteome atlas,
https://tcpaportal.org/tcpa/download.html). The matched
clinical data was downloaded from the GDC website. Lacking
the protein expression data for Osteopontin (the protein product
of SPP1) and C1QC, we only completed the expression
comparision of Fibronectin in the primary tumor between 274
females and 413 males.

Statistical Analysis
In this article, all comparisons related to two groups of variables
were accomplished by the Wilcoxon rank-sum test unless there
were extra statements. The correlation coefficient between gene
sets was calculated by the rank-based Spearman method.
Throughout, p<0.05 was considered to be statistically
significant, asterisk indicated different levels of p-values: “*”:
p< 0.05, “**”: p< 0.01, “***”: p< 0.005, “****”: p < 0.001. We used
R (version 3.6.3) to perform all the analyses except for the
CyTOF analysis.

Cytometry by Time-of-Flight (CyTOF)
Sample Acquisition
Eight fresh early stage NSCLC samples were obtained from the
Zhujiang Hospital, Southern Medical University. The detailed
clinical characteristics of the samples were shown in
Supplementary Table 1. After washing by the RPMI 1640
Frontiers in Immunology | www.frontiersin.org 4
medium, the fresh lung tumor samples were then dissociated
into single cells under Deoxyribonuclease and Collagenase type
IV exposure. ACK Lysing Buffer (PLT) was used to remove the
erythrocyte, the amounts of viable and dead cells were then
counted to provide a preliminary estimate of the sampling
efficiency. Cell-ID™ Cisplatin-194Pt (Fluidigm) was used to
specifically identify dead cells; next, qualified samples were
blocked on ice for 20 minutes. Without removing the blocking
solution, samples were incubated with a surface antibody mix
(Maxpar® Antibody Labeling Kit, Fluidigm) for 30 minutes on
ice. With Maxpar® Fix and Perm Buffer, an eventual 500mM
DNA intercalator (Cell-ID™ Intercalator-Ir, Fluidigm) were
incubated with the washed 200uL re-suspended cells per
sample overnight at 4°C. Subsequently, intracellular staining
was performed. After washing, pre-fixing, and 30 minutes of
co-incubation with intracellular antibody mix on ice, cells were
then rinsed and subsequently obtained in the CyTOF system
(Helios, Fluidigm) to detect the signals. For the detailed
procedures, please refer to the reported protocol (34).

CyTOF Analysis of Immune Cells
Data was analyzed in R (version 4.0.3) based on the CyTOF
workflow (35). The clinical information of patients and FCS files
of al ive and CD45+ cel ls were used to create the
SingleCellExperiment object through the prepData() function
of the CATALYST package, and the expression of 42 markers
was arcsinh-transformed as recommended. Cell clustering and
annotation followed the principle of over-clustering, then
manually merging clusters with similar marker-expression
traits. Detailedly, the cluster() was used to stratify the cells into
20 subgroups (SOM=200), each subgroup was annotated
according to the following markers: CD3 (T cells), CD19 (B
cells), CD56 (NK cells), CD14/CD68/CD11b (myeloid cells)
(Figure 5B and Supplementary Figure 7A). Subsequently,
myeloid cells were extracted and further classified into
monocytes (CD14, CD16), Macrophages (CD68, CD86,
CD163), granulocytes (CD66b, CD11b), dendritic cells
(CD11c), and mixed cells expressing a variety of cell-specific
markers (Supplementary Figures 7B, C). Finally, the
macrophages were selected, and the inflammatory proteins
(CD86, CCR7) and immunosuppressive proteins (CD163,
CD204) were compared between sexes.
RESULTS

Cellular Composition of the TME in Early-
Stage NSCLC Patients With Smoking
Histories
The relationship between sex and the efficacy of ICIs remains
unclear. According to Miao et al.’s NSCLC immunotherapy
survival information cohort (30), the better immune response
in female patients failed to reach the cutoff of statistically
significant when only divided by sex (P=0.08, Supplementary
Figure 1A), while the smoking women had a significantly higher
response rate to ICIs than smoking men (P=0.02, Figure 1B).
November 2021 | Volume 12 | Article 756722
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Although bigger cohorts are needed to further verify this
phenomenon, these results suggested that sex is one of the
important factors affecting the efficacy of ICIs.

The 3 NSCLC single-cell cohorts used in this article were
handled as one single-cell discovery dataset (14) and 2 single-cell
validation datasets (15, 20), respectively. Additionally, we used
the transcriptome and survival data of 7 types of cancer from The
Cancer Genome Atlas (TCGA), as well as one self-generated
CyTOF dataset to achieve multi-sample and multi-dimensional
exploration and analysis (Figure 1A). Verified by the expression
of sex-specific genes (Supplementary Figure 1B), the single-cell
discovery cohort consists of 2 females and 4 males aged between
55 and 68 with a history of smoking, and all the sequencing
samples acquired were from the in-situ tumors. Based on the
cell-specific markers, we identified cells including alveolar cells,
epithelial cells, immune cells, etc. (Figures 1C, D). According to
Figures 1E, F, all the tumor cells originated from tumor samples,
which demonstrated the robustness of cell annotation to some
extent. Of note, immune cells held the largest proportion among
all subtypes in both normal and tumor samples (Figure 1G). As
one of the core components in the TME, immune cells warranted
further investigation. Thus, they were extracted and analyzed.

Myeloid Cells in the Tumor Immune
Microenvironment and Their
Compositional Differences Between Sexes
First, 10,309 immune cells from tumors were annotated as B
cells, plasma cells, myeloid cells, and T cells based on the
expression of cell-specific markers including CD79A, SDC1,
CD68, and CD3E (Figures 2A, B and Supplementary
Figures 1D, E), among which myeloid cells and T cells were in
the highest proportion. Figure 2C showed the percentage of
immune subtypes in the TME of women and men, and we
observed that the proportion of myeloid cells varied the most
between sexes, followed by T cells. As one of the main
components of TME, T cells play a key role in exerting anti-
tumor effects. In line with the previous reports (10, 36), when
comparing the sex-related functional differences, female-derived
CD8+ T cells performed greater cytotoxic capacity
(Supplementary Figure 2A). Noteworthily, CD8+ T cells
originated from females expressed a higher level of exhausted
molecules (Supplementary Figure 2B), which was hardly
reported before. CD4+T cells are at the core of initiating and
modulating the adaptive immune responses, male-derived
CD4+T cells exhibited increased immune-suppressive genes
than females, like FOXP3 and IL2RA (Supplementary
Figures 2C, D), in another word, more Treg cells may exist in
the TME of male NSCLC patients, which is supported by several
studies (37). In comparison, except for plasmacytoid dendritic
cells (pDCs) showed relatively obvious sexual dimorphism (38,
39), researches about the differences of myeloid cells between
sexes were less characterized. Given that myeloid cells exhibited
the most divergent proportion in the TME from different sexes,
we re-clustered and further analyzed the myeloid cells.

Combined with the cell-specific markers and differentially
expressed genes (DEGs) of each subgroup, myeloid cells were
Frontiers in Immunology | www.frontiersin.org 5
classified as TAMs, dendritic cells (DCs), and mast cells
(Figure 2D and Supplementary Figure 2E). Although in
varying proportions, each myeloid subtype existed in all samples
(Figure 2E), confirming the robustness of the cell annotation.
Notably, TAMs accounted for the highest proportion among
myeloid subsets in all samples (Supplementary Figure 2F).
TAMs are highly heterogeneous, so finding conserved
macrophage subsets among different individuals may provide a
new direction for targeting macrophages.

Subsequently, we downloaded another NSCLC single-cell
transcriptome data as validation dataset 1 (GSE127465) and
again annotated the macrophages (Supplementary Figure 2G).
Comparing the TAMs composition, we found the concurrent
existence of CCL18+Macrophage and SPP1+ Macrophage
between the two single-cell datasets, and both were the main
subtypes (Figures 2E, F). To preliminarily explore the function of
TAMs, we examined the expression of M1, M2, angiogenesis,
phagocytosis, and cytokine interactive gene-sets for each TAM
subsets (Supplementary Table 2, Figure 2G and Supplementary
Figure 2H). Incidentally, CCL18+ and SPP1+ macrophages,
which were ubiquitous among different datasets, highly
expressed the immunosuppressive M2-like gene-set. However,
discovery data specific C1QC+ and FCN1+ Macrophages,
together with validation data typical FYN+ and STAT1+
Macrophages, all highly expressed the M1-like gene-set which is
related to increased inflammatory function. This result suggested
that TAMs with pro-inflammatory roles in the TME may possess
great heterogeneity and show varied transcription characteristics
according to different environmental stimuli. In comparison,
Macrophages with immunosuppressive phenotype were
relatively well conserved and could exist stably in the TME of
most patients.

Further, we compared the composition of myeloid cells
between sexes. Unfortunately, there was no significant
difference in myeloid cell types between men and women in
both the discovery data and the validation data 1 (Figure 2H,
Supplementary Figure 2I). This was likely due to several factors:
a. With high plasticity and heterogeneity, there was no significant
difference between the sexes in regard to TAM subtypes; b. The
number of samples was too small to get a statistically
significant result.

Subtypes and Function Characteristics of
Myeloid Cells in the NSCLC TIME
As one of the most pivotal antigen presentation cells, DCs highly
express markers like CD74 and MHC-II molecules (Figure 3A). It
has been widely accepted that female-originated antigen-
presenting cells hold greater presenting capacity than males
(10), which is consistent with our observation (Supplementary
Figure 3A). Moreover, we grouped DCs into four subsets
(Supplementary Figure 2E): XCR1+cDC1s (type 1 conventional
DCs) which mainly present antigen to CD8+T cells,
CD1C+cDC2s (type 2 conventional DCs) which mainly activate
and communicate with CD4+T cells, pDCs which could produce a
large quantity type I interferon (40), and LAMP3+DCs. Among
them, LAMP3+DCs is the most noteworthy subtype. It owned the
November 2021 | Volume 12 | Article 756722
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A
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FIGURE 1 | Overview of the Cell Types in the Microenvironment of Non-small-cell Lung Cancer. (A) Workflow of the study design. (B) Bar plot showing the different
response situations to immune checkpoint inhibitors of females and males, split by smoking status. Fisher’s exact test was used to compare the significance of the
association between sexes and immune response. NR: no response; OR: objective response. (C) t-SNE plot showing the cell composition in the microenvironment
of NSCLC, colored according to cell types. (D) Bubble heatmap showing expression of cell-type markers across cell clusters. Dot size indicates the percentage of
expressed cells, colored by their relative expression levels. (E) Bar plot showing the fraction of each cell type according to the origin of samples. (F) t-SNE plot
showing the cell distribution originated from tumor and normal lung samples. (G) Bar plot showing the overall cell composition of normal and tumor samples, colored
by cell types.
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phenotype of mature subtype, and the immunosuppressive
molecules like PD-L1 were up-regulated on its surface compared
to other DCs (Supplementary Figure 3B), which indicated that its
infiltrating abundance in the TME is likely to be associated with
anti-PD-L1 efficacy (16). Comparing the expression of
immunosuppressive molecules in LAMP3+DCs originated from
different sexes, higher levels of immunosuppressive molecules
such as IDO1 and SOCS3 were observed in female-derived
LAMP3+DCs (Supplementary Figure 3C). Nevertheless, based
Frontiers in Immunology | www.frontiersin.org 7
on the fact that the other immunosuppressive molecules showed
no significant difference between sexes, a larger cohort and
laboratory experiments were needed to verify this
potential heterogeneity.

There were four TAM subtypes in the discovery single-cell
dataset: CCL18+ Macrophage and SPP1+Macrophage with anti-
inflammatory phenotype; C1QC+ Macrophage and FCN1+
Macrophage with pro-inflammatory phenotype. The C1QC+
Macrophages exhibited high expression of the complement
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E F G
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C

FIGURE 2 | Re-clustering of Immune Cells and Preliminary Exploration of Myeloid Cells. (A) t-SNE plot of the tumor-infiltrating immune cells. (B) Violin plot showing the
relative expression of immune cell-type-specific markers in each immune cluster. (C) Lollipop plot showing the fraction of immune cells in male and female, colored by
sex. Unpaired Wilcoxon test showed no statistical differences between sexes. (D) A t-SNE plot of the tumor-infiltrating myeloid cells. (E) The composition of myeloid
clusters in patients from the discovery scRNA-seq data. (F) Composition of the TAMs in patients from the validation scRNA-seq data 1. (G) Heatmap showing the
relative expression of selective gene sets across all TAM subtypes in the discovery data. (H) Boxplot showing the comparison of Myeloid cell fraction between sexes in
the discovery data. P-values were calculated by the unpaired two-sided Wilcoxon test. No significantly differently expressed myeloid cell types were found.
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FIGURE 3 | Heterogeneity of Tumor-associated Macrophages in the Microenvironment of NSCLC. (A) Heatmap shows the top 5 differentially expressed genes of
the nine myeloid clusters. (B) Heatmap showing the relative regulon activity for different TAM clusters. (C) Pseudotime trajectory of TAMs subtypes with high variable
genes, colored by cell types, root cells of the trajectory were marked by the black circle. Each point represents a single cell, analyzed by Monocle2. (D) Differentially
expressed pathways between CCL18+ and SPP1+ macrophage in the discovery data. Pathway activity scores were calculated by ssGSEA and compared using the
limma package. T values fitted the linear models, and p-values were adjusted by the Benjamini-Hochberg method. In CCL18+Macrophage, red indicates fatty acid
metabolism pathways; In SPP1+Macrophage, green indicates the glycolysis associated pathways.
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genes C1QC, C1QB, and Th1-chemokine: CXCL10 (41)
(Figure 3A). Transcription factors (TFs) enrichment heat map
accomplished by SCENIC analysis (29) (Figure 3B) further
substantiated that, compared with other subgroups, the
immune-promoting TFs such as IRF1, IRF7, and STAT1 were
enriched in C1QC+Macrophage (42–44), similar to Zhang et al.’s
colon cancer observation (45). The FCN1+Macrophages highly
expressed S100A8, S100A9, VCAN, and other genes related to
inflammatory monocytes (Figure 3A). Furthermore, this
subgroup enriched TFs that could enhance the expression of
toll-like receptor signaling like REL, XBP1 (46), which illustrates
the pro-inflammatory role of this subgroup in the TME.

Additionally, to explore the relationship between different
TAMs, we used the Monocle package to conduct a pseudo-time
analysis. Root cells of the pseudotime trajectory were determined
by the expression of macrophage differentiation-associated genes
over pseudotime. Specifically, monocyte-like molecules (CD14,
FCN1) were decreasing while the mature molecules (CD68,
CD163) were increasing across pseudotime (Supplementary
Figures 3D, E). According to the cell differentiation trajectory
(Figure 3C), the immune-promoting C1QC+ and FCN1+
Macrophages were mainly located at the beginning of the
differentiation track. With the progression of tumors, the
proportion of potentially immunosuppressive SPP1+ and
CCL18+Macrophages gradually increased. Intriguingly,
SPP1+Macrophage was mostly concentrated in the right branch
of the track, while CCL18+Macrophage was mainly located on the
left. This outcome suggested that although both of them
expressed the anti-inflammatory phenotype, the differentiation
trajectory and transcriptome characteristics of SPP1+ and CCL18
+Macrophages were actually different. In terms of the enriched
TFs (Figure 3B): CCL18+Macrophage enriched NR1H3, which
can negatively regulate the expression of inflammatory genes
in macrophages (47). SPP1+ Macrophage was rich in FOSL2,
a key TF that induces macrophages to transform into M2
phenotype, together with CEBPB, which can directly regulate
the promoters of anti-inflammatory molecules such as IL10, Arg-1
(48, 49). TFs analysis further confirmed the immunosuppression
role of the two TAMs in the TME. Next, we compared their
differentially activated pathways through ssGSEA (Figure 3D). In
CCL18+Macrophage, fatty acid oxidative phosphorylation,
PPARG, and other canonical M2 primary pathways were up-
regulated (50, 51). In addition, inflammatory pathways such as
complement cascade, IFNG response, and antigen presentation
were also up-regulated, which further proved that measurement
of M1 or M2 phenotype TAMs cannot accurately reflect the
functional characteristics of TAMs. Pathways enriched in SPP1
+Macrophages mainly included processes such as angiogenesis,
ECM proteolysis, and tumor-associated fibroblasts, which
demonstrated that they could promote tumor metastasis
through TME-remodeling. Furthermore, unlike in CCL18+
Macrophages, glycolysis is the main metabolic pathway for
SPP1+Macrophages. The consistent phenomenon was
observed when we performed the ssGSEA analysis in the
CCL18+TAMs and SPP1+TAMs from the validation dataset 1
(Supplementary Figure 3F).
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Collectively, there were two kinds of immunosuppressive
TAMs in the NSCLC tumor microenvironment, of which
CCL18+ Macrophage used oxidative phosphorylation as the
main metabolic mode and exerted immunosuppressive effects
by inhibiting the production of inflammatory factors. In
comparison, the main metabolism pathway for SPP1+
Macrophage was glycolysis, which could promote angiogenesis
and matrix remodeling of the TME in NSCLC.

C1QC, FN1, and SPP1 Genes Were
Differentially and Stably Expressed in
TAMs From Both Sexes and Were
Associated With Poor Prognosis
TAMs are the most important subset of myeloid cells involved in
the tumor response. To study whether sex mediates the expression
of different characteristic genes in macrophages, we grouped the
TAMs by sex in both the NSCLC discovery and the validation
data. Next, we calculated and intersected the two DEG-sets
obtained from the discovery data and the validation data 1
(Figure 4A). Eventually, five genes with the same difference
trends were identified, namely C1QC, FN1, HLA-DRB5, LYZ,
and SPP1 (Figure 4B and Supplementary Figures 4A, B).
Except for the much higher expression of C1QC in women, the
others were highly expressed in men. Considering that genes may
be expressed by various cells, we first explored the location of these
genes in the TME. Combining the results of t-SNE and violin plots
(Figures 4C–E), we found that C1QCwas specifically expressed in
immune cells and primarily expressed by macrophages. SPP1 was
mainly expressed in tumor cells and macrophages, which is
consistent with Klement et al.’s findings on colon cancer and
Zhang et al.’s research on NSCLC (52, 53). FN1 is expressed in
stromal cells, while in immune cells, we found FN1 mainly
expressed in TAMs. Since LYZ and HLA-DRB5 expressed in
various myeloid cells, they were excluded from further analysis
(Figure 4E and Supplementary Figures 4C, D).

In order to verify the stable differential expression of SPP1,
FN1, and C1QC in TAMs from each sex, we explored their
expression in the TCGA (I-IIIA stage), GSE58661, and
GSE75037 NSCLC cohort. Most of the results were consistent
with the single-cell datasets (Figure 4F and Supplementary
Figure 4E), while in GSE75037, the three genes presented the
same trend as our previous discovery but with no statistical
significance (Supplementary Figure 4F). Additionally, protein
data downloaded from the TCPA website showed that
Fibronectin, protein product of FN1 gene, was significantly
higher in males than females (Supplementary Figure 4G, 274
females vs 413 males). Since the sex-determined differences in
macrophages should be universal among different tumors, we
further analyzed the expression of these genes in TCGA pan-
cancer cohorts. We found that they shared the same trends or
significant differences in immune cells among various tumors,
including bladder urothelial carcinoma (BLCA), head and neck
squamous cell carcinoma (HNSC), pancreatic cancer (PAAD),
and more (Supplementary Figures 4H–J). In short, C1QC had
significantly higher expression in female TAMs, while FN1 and
SPP1 were highly expressed in male-originated TAMs. To clarify
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FIGURE 4 | Differentially Expressed Genes (DEGs) in TAMs by Sex. (A) Venn diagram showing the overlapped genes between the discovery and validation scRNA-
seq data. (B) Boxplot showing the 5 DEGs with the same trends in each sex. p <0.05 was considered to be statistically significant, ****p < 0.001. Unpaired two-
sided Wilcoxon test. (C, D) t-SNE plot showing the normalized expression of C1QC, FN1, and SPP1 in the tumor microenvironment (TME) and tumor immune
microenvironment (TIME) of NSCLC. (E) Violin plot showing the relative expression of the 5 DEGs with the same trends between sexes, colored by immune cell type.
(F) Boxplot comparing the TPMs of C1QC, CD45 normalized expression of FN1, and SPP1 in the early stage TCGA-NSCLC cohort (370 women vs. 541 men).
Asterisk indicated different levels of p-values, *p < 0.05, ***p < 0.005, ****p < 0.001. (G) Boxplot comparing the expression variance of C1QC, FN1, and SPP1 in
macrophages from normal and tumor samples. ****p < 0.001. (H) Kaplan–Meier curves based on the expression levels of C1QC, FN1, and SPP1 for TCGA NSCLC
patients. P-value was calculated with a log-rank test.
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their relationship with tumorigenesis, we compared the
expression levels of the above genes in tumor and normal lung
tissue originated macrophages. In the single-cell discovery data,
we extracted immune cells from the normal samples and
standardized the expression values of the three genes with
macrophage-specific marker CD68 to obtain the expression
level of macrophages. The results showed that the expression
of C1QC, FN1, and SPP1 increased significantly in
TAMs (Figure 4G), which indicated that the tumor
microenvironment most likely induced their high expression in
macrophages. Next, we analyzed the prognostic value of C1QC,
FN1, and SPP1 in the early stage (I-IIIA stage) TCGA-NSCLC
cohort and found that high expression of these genes in immune
cells was related to poor prognosis (Figure 4H). The univariate
and multivariate Cox regression analysis further suggested that
high expression of C1QC, FN1, and SPP1 in immune cells could be
independent prognostic factors (Supplementary Figures 5A, B).
We also established their prognostic value in more tumor types
(Supplementary Figures 5C–E) and found that in most tumors
(such as HNSC, BLCA, and SKCM), high expression of FN1 and
SPP1 in immune cells were related to poor prognosis. However, the
relationship between C1QC expression and prognosis was not
consistent, for example, in SKCM, higher expression of C1QC was
related to a better prognosis.

Altogether, we found that C1QC, FN1, and SPP1 were
differentially and stably expressed in TAMs from both sexes
and further verified their prognostic value in multiple cancer
types from the TCGA cohort.

Functional Heterogeneity of TAMs
Mediated by Sex
To elucidate the functional heterogeneity of TAMs between
sexes, we first compared the expression of M1 and M2 related
gene sets in TAMs and then analyzed the exact pathways that
caused the functional differences by ssGSEA analysis.

According to Figure 5A, TAMs fromwomen tended to express
the M1-like gene-set, while the M2-like gene-set showed
significantly higher expression levels in TAMs from men.
Exploration in the TAMs from the two validation datasets
showed similar results (Supplementary Figures 6E, F).
Subsequently, considering the similar effects of SPP1 and FN1,
both of which participated in the process of matrix remodeling
and were highly expressed in male-derived TAMs, we further
testified the performance of angiogenesis and matrix-remodeling-
associated signatures in TAMs from different sexes in the two
validation scRNA-seq datasets (Supplementary Figures 6G, H),
and higher stromal remodeling capacity of male-originated TAMs
was observed.

To further explore the sex-based functional heterogeneity in
TAMs at the protein level, we collected eight fresh NSCLC
surgical samples from Zhujiang Hospital, Southern Medical
University, and conducted CyTOF sequencing. TAMs were
annotated based on the expression of cell-type-specific markers
and then grouped by sex (Figure 5B and Supplementary
Figures 7A, C). The results showed that the M1-like proteins
were more highly expressed in female-derived macrophages
Frontiers in Immunology | www.frontiersin.org 11
while the M2-like proteins were much higher in male
(Figure 5C). More precisely, M1-related proteins CD86 and
CCR7 had significantly higher expression in women-derived
TAMs (p<=0.001), while CD163 and CD204 as the M2-
associated proteins were expressed more highly in men
(p<=0.001) (Figure 5D). To exclude the confounding effect, we
conducted a subgroup analysis based on the different smoking
status (Supplementary Figures 7D, E). Results in non-smokers
kept the same as what we observed before, whereas the M1-like
proteins exhibited higher expressions in male-originated TAMs
with smoking history. Further plot the counts of TAMs in each
patient, we found that the only female (T010) in the smoker
group showed a low number of TAMs (Supplementary
Figure 7F), and the expression of CCR7 and CD163 were
rather low in this patient (Supplementary Figure 7D). The
above factors made the result in smokers less convincing, a
larger cohort is needed to verify the performance of TAM
function-related proteins between sexes in NSCLC patients
with smoking history. At the TFs level (Figure 5E), TFs
including IRF7, REL, and STAT1, which are related to toll-like
receptors, pro-inflammatory cytokines, and antigen
presentation, were all up-regulated in female TAMs. In
contrast, male TAMs mainly raised CEBPB, NR1H3, and other
TFs, which were associated with M2-like phenotype. Generally,
female TAMs had higher immunogenicity, while male TAMs
tended to express immunosuppressive phenotypes.

Certain immune functional pathways differ in the TAMs
derived from each sex (Figure 5F). Immune activating
pathways including Toll-like receptors, interferons, antigen
presentation, and inflammatory cytokines (IL-12, IL-1, CD40)
were significantly up-regulated in female-originated TAMs. In
contrast, immune-suppressive pathways like matrix remodeling,
PPARG, and angiogenesis were significantly up-regulated in
males. As shown in Figure 5G, most of the Toll-like pathway
mediating TLRs and IRFs had significantly higher expression
levels in TAMs from women. Notably, although all the female
patients were menopausal, their estrogen response pathway was
significantly up-regulated compared to men’s (Supplementary
Figure 7G). Estrogen could significantly affect the expression
activity of the toll-like receptor pathway (54), therefore, we
analyzed the correlation among the estrogen response, Toll-like
receptors, and interferon pathway expression in TAMs. Results
showed that they were significantly correlated (cor = 0.57,
p<=0.001; cor =0.58, p<=0.001, Supplementary Figures 7H, I).
In addition, MHC-I and MHC-II molecules, which are relevant
to antigen presentation, were significantly expressed in female-
derived TAMs (Figure 5H and Supplementary Figure 7J).
Moreover, according to the CyTOF data, antigen presentation
relevant protein, HLA-DR, had a significantly higher expression
level in female-originated macrophages (Supplementary
Figure 7K). We additionally explored the expression of the
male TAMs-bias pathways in the single-cell validation data 1
and obtained similar results (Figure 5I).

Collectively, we proved that female-derived TAMs exhibited
immune-promoting phenotypes at the transcription factor,
transcriptome, and protein levels, especially to enhance the
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FIGURE 5 | Functional Heterogeneity of TAMs by Sex. (A) Boxplot comparing the M1 and M2 gene-sets expression of TAMs in the discovery scRNA-seq data,
grouped by sex. (B) t-SNE plot showing the overall distribution of immune cells in 8 NSCLC patients, color-coded by corresponding cell type. (C) Split-violin plot
showing the overall M1 and M2 associated proteins expressed by TAMs from female (left violins) and male (right violins) in the CyTOF data. (D) Boxplot showing the
specific M1 and M2 associated proteins expressed by TAMs in the CyTOF data, grouped by sex. (E) Heatmap showing the relative regulon activity of TAMs from
different sexes in the discovery scRNA-seq data. (F) Differential pathways enriched in TAMs originated from different sexes. ssGSEA was used to calculate gene-set
scores of every single cell, while the limma package executed differential analysis. (G) Heatmap showing the relative expression variance of Toll-like receptor and
IRFs-associated genes in TAMs between sexes. (H) Boxplot showing the MHC I molecules of TAMs from different sexes in the discovery scRNA-seq data. (I)
Boxplot showing the male up-regulated gene-sets of TAMs in the validation scRNA-seq data 1, colored by sex. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
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expression of interferon-associated pathways and antigen
presentation ability. Conversely, male-derived TAMs were
more likely to present immunosuppressive phenotypes in the
PPAR and matrix remodeling-associated pathways.
DISCUSSION

Using single-cell RNA-seq analysis, we deconstructed the
different subtypes of TAMs in NSCLC and expanded upon
their functional characteristics in the TME through
differentiation trajectory and regulatory miRNA-enrichment
analysis. Moreover, we explored the gene expression and
functional differences of TAMs between sexes. In addition to
multiple external validation cohorts, samples were also collected
for CyTOF analysis to verify the key phenotypic proteins in
TAMs from different sexes, thus achieving multi-sample and
multi-level verification.

As an important part of the TME, TAMs play a complex role in
tumor progression based on their high plasticity and
heterogeneity. Consistent with the previous report, we found
that M1-like TAMs dominated the TME with positive immune
regulation effects in the initial stage of tumors, such as FCN1+ and
C1QC+ Macrophages (55). Intriguingly, the transcription
characteristics of the two M1-like macrophages identified in the
single-cell validation data were distinct from the discovery data,
which suggested that patient-specific TME may greatly influence
the specific molecular expression pattern of pro-inflammatory
macrophages. In contrast, M2-like TAMs were relatively well
conserved: CCL18+ and SPP1+ Macrophages were both found
in NSCLC single-cell discovery and validation datasets. CCL18+
Macrophages manifested a typical M2-like phenotype with high
levels of fatty acid oxidative phosphorylation metabolism (56), in
which anti-inflammatory transcription factor NR1H3 and the
PPARG-related pathways were highly expressed. PPARG can
directly bind to inflammatory TFs like NF-kB, AP-1, and STAT
through protein interaction (57). Therefore, CCL18+Macrophage
achieved its anti-inflammatory role mainly by inhibiting
macrophages from releasing pro-inflammatory productions. In
comparison, SPP1+Macrophages could accelerate the progression
of tumors by promoting TME matrix remodeling and
demonstrate a high level of glycolysis metabolism. Generally,
glycolysis is the metabolic feature of M1-like macrophages (58).
However, more and more evidence showed that glycolysis might
be the key to activate M2 macrophages (59). Meanwhile, when the
mitochondrial oxidative phosphorylation function of the
macrophage was damaged, a higher level of glycolysis would be
induced (60). Although the role of glucose metabolism in shaping
TAM requires further study, the identification of two immune-
suppressive TAMs with different functional and metabolic
characteristics in the NSCLC TME lays a foundation for more
specialized therapy designed to target TAMs.

In this study, C1QC, FN1, and SPP1 were three genes
differentially and stably expressed in TAMs from different
sexes (Figure 6), while complement-related gene C1QC is
highly expressed in female-originated TAMs. According to our
Frontiers in Immunology | www.frontiersin.org 13
observations, TAMs were the main source of C1QC in the TME.
Therefore, higher expression of C1QC in female-derived TAMs
may indicate that C1QC was more highly expressed in the TME
of female samples. The survival analysis and Cox regression
suggested that high expression levels of this gene in early NSCLC
patients were related to poor prognosis and was an independent
prognostic factor simultaneously. Reports stated that the
complement C1q in the TME could inhibit the activation of
CD8T ce l l s and promote T ce l l exhaus t i on and
neovascularization, resulting in tumor progression and
metastasis (61, 62). Notably, the relationship between the high
level of C1QC and prognosis varied in different tumor types, and
the exact reasons were unknown. In a word, high expression of
C1QC in female-originated TAMs was related to poor prognoses
in NSCLC. This phenomenon may be one of the negative factors
causing poor prognosis in female patients.

FN1 and SPP1 were highly expressed in male-originated
TAMs. Their protein products Fibronectin 1 and Osteopontin
(OPN) are involved in processes like wound healing and
angiogenesis, and they were reported to be relevant to
prognosis in several tumors (63–65). Notably, the relationship
between sex and SPP1 was observed by other studies as well (66,
67). In multiple tumors, including NSCLC, we found that the
high expressions of FN1 and SPP1 in immune cells were related
to poor prognosis and were independent prognostic factors,
respectively. SPP1 could specifically be expressed by tumor
cells and TAMs, thus attracting our attention. Evidently, SPP1
generated by NSCLC tumor cells could polarize TAMs to M2-
like phenotypes and induce the synthesis of VEGF, thereby
promoting tumor progression (53, 66). Meanwhile, SPP1 was
also a potential ICI inhibitor and could not only up-regulate PD-
L1 on the surface of TAMs but also decrease the anti-tumor effect
of CD8+T and the activation of CD4+T cells (52, 53, 68). In
short, tumor-stromal remodeling genes FN1 and SPP1 were
highly expressed in male-derived TAMs. Among them, due to
traits such as specific expression sites and promoting tumor
immune tolerance, SPP1 showed significant potential as an ideal
target for adjuvant immunotherapy and for improving the
efficacy of immunotherapy. Additionally, SPP1 is highly
expressed by male TAMs, which suggested that male NSCLC
patients may benefit more from adjuvant immunotherapy
targeting SPP1, however, this is dependent on verification in a
larger cohort.

Immune differences between sexes are mainly caused by
chromosomes, reproductive organs, and sex hormone levels.
Presently, it is generally accepted that women have higher
immunogenicity than men (10), similar to our observations at
the TAMs level (Figure 6). Specifically, the M1-like gene-set was
expressed more highly in female-derived TAMs, which exhibited
significant up-regulation of interferon pathways mediated by
Toll-like receptors (TLRs). TLRs act as key molecules in immune
initiation and activation by stimulating the release of type I IFNs
products (69). High expression of TLR-related pathways in
female TAMs may be linked to two causes. Firstly, TLR7 and
TLR8 are located in the short arm of the X chromosome.
Experiments have proven that they both can escape the X
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chromosome inactivation and eventually lead to higher dose
expression compared with male cells and promote macrophages
to M1-like phenotype (70, 71). Secondly, sex steroid hormones
play a pivotal role in mediating the sex-related immune variation
(72). Estrogen enhances the immunogenicity of macrophages by
upregulating the TLR-dependent signaling (73, 74), namely
TLR4, a key molecule that promotes polarization of
macrophages to M1 phenotype, and TLR7, which mediates
IFNa products (75, 76). Estrogen can also promote the
secretion of type II interferon factor IFNg, which is a crucial
cytokine in Th1-like activation and Th2-like immunophenotype
inhibition (77–79). In addition, the antigen presentation
pathways were also significantly up-regulated in female TAMs.
This occurrence may be linked with higher expression of MHC-
II and co-stimulatory molecules in female-originated antigen-
presenting cells under some circumstances (80). Intriguingly, we
found that MHC-I molecules were also significantly up-regulated
in female-derived TAMs.

TAMs from males performed immunosuppressive effects
through the matrix remodeling and PPAR-related pathways.
The suppressive tendency of male TAMs may be associated
with androgens. Androgens can reduce the secretion of TNF
and other pro-inflammatory factors in macrophages and
increase the synthesis of anti-inflammatory related IL-10 and
TGF-b, thus exerting an immunosuppressive effect (10, 81).
Moreover, the androgen receptor can straightly interact with
the promoter region of PPAR-a and reduce its ability to produce
IFNg (82). We also noticed that the angiogenesis-associated
genes SPP1 and FN1 were more highly expressed in male-
derived TAMs, a phenomenon which is further supported by
Frontiers in Immunology | www.frontiersin.org 14
pathway analysis results. Although the specific mechanism
remains unclear, it suggested that male TAMs may be more
inclined to express the angiogenesis phenotype.

Notably, all the female patients studied in this article were
postmenopausal. Generally, the estrogen level of females
decreases sharply after menopause. However, the pathway
analysis showed that the estrogen response-related pathway in
female TAMs was significantly up-regulated. Studies have shown
that older women still have stronger immunogenicity despite a
sharp drop in hormone levels compared to older men. The pro-
inflammatory cytokines, including IL-1, IL-6, and TNF-alpha,
and the cell response intensity to such factors all increase in the
serum of postmenopausal women (83). Moreover, although the
level of sex hormones in the body changes in men and women
during different periods, the difference between their sex-
hormone-driven immune cell infiltration and activation may
have a lifelong impact on individuals (10). Altogether, the
potential mediation of immune differences between the sexes
by sex hormones after menopause, as well as the factors and
specific mechanisms mediating the immune differences among
the elderly, will need a larger cohort and more precise
experimental design in future studies.

This study had notable limitations. Firstly, the sample
composition was not balanced enough. The discovery cohort
consisted of four males and two females, resulting in greatly
varied cell numbers. Therefore, all the cell comparisons between
sexes were based on proportion. Secondly, the clinical
characteristics of the NSCLC cohort were limited. Therefore, the
infiltration of immune cells in non-smoking and advanced NSCLC
patients requires further study. Lastly, CyTOF sequencing was the
FIGURE 6 | Overview of the Key Transcriptome and Functional Changes in TAMs between Sexes. Female-derived TAMs presented higher immunogenicity, stronger
anti-tumor ability with increased expression of TLR-mediated inflammatory factors, and enhanced antigen presentation capacity; Male-derived TAMs were more
immunosuppressed, to which upregulated PPAR-associated pathways contributed considerably. A higher level of complement-related C1QC was found in female-
derived TAMs, while male-derived TAMs elevated the expression of matrix remodeling-relevant genes—SPP1 and FN1. Chromosome and sex hormone differences
may be the main reasons for the above heterogeneity; TAMs: Tumor-Associated Macrophages; TLR: Toll-like Receptors; PPAR: Peroxisome Proliferator-Activated
Receptors Gamma. This picture was created with BioRender.com (Agreement number: QS22TH8BY8).
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only validation experiment carried out in this study, and more
functional experiments are needed in the future. More information
about the sex hormone levels in the serum of the patients would be
greatly helpful to clear the underlying mechanism of sex-driven
heterogeneity in TAMs.

In conclusion, we expanded upon the different subtypes of
TAMs in early smoking NSCLC patients at the single-cell level
and revealed two immunosuppressive TAMs with disparate
functions and metabolic characteristics. Furthermore, C1QC,
SPP1, and FN1 were differentially and stably expressed
between male and female-derived TAMs. Of these genes, SPP1
showed potential as a target for NSCLC therapy. Meanwhile, we
proved that female-derived TAMs were more likely to exhibit the
pro-inflammatory phenotypes, while male-derived TAMs tended
to be immunosuppressive. Elucidating the sex based immune
efficacy distinctions in TAMs suggested that sexual dimorphism
should be considered in NSCLC-relevant research in the future.
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Supplementary Figure 1 | Quality Control and Cell Annotation in the Discovery
scRNA-seq Data. (A) Bar plot showing the different response situations to immune
checkpoint inhibitors of females and males. Fisher`s exact test. (B) Violin plot
showing the expression of sex-associated genes in each patient. XIST indicates
females, while RPS4Y1 specifically expressed on males. (C) t-SNE plot showing the
cell distribution after the batch effect correction, patients 3, 4, and 5 were
sequenced on the first batch, the others on the second batch. (D) t-SNE plot
showing the expression of immune cell-type markers in the TME of NSCLC.
(E) Bubble heatmap showing the expression of immune cell-type markers across
cell clusters. Low-quality cells express more than one cell-specific marker. (F) Bar
plot showing the immune cell composition of each patient in the discovery scRNA-
seq data.

Supplementary Figure 2 | Functional Heterogeneity of T Cells Between Sexes
and Characteristics of Myeloid Cells in the Discovery and Validation Datasets. (A)
Split-violin plot showing the different expression of CD8+T functionally associated
signatures between sexes in the discovery data. More precisely, CD8 signature
(CD8A, CD8B), Cytotoxic signature (IFNG, PRF1, GZMK, GZMB, GZMA, GNLY,
NKG7, IL2), Exhausted signature (CTLA4, HAVCR2, LAG3, TIGIT, PDCD1,
ENTPD1). (B) Boxplot showing the relative expression of exhausted genes in CD8
+T cells from different sexes in the discovery scRNA-seq data.
(C, D) Heatmap and Boxplot showing the relative expression of function-related
genes in CD4+T cells from different sexes in the discovery scRNA-seq data.
(E) Bubble heatmap showing the expression of myeloid cell-specific markers across
cell subsets in the discovery scRNA-seq data. (F) Bar plot showing the myeloid cell
composition of each patient in the discovery scRNA-seq data. (G) Violin plot
showing the cluster-specific markers of TAMs in the validation scRNA-seq data 1.
(H) Heatmap showing the relative expression of selective gene sets across TAM
subtypes in the validation scRNA-seq data 1. (I) Boxplot showing a comparison of
Myeloid cell fraction between sexes in the validation scRNA-seq data 1.

Supplementary Figure 3 | Functional Characteristics of Dendritic Cells from
Different Sexes. (A) Split-violin plot showing the different expression levels of functional
gene sets in dendritic cells derived from different sexes in the scRNA-seq discovery
data. Detailed information for gene sets was presented in Supplementary Table 2.
(B) Heatmap showing the relative expression of immune suppressive and maturation
molecules among different dendritic cell subtypes. (C) Boxplot comparing the
expression of immune suppressive molecules in LAMP3+DCs from different sexes in
the discovery data. (D) Pseudotime trajectory of TAMs in the discovery dataset,
colored by pseudotime. (E) Jitter plot showing the expression changes of the
macrophage differentiation-associated genes over pseudotime. (F) Differentially
expressed pathways between CCL18+ and SPP1+ macrophage in the scRNA-seq
validation 1. Pathway activity scores were calculated by ssGSEA and compared using
the limma package. T values fitted the linear models, and p-values were adjusted by
the Benjamini-Hochberg method. In CCL18+Macrophage, red indicates fatty acid
metabolism pathways; In SPP1+Macrophage, green indicates the glycolysis
associated pathways.

Supplementary Figure 4 | Characteristics of Differentially Expressed Genes
(DEGs) in TAMs Driven by Sex and Their Expression in the TCGA Pan-cancer
Cohorts. (A, B) Boxplot showing the 7 overlapped DEGs in the discovery dataset
and the validation dataset 1, respectively. (C, D) t-SNE plot showing the normalized
expression of HLA-DRB5 and LYZ in the TME and TIME of the discovery NSCLC
scRNA-seq dataset, respectively. (E, F) Boxplot comparing the TPMs of C1QC,
CD45 normalized expression of FN1, and SPP1 in the GSE58661 (29 females vs 60
males) and GSE75037 (34 females vs 17 males) NSCLC cohort, respectively. (G)
Violin plot comparing the expression of Fibronectin between sexes in the TCPA (The
cancer proteome atlas)-NSCLC cohort (274 females vs 413 males), which is the
protein product of FN1. (H–J) Boxplot comparing the TPMs of CD45 normalized
expression of FN1 and SPP1, and the TPMs of C1QC between sexes in the TCGA
Pan-cancer cohorts. BLCA, Bladder Urothelial Carcinoma; SKCM, Skin Cutaneous
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Melanoma; HNSC, Head-Neck Squamous Cell Carcinoma; PAAD, pancreatic
cancer; BRCA, Breast invasive carcinoma; THCA, Thyroid carcinoma.

Supplementary Figure 5 | Prognostic Value of Sex-driven TAMs DEGs. (A, B)
Univariate and Multivariate Cox regression analyses of the TCGA NSCLC cohort
(early stage: I-IIIA, 911 samples). (C–E) Kaplan–Meier curves based on the
expression levels of C1QC, FN1, and SPP1 for the TCGA HNSC, SKCM, and BLCA
cohorts, respectively. Log-rank test.

Supplementary Figure 6 | Verification of Functional Difference for TAMs from
Different Sexes in Two scRNA-seq Validation Datasets. (A) t-SNE plot showing the
compositions of immune and non-immune cells in the scRNA-seq validation dataset
2 (GSE117570), colored by cell type. (B) Violin plot showing the relative expression
of cell-type-specific markers in the scRNA-seq validation dataset 2, colored
according to cell types. (C) t-SNE plot showing the distribution of Monocyte and
Macrophage in the scRNA-seq validation dataset 2. (D) Violin plot showing markers
used to differentiate Monocyte and Macrophage in the scRNA-seq validation
dataset 2. (E, F) Boxplot comparing the M1 and M2 gene-sets expression of TAMs
in the scRNA-seq validation dataset 1 and scRNA-seq validation dataset 2,
respectively, grouped by sex. (G) Boxplot comparing the angiogenesis and matrix
remodeling gene-sets expression of TAMs in the scRNA-seq validation dataset 1
and scRNA-seq validation dataset 2, respectively, grouped by sex.

Supplementary Figure 7 | Functional Heterogeneity Exploration of TAMs
Between Sexes in the Two scRNA-seq Datasets and CyTOF Data.
(A) Heatmap showing the scaled expression of immune cell-type markers in the
CyTOF data. The row annotation bar on the left indicates immune cell types.
(B) t-SNE plot showing the overall distribution of different Myeloid-cell clusters in the
Frontiers in Immunology | www.frontiersin.org 16
CyTOF data. (C) Heatmap showing the scaled expression of the myeloid cell-type
markers in the CyTOF data. (D, E) Boxplot showing the specific M1 and M2
associated proteins expressed by TAMs from the smoker and non-smoker samples
of the CyTOF data, respectively. Grouped by sex. (F) Counts of macrophages in
each NSCLC sample, colored by smoking status. (G) Violin plot comparing the
Reactome_estrogen-dependent gene-set expression level of TAMs between sexes
in the discovery scRNA-seq data. (H, I) Spearman’s correlation analysis of the
estrogen-dependent gene-set with toll-like receptor and interferon signaling gene-
sets in TAMs of the discovery scRNA-seq data. (J) Boxplot showing the MHC II
molecules of TAMs in the discovery scRNA-seq data, grouped by sex. (K) Boxplot
showing the HLA-DR protein expressed by TAMs in the CyTOF data, grouped
by sex.

Supplementary Table 1 | Clinical characteristics of Non-Small Cell Lung Cancer
patients.

Supplementary Table 2 | Gene lists of signatures used to explore the functional
heterogeneity of Immune Cells.

Supplementary Table 3 | Differentially Expressed Genes among Myeloid clusters
in the discovery single-cell data and validation single-cell data 1.

Supplementary Table 4 | The mean arcsinh-transformed values of 42 markers in
macrophages of each patient, obtained through CyTOF sequencing.

Supplementary Table 5 | Differentially Expressed Genes of TAMs from Different
Sexes in the discovery single-cell data and validation single-cell data 1.
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