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Type I interferons (IFN-I) and their cognate receptor, the IFNAR1/2 heterodimer, are critical
components of the innate immune system in humans. They have been widely explored in
the context of viral infection and autoimmune disease where they play key roles in
protection against infection or shaping disease pathogenesis. A false dichotomy has
emerged in the study of IFN-I where interferons are thought of as either beneficial or
pathogenic. This ‘good or bad’ viewpoint excludes more nuanced interpretations of IFN-I
biology - for example, it is known that IFN-I is associated with the development of systemic
lupus erythematosus, yet is also protective in the context of infectious diseases and
contributes to resistance to viral infection. Studies have suggested that a shared
transcriptomic signature underpins both potential resistance to viral infection and
susceptibility to autoimmune disease. This seems to be particularly evident in females,
who exhibit increased viral resistance and increased susceptibility to autoimmune disease.
The molecular mechanisms behind such a signature and the role of sex in its
determination have yet to be precisely defined. From a genomic perspective, several
single nucleotide polymorphisms (SNPs) in the IFN-I pathway have been associated with
both infectious and autoimmune disease. While overlap between infection and
autoimmunity has been described in the incidence of these SNPs, it has been
overlooked in work and discussion to date. Here, we discuss the possible contributions
of IFN-Is to the pathogenesis of infectious and autoimmune diseases. We comment on
genetic associations between common SNPs in IFN-I or their signalling molecules that
point towards roles in protection against viral infection and susceptibility to autoimmunity
and propose that a shared transcriptomic and genomic immunological signature may
underlie resistance to viral infection and susceptibility to autoimmunity in humans. We
believe that defining shared transcriptomic and genomic immunological signatures
underlying resistance to viral infection and autoimmunity in humans will reveal new
therapeutic targets and improved vaccine strategies, particularly in females.
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INTRODUCTION

Type I interferons (IFN-I) are highly conserved key players in
innate and adaptive antiviral immune responses. In humans,
IFN-I is a multigene family of pleiotropic cytokines comprised of
13 IFNa subtypes, 1 IFNb, and several other less well defined
IFN-Is including IFNe, IFNk, IFNw (1). IFN-Is are activated by
the innate immune system immediately on detection of a threat,
particularly when a virus is sensed. This rapid and robust IFN-I
immune response which activates and regulates a wide range of
biological mechanisms, is required for successful early control of
viral infection and is crucial for the activation of long lasting and
more specific adaptive immune responses (2). However this
ability to activate such pleiotropic biological mechanisms
means that IFN-I responses, from their initial activation to
their ability to induce downstream signalling, requires tight
regulatory control mechanisms. Subtle variations to these
responses can have marked physiological effects (3, 4).

IFN-I is produced in response to ligation of pattern
recognition receptors (PRRs) including the toll like receptors
(TLRs) 3, 7/8 and 9, and the DNA/RNA sensors RIG-I, MDA5
and cGAS-STING (5). These pathways converge to activate the
interferon regulatory factor (IRF) transcription factors, chiefly
IRF3 and IRF7 (6). Binding of dsRNA to TLR3 results in the
activation of a downstream signalling pathway involving the
adaptor proteins TRIF and TRAF, which activate TANK binding
kinase 1 (TBK1) and IkB Kinase-e (IKKe) activity to
phosphorylate and activate the transcription factor IRF3 (7).
Activation of IRF7 can also occur and is required for robust IFN-
I production (8). While IRF3 is expressed at high levels in
homeostatic conditions, IRF7 is more lowly expressed, and is
induced following ligation of the TLRs 7,8 and 9 through MyD88
signalling (9, 10). IFN-I also activates IRF7, particularly in pDCs;
IRF3 is essential for upregulation of IFN-I genes during the early
stages of infection and for potentiating the overall IFN-I
response via positive-feedback with IRF7. Initial events result
in upregulation of IFNb and IFNa4, which act in a positive
feedback loop to upregulate additional IFNa subtypes and
interferon regulated genes (IRGs) via IRF7 (Figure 1) (9).

Plasmacytoid dendritic cells (pDCs), which are found in most
tissues of the human body, are the most potent producers of IFN-
I (11, 12). Other cell types in the human body are also capable of
producing IFN-I, including lymphoid populations and non-
immune cells such as epithelial cells, fibroblasts and neurons
(13, 14). Canonical IFN-I signalling occurs via a heterodimeric
complex composed of IFNAR1 and IFNAR2 and expressed on
most nucleated cells in the human body. Ligation of the receptor
complex activates the JAK-STAT pathway, which in turn acts to
upregulate 1000s of IRGs (13, 15, 16). Other pathways activated
via IFNAR1/2 ligation include the MAPK and PI3K pathways,
which leads to a broader range of effects yet to be fully elucidated
and discussed elsewhere (2, 17). IFN-Is are also critical in
shaping the metabolic shift required to mount a successful
immune response (18). IFN-I and IRGs are tightly regulated by
negative regulators including ISG15, USP18 and SOCS proteins
which act to switch off IFN-I signalling (3). While IRG induction
is important for protection against viral infection as well as
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certain bacterial and protozoan infections, uncontrolled, or
inappropriate IRG activation can lead to the development of
several autoimmune disease states (2, 19, 20).

Here we briefly outline the roles of IFN-I in viral infection and
autoimmunity and point towards variation in the genes that code
for components of the IFN-I system that is associated with both
protection against viral infection and susceptibility to
autoimmunity. We propose that these genetic variants
contribute to a shared transcriptomic and genomic signature
that may underlie resistance to viral infection and autoimmunity
in humans.
IFN-I IN VIRAL INFECTION

During viral infection, IFN-I exerts both antiproliferative and
cytotoxic effects on cells in order to limit viral replication. While
it appears that different viruses can upregulate various modules of
IRGs, activation of IFN-Is and subsequent signalling appears to be
largely similar (5). Following viral exposure, pattern recognition
receptors are activated by double stranded RNA, single stranded
RNA, and DNA. Ligation of these receptors triggers a signalling
cascade which culminates in the upregulation of IFN-Is followed by
IRGs (5). IRGs can act directly or indirectly and at multiple levels to
disrupt the viral life cycle and inhibit viral entry. Several viruses have
evolvedmechanisms to directly subvert the induction and activity of
IRGs, a clear indicator of their importance in impeding viral
replication (21).

IFN-I also induces survival and maturation of dendritic cells
to enhance antigen presentation and upregulates costimulatory
molecules including CD40, CD80, CD86. These cells and
molecules act in concert to control viral infection (2). IFN-I
derived from pDCs forms part of an important T and B
lymphocyte axis that is key to an adaptive immune response
and antibody production (22). Excessive IFN-I can be
detrimental and inhibit or blunt an appropriate antibody
response; mechanisms underpinning these observations have
yet to be elucidated (2, 23).

As illustrated by the COVID-19 pandemic, the response to
viral infection is heterogenous (24). Some individuals, despite
lacking typical risk factors, are susceptible to severe disease.
Conversely, despite exposure to a high viral load, some
individuals appear to be naturally resistant to SARS-CoV-2
infection (25). Virus resistant people such as these have been
described in other viral infections, including HIV and HCV (26,
27). While the focus has historically been on immunological
susceptibility to viral disease, there is growing interest in viral
protection and resistance. Studying resistant individuals may
shed light on new pan or virus specific antiviral mechanisms and
better vaccines as well as providing tools for identifying
individuals who might be protected during future epidemics
(28). Studies of HCV resistant individuals have found increased
IFN-I in the serum compared to virus susceptible study
participants (29). This increased IFN-I could contribute to the
viral resistance seen in people who remain uninfected even after
viral exposure and could be indicative of heightened or enhanced
immune states as described in healthy individuals elsewhere (22).
November 2021 | Volume 12 | Article 757249
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IFN-I IN AUTOIMMUNITY

Autoimmune conditions are diverse and heterogenous disease
states that result from an immune response directed against self-
antigens. IFN-I is known to play an important role in several of
these conditions, including coeliac disease, type I diabetes
mellitus (TIDM), systemic lupus erythematosus (SLE) and
primary Sjogren’s syndrome (pSS) (30).

Evidence for a causative role of IFN-I in autoimmune disease
comes from studies describing excessive IFN-I response
following viral infection leading to autoimmune-like conditions
(31, 32). People treated with pegylated-IFNa as a therapy for
viral infection or melanoma develop a disease that phenocopies
‘naturally occurring’ SLE and coeliac disease (33). Several studies
have reported increased IFNa protein levels in the sera of SLE
patients. Elevated IFNa protein is accompanied by an increase in
an IRG signature score in circulating immune cells and IFN-I
regulated protein expression in serum, both of which correlate
well with clinically defined disease severity (33). Adding to
evidence for IFN-I in autoimmune disease, recent phase III
trials using an IFNAR1 monoclonal antibody blocking IFN-I
activity (Anifrolumab) to treat SLE shows promising disease
modifying activity (34). IFNa protein is also increased in pSS
and has an increased IFN-I signature. Taken together, these
observations suggest a common IFN-I mediated mechanism in
Frontiers in Immunology | www.frontiersin.org 3
autoimmune disease (35). Similar to viral infection, susceptibility
to autoimmunity is variable, and the disease course of individuals
with autoimmune disease is often heterogeneous (36).
A SHARED TRANSCRIPTOMIC
SIGNATURE IN INFECTION AND
AUTOIMMUNITY

Recent evidence suggests that an IFN-I transcriptional signature
predictive of a response to vaccination, is the same as has been
described to be predictive of flare severity in SLE, a well-
documented IFN-I mediated autoimmune disease (22). This
signature can predict high and low vaccine responders, is linked
to SLE flare intensity, and is centred around a pDC IFN-I T/B
lymphocytes axis. The set point score of this axis higher in some
healthy individuals, suggesting an increased basal IFN-I. Individuals
who had a more highly active axis tended to have increased
antibody responses to yellow fever and influenza vaccination. One
could hypothetically extend the vaccine findings here to natural
infection and imagine a situation in which individuals who have a
higher set point score usually only seen following immune challenge
would be more resistant to viral infection (22). The authors were
unable to explain why this set point score was higher in some
individuals in the absence of antigenic stimulation.
FIGURE 1 | Overview of type I interferon induction and signalling. Activation of PRRs such as TLR4, TLR3, TLR7, TLR8 and RIG-I results in signal transduction and
activation of the transcription factors IRF3 and IRF7, leading to production of IFN-I. IFN-I binds to the IFNAR1/IFNAR2 heterodimer and signals in both a paracrine and
autocrine manner via the JAK/STAT pathway to upregulate interferon regulated genes which act to protect the host against noxious agents such as viruses and bacteria.
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Multiple studies have shown that genetics accounts for most
interindividual variation in the innate immune response, of which
IFN-I is a key player (37, 38). In studies of viral resistance as well as
in Tsang’s study the mechanisms underpinning viral resistance,
enhanced vaccine responses and SLE autoimmune flares have yet
to be elucidated. We suggest that shared gene variants in IFN-I
responses, both in relation to their initial induction and also
variants related to how they activate their responses, play a dual
role in both phenotypes.
GENETIC VARIATION IN TYPE I
INTERFERON RELATED GENES
ASSOCIATED WITH VIRAL INFECTION
AND AUTOIMMUNITY

Both autoimmune and infectious disease have strong
immunogenetic associations. Historical focus of genetic influences
on enhanced resistance to infection has been on MHC variability
and monogenic variants, including CCR5delta in HIV, FUT2 in
norovirus and DARC in malaria. Monogenic variants resulting in
primary immunodeficiencies that increase susceptibility to viral
infections include IRF loss of function mutations seen in
influenza, herpes simplex encephalitis and COVID-19 (39–47). In
the context of autoimmunity, monogenic variants have also been
described and include IFIH1 and DNASE1 in SLE [reviewed in
(48)]. While causative variants have been explored widely in these
settings, they are unlikely to have more ambiguous roles as absence
or gain of function in genes are deleterious and often incompatible
with a normal health span.

Monogenic disease associated variants are typically
uncommon. In contrast, sequence differences that arise due to
SNPs are commonly found in the genome (49). SNPs are defined
as either synonymous, wherein a change in a nucleotide base
does not result in an alteration in the amino acid composition of
a protein (codon degeneracy), or non-synonymous (missense),
where the amino acid sequence of a protein is altered. Both types
of SNPs can contribute to human health and disease (50, 51).
Different selective pressures driven by variable disease burdens
across populations has led to substantial variation in the minor
allele frequencies (MAFs) of SNPs. Studies of SNPs have
provided valuable insight into the roles of specific residues in
the function of IFN-I related genes and proteins (52).

Association studies of SNPs typically provide an odds ratio,
indicating whether presence or absence of the SNP increases or
decreases the risk of developing a particular disease state and by
what magnitude. Here we discuss association studies of shared
autoimmune and infection related SNPs.
SNPS IN PATTERN RECOGNITION
RECEPTORS AND SIGNALLING
PATHWAYS

SNPs in PRRs and the PRR signalling pathway have been
associated with infectious and autoimmune disease states
Frontiers in Immunology | www.frontiersin.org 4
(Table 1). The rs3775291 SNP in TLR3 has been of particular
interest globally given its wide and heterologous associations,
including HIV, SLE, type I diabetes and idiopathic pulmonary
fibrosis (53–56). This is a non-synonymous variant in which a
cytosine is replaced with a thymine, leading to a change in the
amino acid in the ectodomain at position 412 from a leucine to a
phenylalanine (L412F). C is the major allele, whereas T is the
minor. The SNP exhibits substantial population variation – the
minor T allele is present in just 3% of Africa donors from
the 1000 genomes project, while it is present in 33% of east
Asian populations (74).

The TLR3 SNP has also previously been associated with
increased resistance to HIV infection in highly exposed
seronegative (HESN) intravenous drug users exposed to HIV
(53). Sironi et al. genotyped two independent cohorts and found
the frequency of individuals carrying at least one phenylalanine
allele is significantly higher in HESN individuals compared to a
matched controls (53). The SNP has also been associated with
SLE risk and more strongly with development of type I diabetes
mellitus (54, 55).

Analysis of data from the Genotype Tissue Expression
database (GTEX) shows rs3775291 to be a positive expression
quantitative trait loci (eQTL) for TLR3 expression, meaning that
it increases TLR3 mRNA levels. Functional analysis of peripheral
blood mononuclear cells (PBMCs) in the Sironi study showed
variant CT and TT donors to have reduced replication of HIV
compared to WT CC donors (53). This reduced HIV replication
was accompanied by increased immune activation denoted by
marked increases in IL6, CCL3 and the activation marker CD69.
In response to a TLR3 agonist, donors with the minor allele CT
and TT also had increased upregulation of these markers (53).

Additionally, it appears this polymorphism is associated with
enhanced general TLR responsiveness, suggesting that tonic
signalling through TLR3 may be important for TLR expression
levels and subsequent anti-viral activity and IFN-I production
(14). The dual autoimmune and viral resistance association is
likely underpinned by the increased TLR3 expression and
consequent enhanced immune activation.

Rs7251 is a non-synonymous SNP in IRF3 involving a base
change from cytosine to guanine leading to an amino acid
substitution at the final position of 427 from a threonine
(ACC) to a serine (AGC; T427S) (74). G encodes a serine and
is the major allele in most populations with an allele frequency
ranging from 50% to 67%, except in Africans where it is the
minor allele with a frequency of 29%. G is considered to be the
derived risk allele, whereas C appears to be the ancestral allele.
The SNP is a blood cis eQTL for IRF3 and leads to increased IRF3
expression [GTEX data;7 (57)]. The resultant increased basal
expression of IRF3 is likely to lead to a “heightened” immune
state that, in one context could contribute to resistance to viral
infection, while in another could increase the risk of immune
dysregulation and development of autoimmune disease. This
notion is reflected in previous association studies in which one
study linked the CG and CC genotypes with increased
persistence of HPV infection – conversely suggesting that the
GG genotype may be associated with increased clearance of HPV
November 2021 | Volume 12 | Article 757249
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infection (58). A recent meta-analysis involving 7,212 cases
and 13,556 controls found that the G allele is significantly
associated with SLE risk, in particular increased risk of
developing an SLE associated inflammatory condition called
lupus nephritis (57). This link between the G allele and
resistance to HPV infection as well as SLE risk supports our
hypothesis of a shared genetic signature underlying viral
resistance and susceptibility to autoimmunity.
SNPs IN TYPE I INTERFERONS AND THE
IFNAR1/2 RECEPTOR

Common SNPs with a MAF > 5% in IFN-I genes are rare. An
Ensembl search reveals no non-synonymous SNPs with a MAF
greater than 5% for most of the IFN-I subtypes. Those IFN-I
genes with SNPs at a high enough frequency have not yet been
studied for association with susceptibility to viral infection or
autoimmunity. We focus therefore on SNPs in components of
the IFN-I receptor.

IFN-I signals via the IFNAR1 IFNAR2 heterodimer. SNPs in
IFNAR1 and IFNAR2 have been associated with several disease
states; associations appear to be highly context and disease
specific with the same SNP reported to have both positive and
negative effects on disease outcome depending on whether the
disease is due to viral infection or autoimmunity. For example,
rs2257167 in IFNAR1 has been associated with both
Frontiers in Immunology | www.frontiersin.org 5
spontaneous resolution of hepatitis B virus infection, resistance
to respiratory virus infection and increased pain in lung cancer
and risk of developing multiple sclerosis and vitiligo in females
(59–62, 75). This dual association with both autoimmune
susceptibility and protection from viral infections is interesting
as it shows that a SNP which is thought to pathogenic in one
instance can be protective in another. Rs2257167 results in a
valine to leucine substitution at position 141 in the SD2 domain
of AR1 (59). As with several other SNPs, the MAF varies
dramatically between populations, suggesting a functional
consequence driven by different evolutionary pressures (74).
While investigations into its functional impact are lacking,
limited reports suggest that rs2257167 increases IFNAR1
expression, which may positively impact the antiviral immune
response during infection, but also increase the propensity to
develop autoimmune disease (59).
SNPS IN TYPE I INTERFERON
SIGNALLING AND INTERFERON
RESPONSE GENES

Binding of IFN-I molecules to their receptor leads to
phosphorylation of the accessory protein TYK2 and activation
of the JAK-STAT pathway (Figure 1). Rs2304256 is a SNP found
in exon 8 of the TYK2 gene that results in a valine to
phenylalanine substitution at position 362 (Val362Phe). 362 is
TABLE 1 | List of selected SNPs in the type I interferon system.

Gene SNP Alleles (Major/
Minor)

Amino Acid
Change

Associations Refs.

TLR3 rs3775291 C>T Leu412Phe Resistance to HIV-I infection Sironi, M. et al. (53)
Increased risk of SLE development Laska, M. et al. (54)
Increased risk of type I diabetes mellitus Assman, T.S. et al. (55)
Increased risk of idiopathic pulmonary fibrosis O’Dwyer, D.N. et al. (56)

IRF3 rs7251 C>G Thr427Ser Increased risk of SLE development Zhang, F. et al. (57)
Increased clearance of HPV infection Wang, S.S. et al. (58)

IFNAR1 rs2257167 G>C Val141Leu Spontaneous resolution of HBV infection Zhou, J. et al. (59)
Increase in lung cancer pain Reyes-Gibby, C.C. et al. (60)
Increased risk multiple sclerosis Leyva, L. et al. (61)
increased risk of female vitiligo Traks, T. et al. (62)

TYK2 rs23004256 C>A Val362Phe Increased risk of systemic sclerosis López-Isac, E. et al. (63)
Increased risk of Crohn’s disease Sato, K. et al. (64)
Reduced risk of SLE Sigurdsson, S. et al. (65)
Reduced risk of psoriasis Enerback, C. et al. (66)
No impact of tuberculosis risk Kerner, G. et al. (67)

OAS1 rs10774671 A>G — Increased resistance to COVID-19 hospitalisation
and severe disease

Zhou, S. et al. (68)

Increased risk multiple sclerosis O’Brien, M. et al. (69)
Increased risk of Sjogren’s syndrome Li, H. et al. (70)
Increased resistance to West Nile virus Lim, J.K. et al. (71)

TLR9 rs5743836 A>G — Increased spontaneous resolution of HCV in females Fischer, J. et al. (72)
TLR7 rs179008 A>T Gln11Leu Increased HIV-I viremia in females Azar, P. et al. (73)
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located in the FERM domain (F = 4.1 protein, E = ezrin,
R = radixin and M = moesin) of TYK2 which mediates the
interaction between the protein and IFNAR1 (63). While this
SNP has yet to be explored in the context of viral infection,
several studies have investigated its association with
autoimmune disease.

Association studies involving the TYK2 SNP are
confounding; the minor allele appears to be either protective or
deleterious depending on the autoimmune disease in question,
underlying the fact that within the umbrella term of
autoimmunity, disease states are more nuanced. The variant A
allele has been associated with an increased risk of systemic
sclerosis and Crohn’s disease (63, 64). However, other work
suggests that the SNP may be protective against SLE and
psoriasis (65, 66). The SNP is not associated with tuberculosis
susceptibility (67).

The variant minor allele is associated with a modest increase in
TYK2 expression in whole blood at baseline (76). This could
enable increased tonic signalling and greater expression of IFN-I
negative regulators leading to a heightened activation threshold
and therefore reduced susceptibility to some autoimmune disease.
Further studies are warranted to understand the functional
impact of the TYK2 SNP on the immune response and to
identify potential associations with specific viral infections.

IFN-I signalling culminates in the upregulation of IRGs such
as 2-5 oligoadenylate synthase 1 (OAS1), a protein used to
synthesize 2’-5- oligoadenylates that activates latent RNaseL,
which in turn induces the degradation of viral RNA and
inhibits viral replication. There are two major splice variants of
OAS1, p42 and p46, each with differing antiviral activity. A splice
QTL (sQTL), rs10774671, which increases the expression of the
p46 isoform, has been associated with resistance to viral
infections such as SARS-CoV-2 and West Nile virus, and also
associated with autoimmune diseases including multiple
sclerosis and Sjogren’s syndrome (68–71).

G is the minor allele of the OAS1 SNP in the European
population and A is the major. The G allele appears to have been
reintroduced to the European population through adaptive
introgression from Neandertals that was likely driven by
flavivirus burden (77, 78). The G allele has been identified as a
resistance allele for West Nile virus (71). Both the heterozygote
GA and the homozygote GG are associated with increased
resistance to HCV infection (79, 80). From an autoimmune
perspective, rs10774671 is associated with several autoimmune
diseases including type I diabetes, multiple sclerosis and
Sjogren’s syndrome (69, 70, 81, 82).

The rs10774671 sQTL increases expression of the p46
isoform which has greater enzymatic activity (70). The
increased OAS1 expression is evident in the GTEX whole
blood data set and in recent work showing increased
localisation of the p46 isoform to the Golgi membrane, which
allows for enhanced detection of viral RNA and increased
antiviral activity against positive strand RNA viruses that
replicate nearby (83). Again, evidence reviewed here indicates
a shared genomic signature underlying viral resistance and
increased susceptibility to autoimmune diseases.
Frontiers in Immunology | www.frontiersin.org 6
NATURAL SELECTION, VIRAL
RESISTANCE AND AUTOIMMUNE
DISEASE RISK

Infectious diseases have a major impact on population mortality;
as a consequence, gene variants associated with protection
against infection are some of the biggest targets of natural
selection in humans (84). This is particularly evident in innate
immune genes encoding proteins that form the first line of
defence against infection (85).

The prevalence of SNPs in the IFN-I pathway associated with
both autoimmune diseases and viral resistance discussed
throughout this review varies widely between populations. In
part, this variation is likely driven by differences in regional
pathogen pressures, wherein SNPs protective against infection
are selected for, with a contaminant increase in autoimmune
disease risk as a by-product of enhanced immunity against
noxious agents. This notion has been reviewed in greater detail
by Quintana-Murci and colleagues (86).

With respect to SNPs discussed previously in this review, the
prevalence of the C allele of the IFNAR1 SNP rs2257167 reaches
38% in East Asian populations, while it is just 16% in African
populations - this variation in positive selection for the C allele
could be explained by differences in disease burdens between
populations (74). Rs2257167 appears to increase IFNAR1
expression and is associated with increased protection against
viral infection (59). Africa has the highest incidence of
tuberculosis in the world (87). A potent IFN-I response can
hamper control of tuberculosis and so positive selection for
alleles that reduce the IFN-I response may be of benefit in
regions with high tuberculosis burden (88).

Autoimmune diseases impinge lightly on the ability of
humans to successfully bear and raise offspring; genetic
variation that increases susceptibility to autoimmune disease
while enhancing protection against infection has therefore not
been selected against. The negative influences of previously
advantageous variation are only being detected since general
health in human populations has improved and we have
developed the ability to control infectious disease. With
continued improvement in human health, healthcare and
immunotherapeutic strategies, rare variants in the IFN-I
pathway that are protective against autoimmune diseases such
as type I diabetes, including IFIH1 rs35337543, are unlikely to
become more common (89).
SEX AND SNPs IN THE TYPE I
INTERFERON PATHWAY

Of note, rates of viral resistance and spontaneous clearance of
infection are higher in females than in males. Incidence of
autoimmune diseases such as multiple sclerosis, SLE and
rheumatoid arthritis are also higher in females (90). Indeed,
the transcriptomic signature described by Tsang et al. that is
predictive of vaccine responses and autoimmune disease flares is
November 2021 | Volume 12 | Article 757249
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also higher in females (22). Despite well-described physiological
sexually dimorphic disease associations, studies often fail to
appropriately address sex differences. Genome wide association
studies analysed by sex have uncovered sex specific SNP
associations (91).

Differences in MAFs are unlikely to account for sex specific
SNP associations as no large sex differences in SNP MAFs have
been described, rather it has been proposed that dimorphism in
genotype effects exists between sexes (92). This is evinced in a
study by Fischer et al. wherein they describe a female specific
association between a SNP in the TLR9 promoter region
(rs5743836) and spontaneous clearance of HCV infection (72).
TLR9 is important in the detection of viral DNA and
upregulation of IFN-I. This SNP maps close to an area in the
promoter region coregulated by the transcription factors NFkB
and the estrogen receptor alpha (ERa), suggesting that the
association differences observed could be due to differential
regulation by the female sex hormone and hormone response
elements within the TLR9 gene (72).

Functional work on whole blood stimulated with ERa
activators on WT and variant female donors showed
homozygous WT donors downregulated TLR9 within 3 hours
following treatment, whereas in the heterozygotes and
homozygous variant donors the downregulation was
significantly lower. Negative regulation of TLR9 by oestrogen
could explain the attenuation of autoimmune disease often
observed during pregnancy when high oestrogen levels are
maintained. High oestrogen and a reduction in TLR9
expression during pregnancy could also help explain the
increased susceptibility to viral infection during pregnancy
(93). Indeed, PBMCs from pregnant women stimulated with
HRV43, a human rhinovirus showed significantly reduced IFNa
production compared with non-pregnant women (93). IFNa also
appears to be positively regulated by female sex hormones (94).

As females have two X chromosomes, and males have only
one X and one Y, the second X chromosome in females is
transcriptionally silenced so as to achieve dosage compensation
between the sexes (95). Several immune genes are found on the X
chromosome and are not silenced, therefore a further likely
contributor to sexually dimorphic effects of SNPs is escape of
X chromosome inactivation in females. TLR7, a PRR involved in
the IFN-I response and detection of ssRNA, is one such example;
immune cells from females express higher levels of TLR7 and
produce more IFNa as a consequence (96). Non-synonymous
SNPs in the TLR7 gene therefore likely exert different effects
Frontiers in Immunology | www.frontiersin.org 7
between sexes. Indeed, this phenomenon has been described for
the rs179008 SNP which appears not to impact on IFNa
production in response to R848 stimulation in males, yet
reduces IFNa levels in females (73). A key point to note is that
sex differences described in humans may not be present in non-
human mammals and caution is required when attempting to
dissect sex differences in animal models and extrapolate findings
to humans (97). Further explorations of SNPs in the IFN-I
pathway and their associations with autoimmune and
infectious disease ought to consider males and females
separately in order to appropriately discern potential sex effects.
CONCLUSIONS

We propose that similar IFN-I mechanisms contribute to
resistance to viral infection and susceptibility to autoimmune
disease. Using data from multiple SNP association studies we
present evidence of a shared genomic signature in the IFN-I
pathway that underlies susceptibility to both conditions. We also
highlight potential sex specific effects of SNPs and indicate the
importance of including sex in association studies. As research in
the field of viral immunology begins to look beyond increased
susceptibility to infection and shifts towards understanding viral
resistance, shared loci of infection and autoimmunity highlighted
here may prove to be useful primers for these studies. IFN-I
production is a common pathway feature the two clinical states
and is deserving of continued therapeutic focus.
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