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The genetic background of Brazilians encompasses Amerindian, African, and European
components as a result of the colonization of an already Amerindian inhabited region by
Europeans, associated to a massive influx of Africans. Other migratory flows introduced
into the Brazilian population genetic components from Asia and the Middle East.
Currently, Brazil has a highly admixed population and, therefore, the study of genetic
factors in the context of health or disease in Brazil is a challenging and remarkably
interesting subject. This phenomenon is exemplified by the genetic variant CCR5D32, a 32
base-pair deletion in the CCR5 gene. CCR5D32 originated in Europe, but the time of origin
as well as the selective pressures that allowed the maintenance of this variant and the
establishment of its current frequencies in the different human populations is still a field of
debates. Due to its origin, the CCR5D32 allele frequency is high in European-derived
populations (~10%) and low in Asian and African native human populations. In Brazil, the
CCR5D32 allele frequency is intermediate (4-6%) and varies on the Brazilian States,
depending on the migratory history of each region. CCR5 is a protein that regulates the
activity of several immune cells, also acting as the main HIV-1 co-receptor. The CCR5
expression is influenced by CCR5D32 genotypes. No CCR5 expression is observed in
CCR5D32 homozygous individuals. Thus, the CCR5D32 has particular effects on different
diseases. At the population level, the effect that CCR5D32 has on European populations
may be different than that observed in highly admixed populations. Besides less evident
due to its low frequency in admixed groups, the effect of the CCR5D32 variant may be
affected by other genetic traits. Understanding the effects of CCR5D32 on Brazilians is
essential to predict the potential use of pharmacological CCR5 modulators in Brazil.
Therefore, this study reviews the impacts of the CCR5D32 on the Brazilian population,
considering infectious diseases, inflammatory conditions, and cancer. Finally, this article
provides a general discussion concerning the impacts of a European-derived variant, the
CCR5D32, on a highly admixed population.
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INTRODUCTION

Genetic Aspects of the Brazilian
Population
Until the year 1500 CE, Brazil was inhabited only by Native
Americans belonging to different linguistic groups, distributed
along the coast and hinterland of the country. This scenario
changed dramatically after the arrival of the Portuguese explorers
in the Brazilian territory that year, affecting many cultural and
biological aspects of the native populations. The European
colonization of Brazil and the associated influx of Africans had
a strong influence on the genetic makeup of the Brazilian
population. In Brazil, as well as in other countries colonized by
the Europeans, the Native American population deeply declined
after colonization (contracted around 90% in the Americas) (1–
3). The remaining native population underwent a strong process
of genetic miscegenation. However, the processes of population
change continued throughout Brazilian history, even in more
recent times. Over the past 200 years, Brazil has received a large
influx of European immigrants from various countries, also
described as the last migration pulse, which added another
layer to the genetic makeup of the Brazilian population (1–4).

In general terms, the genetic background of current Brazilians
has Amerindian, African, and European components in different
proportions (2, 3, 5–7), depending on the Brazilian region under
investigation (North, Northeast, Center-West, Southeast, or
South). For example, the genetic makeup of Brazilians in the
southern region of Brazil was strongly influenced by migratory
flows from Europe in the 19th and 20th centuries; although in
the Northeast of the country, the African genetic component is
high (1, 2, 8). Of note, the European component is preponderant
in different Brazilian regions when the Amerindian, African, and
European components are compared, but even observing some
regional peculiarities as those mentioned above, the genetic
composition of the Brazilian population is rather uniform in
its miscegenation in different regions of the country (1).

Throughout history, Brazil also received migrants from other
countries beyond those from Europe and Africa, including
countries from Asia and Middle East (7, 9). The intense
migration within the national territory (10) allowed the
exchange of genetic information between Brazilians from
different regions, ethnic and genetic groups. As a result of the
interactions of these different groups, the Brazilian population is
currently highly miscegenated, a characteristic evident in the rich
genetic and phenotypic diversity observed among the Brazilian
population (2, 6, 11, 12). Considering the scenario mentioned
above, the Brazilian population can be considered genetically
heterogeneous and admixed, in addition to being relatively
uniform throughout the country (1). Interestingly, admixed
Brazilian populations are probable “reservoirs” of the diverse
Native American genetic component (3), currently the least
prevalent genetic component in the population (1, 8).

Y-chromosome haplogroup analysis corroborates the high
genetic miscegenation observed in the Brazilian population. Abe-
Sandes et al. (13) investigated the frequency of different
haplogroups in Brazilian individuals from different ethnicities.
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A significant frequency of typical European haplotypes in Afro-
Brazilians was found, for example, in the Quilombola
community of São Gonçalo, Bahia state, northeastern Brazil.
Abe-Sandes et al. (13) also found the E-SRY4064 haplotype,
usually observed in populations from Sub-Saharian Africa and
almost absent in populations from Europe and Asia, in white
Brazilians, in a notable frequency (13). Marrero et al. (14) also
reported evidence of admixture in Native American populations,
showing the presence of non-Amerindian haplotypes in
Kaingang and Guarani peoples (14). Finally, numerous studies
analyzing Y-chromosome haplogroups reinforce the
miscegenation addressed in this article, pointing to European,
Amerindian, African and Asian haplogroups in different
ethnicities and population groups from different Brazilian
regions (13–28).

In the same direction, evaluation of mitochondrial DNA in
different populations of Brazil showed the presence of diverse
haplogroups characteristic of African, European, Native
American and Asian populations, again evidencing the high
level of miscegenation in the Brazilian population (14, 29–37).
Of note, Cardena et al. (38) assessed a population from São
Paulo, southeastern state of Brazil, specifically evaluating
mtDNA haplogroups and comparing such data with self-
declared ethnicity. Interestingly, a significant parcel of the
individuals classified as whites showed a high percentage of
African mtDNA (37.6%), with less participation of Amerindian
(31.6%) and European (30.8%) origins. When analyzing other
genomic loci of the same individuals, a higher European
contribution was noticed (63.3%), evidencing a considerable
African participation of maternal origin in individuals
simultaneously presenting high non mtDNA European
ancestry (38, 39).

Pivotal Information Regarding the
CCR5D32 Variant
The CCR5D32 polymorphism (reference SNP ID number: rs333)
is a genetic variant that originated in the European population
(40), and therefore can be used as an ancestry-informative
marker in studies involving population genetics and genome
ancestry (41, 42). This variant represents a 32-base pair deletion
in the CCR5 gene (chromosome 3; 3p.21.31), a fundamental
component of the immune system responsible for encoding the
CCR5 protein, which acts mainly in the regulation of
inflammatory cell migration. It is unclear what selective
pressures (considering positive selection) were responsible for
fixing CCR5D32 in the human genome. Smallpox, bubonic
plague, and other infectious diseases have already been
suggested, but there is no consensus on this aspect (40).
Neutral evolution is also a possibility (43). What is somehow
certain is that the variant probably originated in the European
population at 700-5,000 years ago (43, 44), potentially even
earlier than 5,000 years (45, 46), and later spread
heterogeneously across the world.

The CCR5D32 allele presents a higher frequency in northern
Europe (greater than 15% in Norway, Latvia, and Estonia), being
less frequent in countries located in the south of the European
December 2021 | Volume 12 | Article 758358
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continent. For example, the frequency of the CCR5D32 allele is
8.1% in Spain, 6.9% in Portugal, 6.2% in Italy, and 5.1% in
Greece. The allele frequency is very low or even absent in most
Asian and African countries: for example, 0.4% in China, 2.2% in
Korea, 0.7% in Cameroon, 0.26% in Eritrea, and 2.9% in Egypt
(47). A recent study reports the absence of the CCR5D32 allele in
the Nepalese population (48). Similarly, CCR5D32 is rare in
Native American groups, showing an overall CCR5D32 allele
frequency of 0.2%, mostly probably due to miscegenation (42). In
the contemporary Brazilian population, the overall frequency of
the CCR5D32 allele usually ranges from 4 to 6% but showing
significant variations between different Brazilian regions and
ethnic groups (42, 49), as will be discussed in the next sections
of this article.

The main function of the CCR5 is coordinating leukocyte
migration during inflammatory reactions through interaction
with different chemokines, especially CCL3, CCL4, and CCL5
(40). Of note, these chemokines were historically called “MIP-
1a”, “MIP-1b” and “RANTES”, respectively, but that
denomination has fallen into disuse (50, 51). The CCR5
protein is expressed on the cell surface and has seven
transmembrane domains connected by three extracellular loops
and three intracellular loops. Leukocytes are the main cells that
express the CCR5 (40), although the protein is also detected in
other cell types, such as human embryonic neurons (52),
adipocytes (53), and several types of cancer cells and tissues
(54–58), indicating that CCR5 performs immune functions that
go beyond coordinating the migration of inflammatory cells.

Carriers of the wild-type CCR5 gene have CCR5 expression
constitutively, with some variation between individuals.
CCR5D32 causes important phenotypic effects, affecting the
interaction of the CCR5 with chemokines. Due to the
induction of a change in the CCR5 gene reading frame,
the CCR5D32 produces a truncated protein that is not
expressed on the cell surface, presenting a gene-dosage effect.
In brief, the presence of the CCR5D32 allele in heterozygous
causes a reduction in the expression of CCR5 at the membrane.
The presence of the CCR5D32 allele in homozygosis culminate in
virtually no expression of CCR5 molecules on the cell surface
(59–63) . The CCR5D32-derived molecules are not
phosphorylated and remain retained in the endoplasmic
reticulum (64). Interestingly, it was suggested that in addition
to the gene-dosage effect associated to CCR5D32, the CCR5D32-
derived truncated protein could promote the sequestration of the
CCR5 and CXCR4 proteins, both HIV-1 co-receptors, from the
cell surface (65, 66).

These changes in the expression of CCR5 associated to
CCR5D32 culminate in a disrupted CCR5-mediated immune
response, which can be beneficial in some situations or harmful
in others (67) since the ‘chemokine system’ is not completely
redundant. The absence of CCR5 can impact the cell signaling
coordinated by CCL3, CCL4 and CCL5, thus perturbing the
proper CCR5-mediated immune responses (68). Disruptions in
the chemokine system can significantly alter the susceptibility
and progression of different diseases. For instance, COVID-19
severe cases are associated with uncontrolled receptor-ligand
Frontiers in Immunology | www.frontiersin.org 3
interactions and consequent inflammatory dysregulation, which
characterizes the cytokine storm frequently observed in such
severe disease cases (69, 70). Recently, CCR5D32 deletion was
identified as a protective factor in Czech First-Wave COVID-19
subjects (71). Different CCR5-editing techniques are currently
available and can be used to test in vitro the impacts of the CCR5
absence in different conditions, simulating the consequences of
CCR5D32 on the immune system and disease conditions (72,
73). However, it is essential to emphasize that the CCR5-editing
in human embryos raises many ethical concerns and may have
deleterious consequences (67, 74).

Looking at the desirable effects, CCR5D32 protects against
HIV infection, since the homozygous state of the variant impairs
the proper expression of CCR5, preventing the interaction of
CCR5 (the main HIV co-receptor) with the virus on the cell
surface, thus avoiding infection of the host (75, 76). As
mentioned above, CCR5D32-derived molecules (CCR5
truncated proteins) can also have an important protective
effect against HIV by sequestrating CCR5 and CXCR4 from
cell surface (65, 66). The discovery of this effect was truly relevant
because it gives support to the use of CCR5 blockers for the
clinical control of HIV infection. The best example of this case is
maraviroc, a noncompetitive CCR5 antagonist that prevents the
proper interaction between the HIV envelope glycoprotein and
the CCR5. Currently, other CCR5 blockers (e.g., cenicriviroc,
leronlimab) are being tested to treat HIV infection and other
inflammatory conditions, and maraviroc emerges as a potential
drug to treat other diseases involving CCR5, especially some
types of cancer (77). In Brazil, CCR5 blockers represent a good
choice for HIV treatment, since most of the circulating viral
strains show CCR5 tropism (78–80). Based on the scenario
presented above, Figure 1 shown an alluvial diagram
representing the classic outcomes associated with the
CCR5D32, including “desirable” and “undesirable” effects.

Another major achievement involving CCR5D32, and HIV
infection was the sustained remission of the infection in the
‘Berlin Patient’, reported in 2009 (83) and confirmed in 2011
(84), and in the ‘London Patient’, reported in 2019 (85) and
confirmed in 2020 (86). Both individuals were HIV positive and
developed hematological malignant diseases (acute myeloid
leukemia and Hodgkin’s lymphoma, respectively), requiring
allogeneic hematopoietic stem-cell transplantations. After
receiving cell transplantations from CCR5D32 homozygous
donors, both showed sustained remission of HIV infection.
Other cases like Berlin and London patients are being followed
up, such as the ‘Düsseldorf patient’ (87). The success of this
strategy, although involving few cases, shows that sustained
remission of HIV is possible to be achieved and subsequently
maintained free of antiretroviral therapy. The Berlin patient,
Timothy Ray Brown, passed away on September 29, 2020, due to
the recurrence of acute myeloid leukemia, not HIV infection (88,
89). In addition to having collaborated enormously to advance
research involving HIV, T. R. Brown created the Timothy Ray
Brown Foundation and contributed significantly to the field of
HIV/AIDS research, with a big and admirable impact on global
society as an HIV activist (89–91).
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Currently, it is known that the influence of CCR5 andCCR5D32
goes beyond protection against HIV infection and is much broader
thanpreviouslybelieved, influencing the susceptibility andoutcome
of different conditions, such as other different viral, bacterial, and
parasitic diseases (40, 92), as well as non-infectious inflammatory
conditions (93–96). This occurs because the lack of CCR5
expression, in humans naturally due to CCR5D32, interferes with
multiple aspectsof inflammatory responses, includingexpressionof
immune system genes, levels of inflammatorymarkers, and activity
of immune cells (97–103). On the other hand, now looking at the
undesirable aspects of CCR5D32, this genetic variant increases the
risk of serious complications caused by the West Nile virus and
Tick-borne encephalitis virus (104–109).

Although Brazilians form a population of more than 210 million
individuals, genetic studies in this population are still limited, with
most genetic studies focusingonpopulationswithEuropeanancestry
(6, 9). The Brazilian population can serve as a study case to
understand the impact of genetic admixture on the frequency of
genetic variants, such as CCR5D32, and its impacts on different
conditions and pharmacogenomics (7). Understanding the extent to
which the CCR5D32 variant influences the health of different
populations is critical since it indicates which individuals and
ethnic groups are more likely to benefit from therapies focused on
modulating CCR5 in the context of cancer, infections, and
inflammatory diseases. Focusing on HIV, knowing the frequency
ofCCR5D32 indifferenthumanpopulations is the initial step toguide
potential new attempts at sustained remission of HIV infection
through stem cell transplantation with CCR5D32 homozygous
genotype. Moreover, it is also essential to understand how
CCR5D32 impacts the health of the Brazilian population.

Considering that (I) the frequency of CCR5D32 is quite varied
among Brazilians from different country’s regions and that (II)
Frontiers in Immunology | www.frontiersin.org 4
the role of CCR5D32 in various pathological conditions is an
emerging topic with several knowledge gaps, the primary
objective of this article is to review the effects of the genetic
variant CCR5D32 on the Brazilian population, considering
several diseases and clinical conditions. The secondary
objective of this article is to discuss the impacts of a European-
derived variant, the CCR5D32, on a highly mixed population.
METHODS

For the initial selection of articles, the terms “CCR5”, “CCR5 delta
32”, “CCR5D32” and “rs333”, used in combination with “Brazil” or
“Brazilian”, were searched on PubMed (https://pubmed.ncbi.nlm.
nih.gov/). Subsequently, the same search strategy was used on
Scientific Electronic Library Online - SciELO (https://scielo.org/).
The articles were initially selected based on the title and abstract.
Only articles addressing CCR5D32 in Brazilian populations were
included in this review. Articles published in English and
Portuguese were considered in the evaluation, without restriction
concerning the date of publication. On some specific occasions, the
reference list of selected articles was also used as an additional
source of published works involving CCR5D32 in the Brazilian
population. Additional unstructured searches were performed on
PubMed to select the articles cited in the introduction section and
additional points of the review.
CCR5D32 FREQUENCY IN BRAZIL

A study published in 2016 by Silva-Carvalho and collaborators
(49) presented a very complete meta-analysis regarding the
FIGURE 1 | Alluvial diagram representing the classic outcomes associated with the CCR5D32. The CCR5D32 genotypes are shown in the left part of the diagram.
The phenotypic effects of each genotype are shown in the center. The more classical consequences associated with each phenotype are shown in the right part of
the diagram. Additional information concerning the phenotypic effects of the CCR5D32 on human cells and immune system can be found in previous studies of our
group (40, 68, 81). This figure was created using RAWGraphs (https://rawgraphs.io/) (82).
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CCR5D32 frequency in Brazil. In addition to original data from
those authors, the meta-analysis included 29 articles reporting
the CCR5D32 frequency in Brazil, encompassing populations
from ten Brazilian States. The study found an overall allelic
frequency of 4% in the country (49). The frequencies of the
CCR5D32 allele in the Brazilian States, including data compiled
by Silva-Carvalho et al. (49), are summarized in Figure 2.
Henceforward, we expand the information concerning the
CCR5D32 frequency in Brazil, highlighting studies not
included in the meta-analysis by Silva-Carvalho et al. (49), and
including data obtained from studies with indigenous
populations and quilombola communities, as discussed below.

Leboute et al. (112) reported the absence of the CCR5D32
allele in a sample of 300 Amerindians from four indigenous
populations of the Brazilian Amazon region, namely: Tikuna
(n = 191), Baniwa (n = 46), Kashinawa (n = 29), and Kanamari
(n = 34). Based on such data, we can argue that, at least until the
date of publication of that work, the studied Amazonian tribes
probably did not have a significant degree of miscegenation at a
level sufficient for the introduction of the CCR5D32 allele into
those indigenous groups. Alternatively, the allele could already
Frontiers in Immunology | www.frontiersin.org 5
be circulating in the groups, but it may not have been detected
due to the small sample size (112).

Carvalhaes et al. (113) also described the frequency of the
CCR5D32 allele in different ethnic groups of the Brazilian
Amazon region, specifically from Pará State. The sample
groups investigated were composed of 394 individuals from
Belém (capital of Pará), 67 Afro-Brazilian individuals, 89
Amerindian individuals, and 111 Japanese immigrants. The
CCR5D32 allele was not observed in Amerindian individuals
and Japanese immigrants. In the sample of Afro-Brazilian
individuals, only one individual carrying the allele in
heterozygous was found, with the allele frequency, in this case,
being 0.75%. In the sample of random individuals from Belém,
one homozygous individual for the gene deletion and 22
heterozygous individuals were found, resulting in a CCR5D32
allele frequency of 3.04% (113).

Hünemeier et al. (110) evaluated the frequency of the
CCR5D32 allele in Native American populations in Brazil and
Paraguay: five Amazonian groups (Tiriyo, Mura, Cinta Larga,
Gavião, and Zoró); a group from the Paraguayan Gran Chaco
(Lengua); one from the Paraguayan forest (Aché); and one from
FIGURE 2 | CCR5D32 allele frequency in thirteen Brazilian states. Two values in parentheses represent the lowest and the highest frequency observed in a given
state. Data from Silva-Carvalho et al. (49), Hüneimeier et al. (110) (Mura population; Amazonas State), Carvalho et al. (41) (Mocambo community; Sergipe State), and
Ferreira-Fernandes et al. (111) (Piauı ́ State). The map was created with the help of MapChart (https://mapchart.net/), licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License.
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southern Brazil (Kaingang). The CCR5D32 allele was found only
in two groups: Mura (2%) and Kaingang (3%). The presence of
the CCR5D32 allele in the samples of these two groups may be
due to gene flow, which is explained by previous data showing
that both populations have a degree of miscegenation. Thus, the
CCR5D32 allele may have been introduced in American-native
populations due to European miscegenation (110).

Vargas et al. (42) investigated the distribution of the CCR5D32
allele in individuals from Alegrete, a city in the western region of
Rio Grande do Sul State. The population of Alegrete is highly
admixed, with the genetic participation of Spanish, Portuguese,
African, and Amerindian peoples. In the study, 103 healthy and
unrelated individuals were analyzed, being divided into ‘white’
(n=59), ‘brown’ (n=31), and ‘black’ (n=13). No CCR5D32
homozygous individuals were found, and the frequency of
heterozygotes was 14% in whites, 13% in browns, and 8% in
blacks. Allele frequencies were 6.8%, 6.4%, and 3.8%, respectively
(42). In Brazil, the classification of ethnicity performed by the
government agency Instituto Brasileiro de Geografia e Estatıśtica
(Brazilian Institute of Geography and Statistics) is based on skin
color, and for this reason many Brazilian studies classify
individuals using this criterion. Alternatively, ‘white’ individuals
can be classified as Caucasians, and ‘brown’ and ‘black’ can be
classified as non-Caucasians.

Ferreira-Fernandes et al. (111) analyzed the CCR5D32
frequency in a sample of the population of the Piauı ́ State. The
sample consisted of 223 elderly individuals from the Network of
Research on Frailty in Elderly Brazilians. The CCR5D32 allele
was found only in heterozygous in the sample, with an allele
frequency of 1.8%. In order to have a more robust investigation,
the sample was also stratified according to sex and age (dividing
the groups into individuals below or above 73 years old), but the
frequencies were not statistically different between groups,
ranging from 1.5% to 2.3%. The general CCR5D32 frequency
observed is in accordance with other data presented by groups
also from northeastern Brazil (111).

Carvalho et al. (41) evaluated the CCR5D32 frequency in
three quilombola communities in the states of Sergipe
(Mocambo community) and Bahia (Rio das Rãs and São
Gonçalo communities). The groups were founded about 150
years ago by individuals from Sub-Saharan Africa and/or their
descendants. The study evaluated individuals born in quilombola
communities and recent immigrants, with a total of 100
inhabitants from Rio das Rãs, 71 from Mocambo, and 53 from
São Gonçalo. In these communities, 28 were recent immigrants
from Rio das Rãs, 18 from Mocambo, and 15 from São Gonçalo.
Thus, the total sample size was 224 individuals: 163 born in the
quilombos and 61 recent immigrants. In most cases, the oldest
person in each family was chosen to participate in the study. The
CCR5D32 allele was found in the three communities evaluated,
but only in heterozygosis, with allele frequencies of 5.6% in
Mocambo, 1% in Rio das Rãs, and 0.9% in São Gonçalo.
According to the authors, the differences in allele frequencies
can be due to several factors, including different proportions of
parental populations in the founder’s individuals, a founder-
effect, and different patterns of inter-ethnic contact (41).
Frontiers in Immunology | www.frontiersin.org 6
Finally, we summarized in Figure 2 the frequencies of
CCR5D32 allele in thirteen Brazilian States, according to data
of ten states compiled by Silva-Carvalho et al. (49), and the
frequencies observed by Hüneimeier et al. (110) in the Mura
population (Amazonas State), by Carvalho et al. (41) in
individuals from Mocambo community (Sergipe State), and
Ferreira-Fernandes et al. (111) in individuals from Piauı.́ To
the best of our knowledge, there are no data available in the
literature on CCR5D32 in the other Brazilian States.
CCR5D32 IN INFECTIOUS DISEASES

CCR5 plays a critical role in the regulation of the immune
response against infectious agents, controlling the traffic of
immune cells [e.g., Natural Killer (NK) and T-regulatory
(Treg) cells] towards inflammation sites. For instance, a recent
study with mice showed that CCR5 has a pivotal role in the
recruitment of NK cells to the kidney allowing an adequate
neutrophil activity during systemic Candida albicans infection,
acting as a fundamental molecule for a proper immune response.
The absence of CCR5 expression resulted in uncontrolled
inflammation and increased renal damage in face of C.
albicans infection (114). Also, Treg cells play a fundamental
role in resolving inflammatory conditions, providing an
immunosuppressive activity. During infection by different
pathogens (e.g., Schistosoma spp.), the poor recruitment of
Treg cells to the inflammation sites due to CCR5 absence
causes uncontrolled inflammation and related tissue damage
(40, 115). On the other hand, during Rocio virus infection, the
CCR5 absence was associated with reduced brain inflammation
and better prognosis in animals (116). Taking together,
imbalances in the CCR5-mediated immune responses due to
CCR5D32 can cause both reduced and exacerbated
inflammation, depending on the type of pathogen responsible
for the infection (e.g., fungus, bacteria, virus), the infection site,
or the immune cell type affected by the lack or reduction of CCR5
expression (40). In this context, studies addressing CCR5D32 and
viruses in the Brazilian population will be discussed here,
including HIV, Human T-lymphotropic virus (HTLV),
Dengue, Influenza A, Hepatitis C virus (HCV), Hepatitis B
virus (HBV), and Human papillomavirus (HPV).

As explained in the introduction section, CCR5D32 exerts its
protective effect against HIV infection through two mechanisms:
reduced expression of the CCR5 gene (gene-dosage effect;
probably the most important mechanism) (60, 63) and
sequestration of CCR5 and CXCR4 from the cell surface (65,
66). Many studies that evaluated CCR5D32 in the Brazilian
population corroborated the protective effect of the variant on
susceptibility or clinical aspects of HIV infection (e.g., 117–120),
although other studies have not evidenced these effects, in some
cases probably due to the small sample size (e.g., 121, 122). The
main results of the studies involving CCR5D32 and HIV
infection in Brazil are detailed in Table 1.

Experimental evidence indicated that the course of HTLV
(type 1 and 2) infection and HIV/HTLV co-infection may be
December 2021 | Volume 12 | Article 758358
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TABLE 1 | Impacts of the CCR5D32 on HIV infection.

Population Sample Main findings Reference

Brazilian HIV+
individuals

177 ARV-naive individuals Heterozygous individuals for CCR5D32 have a better response to ARV treatment than wild-
type homozygotes

Accetturi
et al. (117)

Brazilian
individuals from
different regions

1162 individuals (133 with HIV+ status) CCR5D32 heterozygous cells (PBMCs) showed partial resistance to R5-HIV-1 in vitro; No
significant differences in CD4+ T-cell counts between HIV+ individuals heterozygous and
wild-type homozygous for CCR5D32; HIV load in heterozygous individuals are significantly
lower than in wild-type individuals

Grimaldi
et al. (123)

Individuals from
São Paulo State,
Brazil

129 HIV+ individuals and 26 blood
donors

CCR5D32 heterozygous genotype was associated with reduces RANTES/CCL5 levels Mikawa
et al. (124)

Individuals from
São Paulo State,
Brazil

183 HIV+ individuals and 115 controls The frequency of the CCR5D32 heterozygous genotype was lower in HIV+ individuals
(11.5%) than in controls (13.0%)

Munerato
et al. (125)

Individuals from
Pará, Brazil

110 HIV+ and 139 uninfected individuals Similar frequencies of the CCR5D32 allele were observed in the two groups: 2.7% in HIV+
individuals and 2.2% in the controls

Carvalhaes
et al. (121)

Children from
Pernambuco
State, Brazil

106 HIV+ and 70 uninfected children
exposed to infection risk and 104
controls

No significant influence of the CCR5D32 in the risk of HIV vertical transmission Souza
et al. (126)

HIV+ children
from São Paulo
State, Brazil

51 HIV+ children divided into rapid,
moderate and slow progressors

No influence of the CCR5D32 in disease progression (limited sample size) Angelis
et al. (127)

Individuals from
southern Brazil

134 blood donors; 145 HIV-exposed
seronegative individuals; 152 HIV+
asymptomatic individuals; 478 HIV+
individuals with AIDS

CCR5D32 homozygous genotype was significantly associated with reduced risk of HIV
infection

Vissoci
Reiche

et al. (118)

Individuals from
São Paulo State,
Brazil

200 HIV+ (155 on pre and post-ART) and
82 uninfected individuals

CCR5D32 heterozygous genotype was associated with better CD4+ T cell recovery after
ART initiation

Rigato
et al. (119)

Injecting drug
users from Rio
de Janeiro State,
Brazil

48 HIV+ and
558 uninfected injecting drug users

No significant impact of the CCR5D32 on susceptibility or protection to HIV infection Teixeira
et al. (128)

Individuals from
Bahia State,
Brazil

506 HIV+ individuals (155 divided into
rapid, typical and slow progressors)

CCR5D32 allele was more frequent in typical than in rapid progressors (without statistical
significance)

Abe-
Sandes

et al. (122)
HIV+ individuals
from Rio Grande
do Sul State,
Brazil

249 HIV+ individuals CCR5D32 heterozygous genotype was associated with reduced risk of CD4+ T cell
depletion (univariate analysis) and with increased risk of death after AIDS diagnosis
(multivariate analysis; potentially due to the emergence of CXCR4-tropic HIV strains);
CCR5D32 was a protective factor on disease progression in survival curve analysis

Vieira et al.
(129)

Serodiscordant
couples from
Santa Catarina
State, Brazil

9 HIV-exposed seronegative individuals; 9
ART-treated HIV+ individuals; 12 healthy
controls

The CCR5D32 heterozygous genotype was observed in two HIV-exposed seronegative
individuals, two ART-treated HIV+ individuals, and one control; In one serodiscordant
couple, both individuals had CCR5D32 heterozygous genotype and the CXCR4 viral
tropism was observed in the infected individual

Santos
et al. (130)

Individuals from
Roraima State,
Brazil

117 HIV+ individuals CCR5D32 heterozygous genotype was found in 11 individuals (9.4%); CCR5D32 allele
frequency estimated at 4.6%

Corado
et al. (131)

Individuals from
Pernambuco
State, Brazil

213 HIV+ and 234 uninfected individuals CCR5D32 frequency was reduced in HIV+ individuals compared to controls; Stratification
of data according to CCR5D32 genotypes did not modify the results of TRIM5
polymorphisms observed in the study

Celerino da
Silva et al.

(132)
Individuals from
São Paulo State,
Brazil

66 HIV+ individuals with recent infection CCR5D32 heterozygous genotype was detected in two individuals (one infected by R5-
tropic HIV strain and other by CXCR4-tropic HIV strain); No significant association between
CCR5D32 and tropism switch

Arif et al.
(133)

Individuals from
Paraná State,
Brazil

35 individuals with HIV/HBV or HIV/HCV
co-infection

CCR5D32 allele was not observed in the sample Avanzi
et al. (80)

Individuals from
Pará State, Brazil

30 HIV+ individuals (divided into viremia
controllers and non-controllers)

CCR5D32 heterozygous genotype was detected in one non-viremia controller Gomes
et al. (134)

Individuals from
Paraná State,
Brazil

81 perinatally infected HIV+ adolescents
and young adults (61 genotyped for
CCR5D32)

CCR5D32 heterozygous genotype was detected in one individual (1.6%); This patient was
infected by an R5 HIV strain

Martin
et al. (135)

Individuals from
Pernambuco
State, Brazil

266 HIV+ and 223 uninfected individuals CCR5D32 frequency was reduced in HIV+ individuals compared to controls (without
statistical difference); CCR5D32 along with other polymorphisms did not show statistically
significant influence on plasma viral load

Celerino da
Silva et al.

(136)
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affected by CCR5 expression patterns, which can be modulated
by such viruses (138, 139). The CCR5 and its ligands can also
influence the course of Dengue infection (140, 141). CCR5D32
was associated with an increased risk of fatal Influenza virus
infection in Spanish individuals (142). However, CCR5D32 has a
limited impact on these infections in the Brazilian population.
Studying HTLV-1 infection, no statistically significant
association was found between CCR5D32 and susceptibility or
presence/absence of a symptomatic infection (143). Only one
study was found regarding this evaluation in a non-Brazilian
population. Hisada et al. (144) investigated the CCR5D32
frequency in Jamaican HTLV-1-infected individuals and
healthy controls. However, the frequency found was too low to
further conclusions. That said, no study found an association
between the variant and HTLV-1 infection (144). Also, no
statistically significant association was observed when the
frequencies of CCR5D32 were compared between severe
Dengue cases and controls (145). A similar study carried out
in an Australian population also found no association between
the CCR5D32 allele and DENV infection (146). The CCR5D32
was not associated with hospitalization in individuals infected by
Influenza A virus (2009 pandemic H1N1 strain) (147).
Subsequently, a study addressing the same virus also reported
no significant effect of CCR5D32 on H1N1 infection severity
(148). A study conducted in a Spanish population identified an
association between the CCR5D32 allele and fatality due to
Influenza A (H1N1) infection (142). Also, an association of the
variant with disease severity was observed in a Canadian
population (149). Therefore, further studies evaluating the role
of this polymorphism in Influenza virus infection are needed.

HCV and HBV are associated with the development of
hepatocarcinoma and other liver diseases (150). CCR5 could
affect both susceptibility to these viruses and associated diseases
due to its regulatory role in inflammatory reactions. Our group
evaluated the influence of CCR5D32 on susceptibility to HCV
infection and HCV/HIV co-infection. In the same study, we also
accessed the potential impact of the CCR5D32 on HCV-related
fibrosis, cirrhosis, and hepatocarcinoma. In total, 1352
individuals were included in the study. No statistically
significant associations of CCR5D32 with the evaluated criteria
were observed (151). Looking at data reported in other
populations [see discussion in reference (151)], we highlight
that the association between the CCR5D32 variant and HCV
infection can show important biases in some populations, and
Frontiers in Immunology | www.frontiersin.org 8
other studies corroborate our results showing a lack of
association between the variant and HCV infection.
Importantly, our work had the largest sample evaluated in the
context of HCV infection (151).

More recently, we evaluated the influence of CCR5D32 on
susceptibility to HBV infection and HBV/HIV co-infection in a
study involving 1113 individuals. We found no significant effect
of CCR5D32 on susceptibility to HBV mono-infection. On the
other hand, the CCR5D32 allele exerted a protective influence on
HBV/HIV co-infection. Of note, this result was potentially due to
the known protective effect of CCR5D32 on HIV infection (92).
In a study in the Indian population, the heterozygous genotype
(WT/D32) was associated with a higher susceptibility to HBV
infection, whereas in a study in the Iranian population, the
variant was a protective factor against the infection (152, 153).
Other studies carried out in different populations reported a lack
of association between HBV infection and the CCR5D32 variant
(154–156), which is in agreement with the major finding
observed in our previous study (92).

HPV is strongly associated with the development of cervical
cancer (157) and it was suggested that CCR5 could play a role in
the context of HPV infection and related diseases. Nevertheless,
Mangieri et al. (158) observed no significant effect of CCR5D32
on susceptibility to the infection or cervical lesions (158). Also,
the CCR5D32 was not associated with infection by a particular
HPV genotype (159). In contrast, in a Swedish population, the
homozygous genotype for the variant was associated with an
increased risk of HPV infection (160). Given the limited amount
of data and the contradictory results concerning the involvement
of CCR5 in HPV infection, further evaluation concerning the
potential role of the CCR5D32 variant in the context of HPV
infection and related diseases in Brazilian and other populations
are needed.

The influence of CCR5D32 on parasitic diseases was also
investigated in the Brazilian population, including Chagas
disease, leishmaniasis, and toxoplasmosis. CCR5 can have two
opposite effects on Chagas disease, a disease caused by
Trypanosoma cruzi infection. CCR5 mediates the control of
acute infection, assuming a favorable role for the host. In
opposition, the increased expression of CCR5 during Chagas
disease is associated with exacerbated inflammation and related
cardiac complications (161). Thus, the levels of CCR5 expression
are critical in the outcome of Chagas disease. However, two other
studies found no association between the CCR5D32 variant and
TABLE 1 | Continued

Population Sample Main findings Reference

Individuals from
Rio Grande do
Sul State, Brazil

294 uninfected individuals and 206 HIV+
individuals (divided into 40 rapid
progressors and 166 non-rapid
progressors)

Plasma viral load was lower among CCR5D32 heterozygous individuals as compared to
wild-type homozygous individuals

Valverde-
Villegas

et al. (120)

Individuals from
Pernambuco
State, Brazil

248+ individuals divided into
immunological recovery profiles during
ART (222 of the 248 HIV+ individuals
were genotyped for CCR5D32)

CCR5D32 heterozygous genotype was statistically associated with immunological recovery
failure (result from logistic regression analysis)

Carvalho-
Silva et al.

(137)
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cardiac or digestive manifestations on chronic Chagas disease
(162, 163). In a Peruvian population, the frequency of the D32
allele was not high enough to allow an analysis of association
with T. cruzi infection, and a study with individuals from
Venezuela did not find an association of the variant with the
presence of disease symptoms (164, 165). Therefore, the
potential CCR5D32 allele role in Chagas disease is still
under discussion.

Brajão de Oliveira et al. (166) and Ribas et al. (167) reported
no statistically significant difference between Leishmania-
infected individuals and controls concerning CCR5D32
frequencies (166, 167). In the study performed by Brajão de
Oliveira et al. (166), the CCR5D32 allele carriers showed a less
severe spectrum of clinical manifestations, but without statistical
significance (166). Ribas et al. (167) observed a higher frequency
of the CCR5D32 polymorphism among a subgroup of patients
with recurrent lesion, but this specific result was based on an
exceedingly small cohort (167). Also, a study performed in a
Pakistani population showed no association between the
CCR5D32 variant and cutaneous leishmaniasis (168).

The CCR5D32 wild-type genotype in association with AA or
AG genotypes (from the CCR5 rs1799987 polymorphism, an
intron A/G SNP) was associated with increased risk of ocular
toxoplasmosis, potentially due to the persistent CCR5-mediated
inflammation in individuals with normal CCR5 expression
(169). Also evaluating Brazilians, Vallochi et al. (170) found no
association between the CCR5D32 and ocular toxoplasmosis
(based on a brief description; detailed data not described by
such authors) (170). No other studies evaluating the role of this
variant in the context of ocular toxoplasmosis in non-Brazilian
populations were found.

Based on the studies discussed above, apart from the
protective effect of CCR5D32 on HIV infection, the impacts of
CCR5D32 on viral and parasitic infections in Brazilian
populations seem quite limited (details of each study are
presented in Table 1 and Table 2). However, considering the
recognized role of CCR5 in the regulation of inflammation, it is
possible that potential influences of CCR5D32 on non-HIV
infections have not been detected due to the small number of
studies carried out in Brazil on these topics, many of them
involving a small sample size.

Finally, the impact of the CCR5D32 on fungal infections is
unknown in Brazilian populations and quite sparse in other
human populations, and therefore research in this field is needed.
Of note, Brazil is affected by several endemic mycoses, such as
Dermatophytosis, Paracoccidioidomycosis, Histoplasmosis, and
Cryptococcosis, among others (171). Understanding whether
and how the CCR5D32 influences the susceptibility or clinical
progression of these diseases can provide insights into the
potential use of CCR5-based therapies for these diseases.
CCR5D32 IN INFLAMMATORY
CONDITIONS

Considering the critical role of CCR5 in the regulation of the
inflammatory response, several authors have been investigating
Frontiers in Immunology | www.frontiersin.org 9
the effect ofCCR5D32onconditions that have their susceptibility or
clinical course affected by different types (e.g., systemic, local) and
intensity of inflammation. In this topic, we review the role of
CCR5D32 on the following inflammatory diseases or
inflammation-related clinical conditions: multiple sclerosis,
systemic lupus erythematosus, preeclampsia, rheumatoid
arthritis, juvenile idiopathic arthritis, periodontitis, osteomyelitis,
transplant rejection, and sickle cell disease. Details of each study are
described in Table 3 and discussed below.

Multiple sclerosis is an autoimmune, chronic, and
inflammatory disease showing heterogeneity in clinical
findings. Chemokines and chemokine receptors are molecules
involved in the pathogenesis of multiple sclerosis (172, 194), and
the CCR5D32 can influence different aspects of this disease, as
shown in studies with non-Brazilian individuals (195–197). A
meta-analysis carried out in 2014 evaluated the role of this
variant in multiple sclerosis in different populations, and
concluded that the CCR5D32 is not associated with
susceptibility to the development of multiple sclerosis in
Europeans, calling attention to the need for further studies
involving other populations (198). In Australian individuals,
this variant also did not show a protective role to multiple
sclerosis (199). However, other studies have shown an
association of the D32 allele with treatment response, disease
severity, and susceptibility to multiple sclerosis (196, 200–202).
In Brazil, only two papers explored the possible impact of the
CCR5D32 on multiple sclerosis. Based on magnetic resonance
imaging, Kaimen-Maciel et al. (172) observed a decreased disease
progression in patients bearing the CCR5D32 allele (172).
Subsequently, Troncoso et al. (173) described a statistically
significant higher CCR5D32 allele frequency in Euro-Brazilian
controls (7.4%) compared to Euro-Brazilian patients (3.3%),
suggesting a protective role of the variant on the development
of multiple sclerosis. Besides, the frequency of the CCR5D32 was
higher in Euro-Brazilian patients with progressive multiple
sclerosis than Euro-Brazilian patients with relapse remitting
multiple sclerosis (173). Both studies carried out in Brazil show
that the CCR5D32 variant can influence both the susceptibility
and the clinical outcome of multiple sclerosis.

Systemic lupus erythematosus is a chronic inflammatory
autoimmune disease characterized by the large production of
autoantibodies, triggering generalized tissue damage. This
disease has different clinical manifestations and a complex
genetic influence, and chemokines and their receptors, such as
CCR5, are implicated in the pathogenesis of lupus (96, 185, 203,
204). The CCR5D32 variant has already been studied in this
context, being previously associated to protection against lupus
development and, albeit in a contradictory manner, this
polymorphism was also associated to susceptibility to nephritis
in lupus patients (203, 204). In Brazil, two studies evaluated the
CCR5D32 variant in lupus.

Schauren et al. (185) investigated the role of the CCR5D32 in
healthy patients and controls of Rio Grande do Sul State (185). A
lower frequency of the CCR5D32 allele was found in Euro-
Brazilian patients (2.7%) compared to Euro-Brazilian controls
(7.5%), suggesting a protective role of the variant against the
development of systemic lupus erythematosus. However, in the
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same study, patients with the CCR5D32 allele had a greater
predisposition to the development of class IV nephritis than
patients without the allele, which suggests a more severe clinical
outcome associated with the genetic variant (185).

Baltus et al. (96) evaluated the frequencies of the CCR5D32 in
patients and controls in the Paraná State, also southern Brazil.
Unlike the first study, the frequency of the CCR5D32 allele was
statistically higher in patients (6.8%) than in controls (1.9%),
suggesting the variant as a risk factor for systemic lupus
Frontiers in Immunology | www.frontiersin.org 10
erythematosus. Also, by stratifying the sample according to
ethnicity, the researchers identified that Euro-Brazilian
individuals carrying the CCR5D32 were more likely to develop
systemic lupus erythematosus than Afro-Brazilian patients
carrying the variant. In another analysis of the study,
CCR5D32 carriers had a lower age of systemic lupus
erythematosus onset and higher levels of anti-dsDNA
antibodies. Thus, the CCR5D32 allele was associated with
increased susceptibility to the development of systemic lupus
TABLE 2 | Impacts of the CCR5D32 on infectious diseases.

Disease/
Infection

Population
(Brazilian state)

Sample Main findings Reference

HTLV-I infection Individuals from
Minas Gerais State,
Brazil

229 blood donors (50 HTLV-I seronegative individuals; 179
HTLV-I-infected individuals)

No statistically significant association was
observed concerning CCR5D32 and HTLV-I
infection

Pereira
et al. (143)

Cutaneous
leishmaniasis
(Leishmania
infection)

Individuals from
Paraná State, Brazil

100 individuals with cutaneous leishmaniasis and 100 healthy
controls

No statistical significant difference regarding
CCR5D32 frequency between the two groups

Brajão de
Oliveira

et al. (166)

Cutaneous
leishmaniasis
(Leishmania
infection)

Individuals from
Paraná State, Brazil

111 individuals with cutaneous leishmaniasis and 218 controls No statistically significant difference of the
CCR5D32 frequency was observed between
cases and controls

Ribas et al.
(167)

Dengue virus
infection

Individuals from Rio
de Janeiro State,
Brazil

87 severe children cases of Dengue and 326 controls No statistical significant difference regarding
CCR5D32 frequency between the two groups

Xavier-
Carvalho
et al. (145)

Chagas disease
(Trypanosoma
cruzi infection)

Individuals from
São Paulo State,
Brazil

85 Chagas disease patients with normal left ventricular systolic
function; 43 Chagas disease patients with mild to moderate left
ventricular systolic dysfunction; 40 Chagas disease patients
with severe left ventricular systolic dysfunction

No statistical significant association between
CCR5D32 and Chagas disease-related left
ventricular systolic dysfunction

Oliveira
et al. (162)

Chagas disease
(Trypanosoma
cruzi infection)

Individuals from
São Paulo State,
Brazil

109 patients with digestive form of Chagas disease; 131
patients with cardiac form of Chagas disease; 172 controls

No statistical significant influence of the
CCR5D32 on digestive or cardiac form of
Chagas disease, including left ventricular systolic
dysfunction

Oliveira
et al. (163)

Influenza A
infection (2009
pandemic
H1N1)

Individuals from
northern and
northeastern
regions of Brazil

174 non-hospitalized Influenza-infected individuals and 156
hospitalized Influenza-infected individuals

No statistical significant impact of the CCR5D32
on infection severity

Maestri
et al. (147)

HPV infection Individuals from
Pernambuco State,
Brazil

139 HPV-infected women with cervical lesions and 151 HPV-
infected women without cervical lesions

No statistical significant influence of the
CCR5D32 on HPV-related cervical lesions or
infection by specific HPV genotype

Santos
et al. (159)

HCV infection,
HCV/HIV co-
infection and
HCV-related
hepatic
diseases

Individuals from Rio
Grande do Sul
State, Brazil

674 HCV-infected individuals (stratified between 124 individuals
without hepatic manifestation, 268 individuals with fibrosis, 190
individuals with cirrhosis and 92 individuals with
hepatocarcinoma); 104 HCV/HIV co-infected individuals; 300
HIV-infected individuals; 274 controls

No statistical significant influence of the
CCR5D32 on susceptibility to HCV infection,
HCV/HIV co-infection or HCV-related hepatic
manifestations

Ellwanger
et al. (151)

Ocular
toxoplasmosis
(Toxoplasma
gondii infection)

Individuals from
São Paulo State,
Brazil

160 individuals with ocular toxoplasmosis; 160 individuals with
non-ocular toxoplasmosis; 160 controls

In association with AA or AG genotypes (from
CCR5 59029 A/G SNP - rs1799987), the
CCR5D32 wild-type genotype was associated
with increased risk of ocular toxoplasmosis
(based on multivariate logistic regression analysis)

Faria
Junior

et al. (169)

HPV infection Individuals from
Paraná State, Brazil

164 HPV-infected women and 185 control women No statistically significant influence of the
CCR5D32 on susceptibility to HPV infection or
cervical lesions associated with HPV infection

Mangieri
et al. (158)

Influenza A
infection (2009
pandemic
H1N1)

Individuals from
South, Southeast
and Northeast
Brazilian regions
(nine states in total)

153 individuals with influenza like illness; 173 individuals with
severe acute respiratory infection; 106 fatal influenza-infection
cases

No significant effect of the CCR5D32 on severity
of Influenza virus infection or Influenza-linked
mortality

Matos
et al. (148)

HBV infection
and HBV/HIV
co-infection

Individuals from Rio
Grande do Sul
State, Brazil

335 HBV-infected individuals; 144 HBV/HIV co-infected
individuals; 300 HIV-infected individuals; 334 controls

No significant effect of the CCR5D32 on
susceptibility to HBV mono-infection; CCR5D32
was a protective factor on HBV/HIV co-infection

Ellwanger
et al. (92)
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TABLE 3 | Impacts of the CCR5D32 on inflammatory conditions.

Disease/
Condition

Population
(Brazilian
State)

Sample Main findings Reference

Cases Controls

Multiple
sclerosis (MS)

Paraná State 124 MS
patients

127 healthy
individuals

There was no statistically significant difference regarding the CCR5D32 allele between
patients and controls, and no association was also found regarding clinical course and
CCR5 variants; A decreased disease progression was observed in patients bearing the
CCR5D32 allele, with carrier presenting lower Expanded Disability Status Scale (EDSS)
values

Kaimen-
Maciel et al.

(172)

São Paulo
State and
Rio Grande
do Sul State

261 MS
patients

435 healthy
individuals

Considering only Euro-Brazilians, the CCR5D32 allele frequency was significantly higher in
healthy individuals than in MS patients (p=0.013). Also, there was a higher frequency of
D32 homozygous and heterozygous individuals in controls than in patients (p=0.033)

Troncoso
et al. (173)

Juvenile
idiopathic
arthritis (JIA)

Rio Grande
do Sul State

101 JIA
patients and
203
rheumatoid
arthritis
patients

104 healthy
individuals

The frequency of the CCR5D32 variant was significantly higher (p=0.028) in JIA patients
(0.094) than in controls (0.038)

Scheibel
et al. (174)

Osteomyelitis Ceará State 39 bone
trauma with
osteomyelitis
cases

114 bone
trauma
without
osteomyelitis
cases

The frequency of the CC5D32 variant did not vary significantly, but patients with type I or
type II fractures that carried the allele did not develop the disease

Souza et al.
(175)

Periodontitis São Paulo
State

197 chronic
periodontitis
cases and 91
aggressive
periodontitis
cases

218 healthy
individuals
and 193
chronic
gingivitis
cases

The frequency of the CCR5D32 variant was significantly higher in patients with chronic
gingivitis (0.11) than in chronic (0.058) (p=0.01) or aggressive periodontitis (0.055)
(p=0.03)

Cavalla
et al. (176)

Preeclampsia Rio Grande
do Sul State
and Rio de
Janeiro State

155
preeclampsia
pregnancies

144 healthy
pregnancies

The frequency of the CCR5D32 variant was significantly higher (p=0.047) in healthy
women (0.14) than in pre-eclamptic women (0.07)

Telini et al.
(177)

Minas Gerais
State

156
preeclampsia
pregnancies

213 healthy
pregnancies

The frequency of the CCR5D32 variant was significantly higher (p=0.047) in healthy
women (0.045) than in pre-eclamptic women (0.016)

Kaminski
et al. (178)

Rheumatoid
arthritis (RA)

Rio Grande
do Sul State

92 RA
patients

160 healthy
individuals

The frequency of the CCR5D32 variant did not vary significantly between the groups Kohem
et al. (179)

Pará State 186 RA
patients

206 healthy
individuals

The frequency of the CCR5D32 variant was significantly higher in healthy individuals
(0.075) than in RA patients (0.040) (p=0.016)

Toson et al.
(180)

Rio Grande
do Sul State

361 RA
patients

233 healthy
individuals

The frequency of the CCR5D32 variant was significantly higher in healthy individuals
(0.034) than in RA patients (0.011) (p=0.022)

Pernambuco
State

104 AR
patients

154 healthy
individuals

The frequency of the CCR5D32 variant did not vary significantly between groups

São Paulo
State

89 AR
patients

83 healthy
individuals

The frequency of the CCR5D32 variant did not vary significantly between groups

Sickle cell
disease (SCD)

Rio Grande
do Sul State
and
Pernambuco
State

79 SCD
patients

112 healthy
afro-Brazilian
individuals
and 102
healthy euro-
Brazilian
individuals

The comparison of the CCR5D32 frequency between afro-Brazilian healthy individuals
(0.013) and SCD patients (0.051) was of borderline significance (p=0.05)

Chies and
Hutz (181)

Rio Grande
do Sul State

73 SCD
patients

58 healthy
individuals

The frequency of the CCR5D32 variant did not vary significantly between groups Vargas et al.
(182)

Pernambuco
State

483 pediatric
SCD patients
and 312 adult
SCD patients

247 healthy
individuals

The frequency of the CCR5D32 variant did not vary significantly between the groups Lopes et al.
(183)

Bahia State 20 SCD
patients

– The CCR5D32 variant was not found in any patient evaluated Nascimento
et al. (184)

Systemic lupus
erythematosus
(SLE)

Rio Grande
do Sul State

280 euro-
Brazilian SLE
patients and

235 euro-
Brazilian
healthy

The frequency of the CCR5D32 variant was significantly higher in healthy euro-Brazilian
controls (0.075) than in euro-Brazilian SLE patients (0.027) (p=0.002); Patients carrying
the CCR5D32 variant were predisposed to the development of class IV nephritis (p=7E-6)

Schauren
et al. (185)
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erythematosus and severity in clinical outcomes (96). Studies
performed in different populations have found no association
between the variant and the development of systemic lupus
erythematosus (205–208). Such divergence involving the results
mentioned above deserves attention and, therefore, more studies
in other populations are required.

Preeclampsia is a hypertensive gestational complication and
an important cause of maternal-fetal mortality in Brazil. Relevant
clinical findings of the disease, such as edema and proteinuria
after the 20th week of pregnancy, are intricate with an excessive
inflammatory process and endothelial dysfunction. In
preeclampsia, increased systemic production of pro-
inflammatory chemokines was observed, highlighting the role
of the chemokine-ligand system in this condition (177, 178, 209).
Two studies evaluating the CCR5D32 variant in preeclampsia
were carried out in Brazil, both published by our group, but
evaluating samples from different Brazilian regions. Firstly,
Telini et al. (177) evaluated the frequency of the CCR5D32 in
Brazilian women who developed preeclampsia and women who
did not develop this condition during their pregnancies. The
group of healthy women had a higher frequency of the CCR5D32
allele (14%) when compared to the group of women who
developed preeclampsia (7%). The analysis revealed a
protective role of the variant on preeclampsia development
(177). More recently, Kaminski et al. (178) also investigated
the role of CCR5D32 in women who developed preeclampsia and
in women with healthy pregnancies (178). In accordance with
the results of Telini et al. (177), healthy pregnant women also
showed an increased CCR5D32 allele frequency (4.5%) compared
to the group of pregnant women with preeclampsia (1.6%). Thus,
the study corroborated the protective role of the CCR5D32
variant on preeclampsia development, endorsing the
hypothesis that a reduced inflammatory millieu may contribute
to a lower risk of developing preeclampsia (177, 178). A study
conducted in a Turkish population found similar results,
strengthening the conclusion here presented (210).
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Rheumatoid arthritis is a systemic autoimmune disease
characterized by progressive damage to the joints caused by
chronic inflammation in the synovial fluid. Given the intense
migration of immune cells to the inflammation sites, the role of
CCR5 in rheumatoid arthritis appears to be of great importance
(179, 180). In Brazil, two studies investigating the role of the
CCR5D32 variant in rheumatoid arthritis were published.
Kohem et al. (179) evaluated the frequency of the allele in
healthy patients and controls from the Rio Grande do Sul
State, and no statistically significant difference was found
between the groups. Of note, the sample group was relatively
small, with 92 patients and 160 healthy controls (179). Toson
et al. (180) performed a similar study but evaluating the
frequency of the CCR5D32 variant in different Brazilian
populations, considering four different regions (south,
southeast, northeast, and north). Two of the four sample
groups, from southern and northern regions, showed a
statistically significant difference between rheumatoid arthritis
patients and healthy controls (4% vs. 7.5%; 1.1% vs. 3.4%,
respectively), being precisely the groups with the largest sample
sizes. The difference concerning the northeast region sample was
not statistically significant but followed a similar trend to the
groups in southern and northern. Only the southeastern sample
deviated from the trend, with the small sample size possibly
being the reason for the lack of statistical association. In sum, the
study suggests a protective role for the CCR5D32 variant against
the development of rheumatoid arthritis (180). A meta-analysis
carried out in 2012 concluded that the variant may play a role in
protection to rheumatoid arthritis in European populations,
corroborating the data found in Brazil (211).

Juvenile idiopathic arthritis is a chronic inflammatory
condition characterized in the synovial joints of young people
up to 16 years of age (174, 212). Scheibel et al. (174) investigated
the potential association of the CCR5D32 variant with juvenile
idiopathic arthritis subtypes in a sample from Porto Alegre,
southern Brazil. A statistically significant difference was found
TABLE 3 | Continued

Disease/
Condition

Population
(Brazilian
State)

Sample Main findings Reference

Cases Controls

87 afro-
Brazilian
patients

individuals
and 200
afro-Brazilian
healthy
individuals

Paraná State 169 SLE
female
patients

132 female
healthy
controls

The frequency of the CCR5D32 variant was significantly higher in patients (0.068) than in
healthy controls (0.019) (p=0.0047). Euro-Brazilian individuals carrying the allele had a
higher predisposition to the development of SLE than in afro-Brazilian individuals carrying
the same variant (p=0.0286). Patients with heterozygous genotype presented a lower age
of SLE onset and higher levels of anti-dsDNA antibodies when compared to individuals
homozygous for the wild type allele (p=0.0293 and p=0.0255, respectively).

Baltus et al.
(96)

Transplant
rejection

Paraná State 86 kidney
transplant
patients with
rejection
episodes

160 kidney
transplant
patients
without
rejection
episodes

No statistically significant difference was found in the CCR5D32 frequency between the
groups (8.3% for individuals with rejection episodes; 6.3% for transplant recipients
without rejection)

Cilião et al.
(186)
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between patients (9.4%) and healthy controls (3.8%), especially
considering the group of patients of the systemic juvenile idiopathic
arthritis subtype (25%). The researchers conclude that the
CCR5D32 variant, although not a risk factor for the development
of juvenile idiopathic arthritis, contributes to the progression and
clinical status of patients (174). Interestingly, the meta-analysis
previously mentioned (211) also explored the role of the D32 allele
in juvenile idiopathic arthritis, and concluded that the variant was a
protective factor for this condition as well (211). A further study
comprising children from different populations found an
association between the heterozygous genotype and mild disease
course, but no influence on susceptibility to disease development
(213).That said, these controversial results evidence the importance
of novel studies investigating the CCR5D32 variant in juvenile
idiopathic arthritis.

Periodontitis is an oral disease characterized by a chronic
infection accompanied by inflammatory processes, causing
irreversible and progressive destruction of dental support
structures. The CCR5-mediated immune responses affect
multiple aspects of periodontitis. For instance, not only CCR5
and its ligands are important in the context of disease protection,
but also influence periodontal destruction and bone resorption
(176, 214–217). Cavalla et al. (176) investigated the CCR5D32
variant and its possible influence on periodontitis development.
The CCR5D32 allele was significantly more frequent in
individuals classified in the group of chronic gingivitis (11.1%)
than in individuals with chronic periodontal disease (5.8%) or
aggressive periodontal disease (5.5%). This result suggests a
protective role of the variant concerning periodontitis (176).
Other studies carried out in Taiwan and Germany found no
association between the variant and periodontitis (218, 219).
Considering the conflicting results, it is interesting to carry out
further studies in other populations to better understand the role
of CCR5 in the development of periodontitis.

Osteomyelitis is an infectious-inflammatory condition that
can occur after bone trauma often following Staphylococcus
aureus infection (175, 220). Souza et al. (175) evaluated the
CCR5D32 frequency in patients who were admitted to a hospital
in Fortaleza, northeastern Brazil, with bone trauma. The patients
were prospectively studied to assess a possible development of
osteomyelitis. There was no statistically significant difference
between individuals who developed and those who did not
develop the disease, but all patients with closed fractures (type
I or type II) and who carried the CCR5D32 variant did not
developed the condition. The researchers conclude that the lack
of statistical significance observed in their study was probably
due to the low sample size (175). No other studies regarding the
potential role of the CCR5D32 in osteomyelitis were found in
the literature.

The immune response and inflammatory processes that occur
after an organ transplant are critical in the process of tissue
rejection. Genetic variants related to the immune system can
therefore influence the response to transplantation (186, 221–
223). Studies carried out in non-Brazilian populations observed
no association between the CCR5D32 allele and kidney
transplant rejection (224–228). A study in a multicentric
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sample from Europe showed a higher survival rate after kidney
transplantation in individuals with the CCR5D32 homozygous
genotype (222). In Brazil, Cilião et al. (186) evaluated the
CCR5D32 frequency in transplanted individuals who had
episodes of rejection comparing to individuals who did not
have such episodes. A sample of 246 patients was collected in a
referral hospital in Londrina, Paraná State. However, the
frequency of the CCR5D32 variant did not vary significantly
between the groups (186).

Sickle cell disease is an inherited disorder caused by a single
nucleotide substitution in the beta-globin gene. This mutation
originated in Africa and is, therefore, more common in African
populations and Afro-descendants. Sickle cell disease can be
understood as a chronic inflammatory condition, which may be
the cause of associated secondary complications. In this sense,
high levels of inflammation in sickle cell disease patients are
related to disease morbidity (181–184). A study in a population
from Egypt found no association between the variant and sickle
cell disease (229). In Brazil, four studies investigated the influence
of the CCR5D32 variant in sickle cell disease, all detailed below.

Chies andHutz (181) assessed thepotential roleof theCCR5D32
in severe and recurrent infections that could contribute to
differentiated survival of sickle cell anemia patients. The study
involved individuals from different ethnic groups and the
frequencies of the CCR5D32 allele found were 4.4% in Euro-
Brazilian controls, 1.3% in Afro-Brazilian controls, and 5.1% in
sickle cell anemia patients. When comparing these frequencies
between the different groups, no statistically significant difference
was found. However, it is important to note that, considering the
same ethnic background of the groups of patients and Afro-
Brazilian controls, a difference in the allele frequency was
evidenced, being the CCR5D32 allele three times more present in
the group of sickle cell anemia patients. Given the low frequency of
the allele in the sample of Afro-Brazilian controls, a 3-fold increase
in the group of patients is quite important. The researchers
suggested that the CCR5D32 allele was more frequent in the
group of patients for conferring some advantages concerning the
clinical course of the disease (181). As mentioned previously, sickle
cell anemia can be considered a chronic inflammatory disease (93),
and patients with the CCR5D32 allele would benefit from
developing inflammatory responses at low levels. According to
this hypothesis, the CCR5D32 allele was associated with an
improvement in the general health status of the patients (93, 181).

Subsequently, Vargas et al. (182) evaluated CCR5D32 in sickle
cell anemia patients from Porto Alegre, Rio Grande do Sul State. No
statistically significant difference was observed in the study but,
interestingly, the CCR5D32 allele was present only in the group of
patients with a severe clinical course (when the pain rate was
considered). Such data may indicate a trend towards the
development of a severe clinical course associated with the
CCR5D32 allele in sickle cell anemia patients (182). Lopes et al.
(183) compared the CCR5D32 frequencies of two groups of patients
(pediatric and adult) and between sick adults and healthy controls
from Pernambuco, northeastern Brazil. There were no statistically
significant differences in any of the comparisons made in the study
(183). Finally, Nascimento et al. (184) evaluated the CCR5D32
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frequency in sickle cell anemia patients from Bahia State. However,
the CCR5D32 allele was not found in the study (184).
CCR5D32 IN CANCER

Chemokines and chemokine receptors have fundamental
participation in both antitumor response and pathogenesis of
cancer. The migration of regulatory immune cells to tumor sites
can create an immunosuppressor environment proper for cancer
development.Also, cancer cells can subvert the anti-tumor actionof
chemokine-ligand interactions (187–191). Of note, CD4+ T cells
are importantmodulators of the immune response, acting asdrivers
for the actionof effector cells. SomeCD4+ regulatoryT cells express
theCCR5molecule, being this a key receptor of the cellular response
against tumor development. The presence of the CCR5D32 variant
can impair the action of CCR5+/CD4+ T cells, influencing the risk
of cancer development. In brief, chemokine receptors can assume
multiple roles in different tumoral processes, and more
investigation is needed to unravel the connections between CCR5
and cancer (101, 192). Two meta-analyses published in 2014
evaluated the possible role of the D32 allele in cancer. Ying et al.
(230) foundno association of the variantwith risk of tumorigenesis,
while Lee et al. (205) found an association of the allele with
susceptibility to cancer in Indians, specifically concerning breast
cancer (205, 230). Further studies found associations of the
CCR5D32 variant with improved metastasis-free survival in
breast cancer patients and, contradictorily, also with an increased
risk for developing breast cancer (231–233). In Brazil, the possible
role of theCCR5D32 variant in cancer has been addressed (Table 4)
and the available data will be presented below.
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The action of CD8+ cytotoxic T cells is important in the
antitumor immune response. The use of immunomodulators in
antitumor treatment is increasingly common, with carboxymethyl-
glucan (CM-G) being one of the best-described immunostimulators
(192, 234). Magnani et al. (192) evaluated the CD3+, CD4+ and
CD8+ cell populations of patients with advanced prostate cancer
and compared this data with the CCR5 genotype, associating it
with the administration of oral CM-G for 28 days. The CCR5D32
variant was found only in a heterozygous genotype, in six patients,
at an allelic frequency of 10%. Five patients reported a family
history of prostate cancer, two of whom had affected first-degree
relatives. Both patients carried the CCR5D32 allele. In general,
CCR5D32 non-carriers had higher counts on CD3+ and CD4+
cells when comparing respectively after and before treatment with
CM-G, as well as higher counts of CD8+ cells when comparing to
CCR5D32 carriers only after treatment with CM-G. In addition,
the average CD4+/CD8+ cell ratio showed a worsened antitumor
response after treatment in CCR5D32 allele carriers (192).
Zambra et al. (193) also evaluated the CCR5D32 frequency in
Brazilian prostate cancer patients, comparing to individuals
affected by benign prostatic hyperplasia and healthy subjects.
No association was found considering the variant and risk to both
conditions, nor with clinical outcomes (193).

Aoki et al. (188) assessed the CCR5D32 frequency in
individuals with breast cancer and healthy women. However, no
significant difference was observed between groups. The impact of
p53 genotypes, a known tumor suppressor gene, together with the
CCR5D32 genotypes, was also evaluated revealing a higher
frequency of individuals with the p53 Arg homozygous
genotype and the CCR5D32 wild-type genotype amongst
controls as compared to patients (188). Banin-Hirata et al. (189)
TABLE 4 | Impacts of the CCR5D32 on cancer.

Cancer type Population
(Brazilian
state)

Sample Main findings Reference

Acute
lymphoblastic
leukemia (ALL)

Paraná State 79 ALL patients and 80 healthy controls No statistically significant differences regarding CCR5D32
between ALL patients and controls

Oliveira
et al. (187)

Breast cancer
(BC)

Paraná State 72 BC patients and 90 healthy women The allelic frequency estimated in patients was of 3.47%
and 7.78% in healthy women; However, no statistically
significant difference was found between these groups

Aoki et al.
(188)

Breast cancer
(BC)

Paraná State 118 BC patients and 180 healthy women No statistically significant differences between groups
regarding susceptibility, clinical outcome, or treatment
response.

Banin-
Hirata et al.

(189)
Breast cancer
(BC)

Paraná State 94 samples from 47 BC patients (47 tumoral tissues and
47 adjacent tissues)

No impact of CCR5D32 on CCL5 levels considering tumoral
or normal tissues

Derossi
et al. (190)

Cervical
intraepithelial
neoplasia (CIN)

Pernambuco
State

290 HPV+ women (151 without cervical lesions and 139
with cervical lesions, divided in 12 women with cervical
cancer (CC), 40 women with CIN I and 87 with CIN II or III)

No statistically significant differences regarding CCR5D32
between CIN or CC patients and HPV+ women without
lesions

Santos
et al. (159)

Neuroblastoma
(NB)

Paraná State 28 tissue samples from NB patients and 80 cancer-free
children

CCR5D32 was more frequent in the group of NB patients
than in healthy controls (p<0.05)

Vieira-Filho
et al. (191)

Prostate cancer
(PCa)

Paraná State 30 advanced PCa patients Significant increase in CD3+ and CD4+ cells was observed
in CCR5D32 non-carriers; The average CD4+/CD8+ cell
ratio decreased in CCR5D32 non-carriers after treatment

Magnani
et al. (192)

Prostate cancer
(PCa)

Rio Grande
do Sul State

119 healthy individuals, 136 PCa patients and 130 benign
prostatic hyperplasia (BPH)

CCR5D32 allele was not statistically associated with risk of
developing BPH or PCa or clinical outcomes of both
conditions

Zambra
et al. (193)
December 2021 | Volume 12 | Art
icle 758358

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kulmann-Leal et al. CCR5D32 in Brazil
also evaluated whether the CCR5D32 variant was associated with
susceptibility, response to treatment, and clinical course of breast
cancer. No association was found between CCR5D32 and the
features analyzed (189). In accordance, Derossi et al. (190) did not
found an association between the CCR5D32 and CCL5 levels in
breast cancer (190).

HPV infection is the main cause of cervical cancer. However,
factors other than HPV infection, including genetic, immune,
and environmental factors, also affect tumorigenesis (159, 235,
236). In this context, Santos et al. (159) evaluated the CCR5D32
frequency in HPV+ women with and without cervical neoplastic
lesions. No association was found between the variant and the
presence of cancer or lesions severity (159).

In addition to the multiple roles of CCR5 in tumorigenesis and
antitumor response, this molecule is also an important modulator of
neuroinflammation (237–239), potentially affecting the development
of brain-related diseases. In this sense, Vieira-Filho et al. (191)
found an association between the presence of the CCR5D32 allele
and susceptibility to neuroblastoma (191). Lastly, Oliveira et al.
(187) investigated the role of the CCR5D32 variant in acute
lymphoblastic leukemia, but no association was found between
the variant and the disease development (187). In conclusion, the
CCR5 has varied influences in different types of cancer.
IMPACTS OF CCR5D32 ON A HIGHLY
ADMIXED POPULATION – A CRITICAL
LOOK

At a population level, the effects of CCR5D32 on European
populations may be different than those potentially observed in
highly admixed populations. However, the population-specific
effects of CCR5D32 are not only due to its frequency, but also
due to its interaction with different alleles. There are nine widely
known CCR5 haplotypes, which are formed by combinations of
eight CCR5 polymorphisms (including CCR5D32) and one
polymorphism located in the CCR2 gene (40, 70). The impact of
the CCR5 haplotypes on HIV disease progression differs between
African Americans and Caucasians since the effects of the
CCR5D32 can be modulated by other alleles heterogeneously
distributed among the populations (240). In a broader
perspective, this information indicates that the effect of the
CCR5D32 observed in Europeans (or other non-Brazilian
populations) may be modified by further genetic traits circulating
in Brazilians, which may also vary in different regions of the
country. In fact, the detection of the real effect of CCR5D32 on
different health and disease conditions in the Brazilian population
is not a simple task. Of note, gene-disease association studies
performed with admixed populations can be difficult due to
differential linkage disequilibrium patterns (241).

Pharmacogenomic approaches, including the use of CCR5
modulators based on the CCR5D32 genotyping, must be
considered at an individual level, especially in highly admixed
populations, where the frequency of polymorphisms may be
quite different from those observed in populations with greater
genetic homogeneity (7). The CCR5D32 genotyping could be
Frontiers in Immunology | www.frontiersin.org 15
considered in pharmacological treatments involving CCR5
blockade in the context of inflammatory diseases or types of
cancer. The use of CCR5 modulators in individuals with the
CCR5D32 genotype probably has a limited effect due to the
natural absence of CCR5 expression on the cell surface. Although
the number of individuals with this genotype is exceptionally low
in an admixed population such as the Brazilian population, the
cost-benefit of this strategy must be considered on a case-by-case
basis. Despite the limitations, the area of pharmacogenomics
involving CCR5D32 genotyping is expected to progress in the
next years, especially considering the increasing use of CCR5
modulators to treat other diseases not associated with HIV
infection. Some important advances have already been made.
For instance, the CCR5D32 genotyping can help clinicians to
predict the progression of human enteroviral cardiomyopathy,
also helping the decision making concerning the early use of
antiviral interferon-b therapy in such condition (242).
CONCLUSIONS

The CCR5D32 allele frequency is quite variable in Brazil, being
extremely low in some regions (e.g., 0.6% in Rondônia), but high
in others (e.g., up to 9.3% in Paraná and 7.4% in Rio Grande do
Sul). In Native American populations, the allele is absent or
occurs at low frequencies. In Brazil, CCR5D32 is not uncommon
in non-Caucasian populations, because of the miscegenation that
has occurred in the country.

Many studies corroborated the protective effect of the
CCR5D32 on susceptibility or clinical aspects of HIV infection
in the Brazilian population. On the other hand, there is no
evidence pointing to a relevant role for CCR5D32 on Cutaneous
leishmaniasis, Chagas disease, HTLV-1, Dengue virus, Influenza
A, HPV, HBV and HCV infections, or HCV-HIV co-infection in
Brazilians. Limited evidence indicates a potential involvement of
CCR5D32 wild-type genotype in ocular toxoplasmosis and a
protective effect of the variant on HBV/HIV co-infection.

Considering inflammatory conditions, the CCR5D32 can
influence both the susceptibility and the clinical outcome of
multiple sclerosis. Of note, CCR5D32 reduces the risk of
preeclampsia and periodontitis development, potentially due to
the CCR5D32-associated reduced inflammation. Moreover,
CCR5D32 can reduce the risk of rheumatoid arthritis, but
contributes to the progression and clinical status of juvenile
idiopathic arthritis patients. CCR5D32 can also influence sickle
cell anemia-related immune conditions. However, the impact of
CCR5D32 on systemic lupus erythematosus is controversial.
Concerning tumoral development, the CCR5D32 has varying
influences on the development of different types of cancer,
including prostate cancer and breast cancer. It is not possible
to generalize the impact of the variant on cancer development,
especially in the Brazilian population.

Understanding the real impact of the CCR5D32 variant in
different conditions is essential to indicate in which diseases the
use of CCR5 modulators may be relevant. This knowledge is
fundamental for the advancement of CCR5-based therapies,
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especially in populations with a complex genetic structure.
Finally, CCR5D32 influences should be assessed within the
context of each population, since genetic admixture and
interactions with other alleles may alter the expected
phenotypic effects attributed to CCR5D32.
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108. Mickienė A, Pakalnienė J, Nordgren J, Carlsson B, Hagbom M, Svensson L,
et al. Polymorphisms in Chemokine Receptor 5 and Toll-Like Receptor 3
Genes are Risk Factors for Clinical Tick-Borne Encephalitis in the
Lithuanian Population. PloS One (2014) 9:e106798. doi: 10.1371/
journal.pone.0106798

109. Ellwanger JH, Chies JAB. Host Immunogenetics in Tick-Borne Encephalitis
Virus Infection-The CCR5 Crossroad. Ticks Tick Borne Dis (2019) 10:729–
41. doi: 10.1016/j.ttbdis.2019.03.005

110. Hünemeier T, Neves AG, Nornberg I, Hill K, Hurtado AM, Carnese FR, et al.
T-Cell and Chemokine Receptor Variation in South Amerindian
Populations. Am J Hum Biol (2005) 17:515–8. doi: 10.1002/ajhb.20407

111. Ferreira-Fernandes H, Santos ACC, Motta FJN, Canalle R, Yoshioka FKN,
Burbano RR, et al. Prevalence of CCR5-D32 and CCR2-V64I Polymorphisms
in a Mixed Population From Northeastern Brazil. Genet Mol Res (2015)
14:11710–8. doi: 10.4238/2015.October.2.4

112. Leboute AP, de Carvalho MW, Simões AL. Absence of the Deltaccr5
Mutation in Indigenous Populations of the Brazilian Amazon. Hum Genet
(1999) 105:442–3. doi: 10.1007/s004390051128

113. Carvalhaes FA de PL, Cardoso GL, Hamoy IG, Liu YT, Guerreiro JF.
Distribution of CCR5-[Delta]32, CCR2-64I, and SDF1-3’a Mutations in
Populations From the Brazilian Amazon Region. Hum Biol (2004) 76:643–
6. doi: 10.1353/hub.2004.0052

114. Nguyen NZN, Tran VG, Lee S, Kim M, Kang SW, Kim J, et al. CCR5-
Mediated Recruitment of NK Cells to the Kidney Is a Critical Step for Host
Defense to Systemic Candida Albicans Infection. Immune Netw (2020) 20:
e49. doi: 10.4110/in.2020.20.e49

115. Souza ALS, Souza PRS, Pereira CA, Fernandes A, Guabiraba R, Russo RC,
et al. Experimental Infection With Schistosoma Mansoni in CCR5-Deficient
Mice is Associated With Increased Disease Severity, as CCR5 Plays a Role in
Controlling Granulomatous Inflammation. Infect Immun (2011) 79:1741–9.
doi: 10.1128/IAI.00502-10
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Serodiscordant Couples in Florianópolis, Southern Brazil. AIDS Res Hum
Retroviruses (2015) 31:1116–25. doi: 10.1089/aid.2015.0168

131. Corado A de LG, da Silva GAV, Leão RAC, Granja F, Naveca FG. Frequency
of CCR5 Genotypes in HIV-Infected Patients in Roraima, Brazil. Braz J Infect
Dis (2016) 20:314–5. doi: 10.1016/j.bjid.2016.01.001

132. Celerino da Silva R, Coelho AVC, Arraes LC, Brandão LAC, Crovella S,
Guimarães RL. TRIM5 Gene Polymorphisms in HIV-1-Infected Patients and
Healthy Controls From Northeastern Brazil. Immunol Res (2016) 64:1237–
42. doi: 10.1007/s12026-016-8810-1
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