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INTRODUCTION

The current coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has the worst affected the entire population on the earth (1,
2). This is currently a major concern for the global health care system, as declared by the World
Health Organization (WHO). Ample pieces of evidences suggested the idiopathic association of the
SARS-CoV-2 with many diseases in COVID-19 cases. Given the aberrant immunopathology of
COVID-19, a single approach may not be sufficient to control the disease effectively. Severely
infected patients displaying acute respiratory distress syndrome (ARDS) need additional modalities
for their management (3). This could be due to the host’s epigenetic programming of infected
macrophages, which may be responsible for negative prognosis and inadequate response to the
current therapeutic regimen for controlling disease manifestation.

SARS-CoV-2 enters the host cells via ACE-II receptor and triggers the secretion of the copious
amount of IL-6;promote pulmonary fibrosis and Th2/17 programming of lungs, leading to severe
lung infection in COVID-19 patients. SARS-CoV-2 interacts and tweaks all kind of cells like
epithelium, macrophages, dendritic cells, and T cells and exploit them in a way that supports its
replication for progression of the disease.

Out of these, uncontrolled activation of macrophages (also known as double edge component of
immunity) leads to Macrophage activation syndrome which is responsible for acute respiratory
distress syndrome (ARDS) and subsequent death of COVID-19 patients (4, 5). This is mainly
characterized by the increased infiltration of committed FY1* macrophages and their Th2/Th17
programming leading to mortality. Once derailed, hyperactive macrophages secrete high levels of
IFN-v, IP-10 (IP-10), IL-6, IL-17, TNF-o along with TGF-3 and IL-10/23, leading to the Th2/Th17
programming in the infected lungsof severe cases of COVID-19 (6).

At molecular levels, this is accompanied by the activation of inflammasome pathways which are
important forThl7 programming of tissue. Activated CD14+ monocytes phagocytose dead
neutrophils and promotes NETosis in the lung. This promotes Th2 bias, decreases lymphocyte/
neutrophils ratio and increases the risk of COVID-19 patients for death. Given this, in situ
reprogramming Th2/Th17 programmed macrophages towards their M1 phenotype is expected to
afford protective immunity in COVID-19 cases (4) as shown in Figure 1.
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Committed macrophages rely upon Toll-like Receptors (TLRs)
and associated pathways, the guardian for Th1/2/17 effector
responsesduring any infection, including SARS-CoV-2 (7). Among
various TLRs on macrophages, TLR-4, 5, 3, 7,and 9 actively sense
spike proteins (N, S or G) or mRNA of NSP-10, S2, and E proteins of
SARS-CoV-2 and promote M1 polarization of macrophages (8).
Apart from ACE-2, the spike protein of SARS-CoV-2 uses TLR-2, 4
and 5 signaling pathways also via MyD88 and triggers Th1 effector
response through NF-kB and ERK signaling cascade (9). Given this,
tweaking TLR signaling like TLR5 can restore or promote Thl
response in derailed macrophages in COVID-19 patients. Indeed, a
recent report suggests that conjunction therapy with antivirals and
TLR-7 agonists may benefit patients (7) who are believed to harbor
Th2/17 programmed macrophage. Similarly, the application of
Tocilizumab and TLR-4 antagonists is expected to promote M1 re-
polarization of derailed macrophage in patients with severe disease
displaying ARDS.

Several intracellular pathways like nk-kb/STAT/and p38MAPK
are essential for the immune polarization of macrophages during
infection and cancer. p38MAPK pathway is one of the host factors
implicated in lung and heart injury in COVID-19 patients (10, 11).
P38MPAK landscape is decisive for sterile inflammatory responses,
desmoplastic reactions, T cell exhaustion, and epigenetic
programming of severely infected COVID-19 cases. P38 MAPK

Promote viral replication

Simvastine
D14 monocytes/

Anti-inflammatory
M2/Th2/Th17 phenotype

Pro-inflammatory
M1/Th1 phenotype

FIGURE 1 | Non-coding RNAs regulates macrophage plasticity during the pathogenesis of Covid 19 disease. 1. N/S/G spike proteins bind to ACE2 receptors on lung cells
and determine the entry of the SARS-CoV-2 virus. 2. miRNA can be direct targets since they can regulate the expression of ACE2 in various organs. 3. Infection produces an
copius amount of IL-6, which drives the fate of CD14 monocytes/macrophages towards M2 phenotype via MAPK signaling, which promotes viral replication. 4. In view of
this virus eliminating inflammatory niche could be achievd by promting M1 phenotype in TLR depenedent MYD88/ERK/NF-Kb pathway. 5. This could be fosterd by
application of MAPK inhibitors like simvastatin in conjuction of TLR antagonist which can help immune cells to curb SARS-CoV-2 in the host effectively.

controls macrophage plasticity via promoting ER stress, unfolded
protein responses, and glucose intolerance which are associated
with energy imbalance in the infected host. Since SARS-CoV-2
directly up-regulates p38 activity for promoting its replication in
epithelium and macrophages (12), we presume that hyper-
activation of p38MAPK may contribute to Th2 bias in these
macrophages and aberrant inflammation in the lung.
SARS-CoV-2 regulates P38MAPK signaling in multiple ways to
support its replication, one of the prominent mechanisms is
downregulation of ACE2 activity, which negatively regulate
expression of ICAM-1 (intercellular adhesion molecule-1),
VCAM-1 (vascular cell adhesion molecule-1) (13) and NF-KB
activation (14) leading to Th2 bias in the host. Loss of ACE2
function leads to enhanced concentration of intracellular
Angiotensin 2, which directly activates P38MAPK (10) in the
host, leading to Th17 response in the host (15). This progress to
ARDS (acute respiratory distress syndrome) and myocarditis are
primary reasons for death in critically infected patients (16). Several
studies with severely infected patients suggested that SARS-CoV-2
promotes degradation of DUSPs (dual-specificity phosphatase)
transcripts, this promotes P38MAPK hyperactivation (17) in the
host. Besides ACE2 and DUSPs, SARS-CoV-2 also triggers TAB1
(TGEF-P activated kinase 1 (MAP3K?7)-bindingprotein 1) mediated
P38A auto-phosphorylation and P38MAPK hyper-activation,
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adding to the reason for increased MAPK activity in the infected
cells. Studies with several MAPK inhibitors like SB203580 (18),
Losmapimod (19) and Dilmapimod (20) have shown promising
results in mitigating pathogenic inflammation in COPD patients
and advocated their potential application in hashing SARS-CoV-2
burden. Therefore targeting p38MAPK could be of direct interest in
controlling viral burden and M1 retuning of infected macrophages
viz-a-viz mitigating T- cell exhaustion in patients.

Apart from activating several cytoplasmic signaling pathways,
P38MAPK also activate the expression of various transcription
factors. Recent studies have provided compelling evidence that
activated MAPK influence the expression of differentially
expressed mi/IncRNAs,which are important for sterile
inflammation and M2/Th2 polarization of macrophages. Most
intriguingly, the IncRNA landscape is proposed as a prognostic
factor responsible for the severity of COVID-19 cases (21).
Among pool of miRNAs; miR-15b-5p, miR-15a-5p, miR-548c-
5p, miR-548d-3p, miR-409-3p, miR-30b-5p and miR-505 have
been validated as potent targets for controlling SARS-CoV-2
infection (22). These miRNAs regulate the expression of ACE-2
in various organs, including the kidney, heart, blood vessels, and
lungs which are important for COVID-19 pathophysiology (23).
Other than this, several LncRNA like WAKMAR2, EGOT,
EPB411L4A-AS1, ENSG00000271646, MALATI and NEATI are
known to contribute to skewing the immune response against
SARS-CoV-2 infection (24, 25).

Overexpression of NEATI stabilizes the mature caspase-1 to
promote interleukin-1f production and modulate inflammasome
activation (26), which is associated with Th2/17 programming of
immune cells like macrophages. MALATI promotes Thl effector
responses and apoptosis in airway epithelial cells conditioned DCs
and cardiac cells (6, 27) via miR-125b and p38MAPK/NF-«xB
pathways (7). This loop is potentially involved in the maturation
and pro-inflammatory programming of CD14+/Gr-1-/iNOs+ M1
macrophages, which is essential for the adaptive immunity of
the host.

MAJOR PERSPECTIVE

Lowering p38MAPK with specific inhibitors like simvastatinin
conjunction with TLR antagonist and Tocilizumab is anticipated
to be a prudent approach for augmenting immunity of COVID-
19 infected cases. The uncontrolled systemic inflammatory
response and cytokine storm is the main mechanism of ARDS
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