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Several C2 domain-containing proteins play key roles in tumorigenesis, signal
transduction, and mediating protein–protein interactions. Tandem C2 domains nuclear
protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in
several types of cancers and is closely associated with tumorigenesis and tumor
progression. Notably, TC2N has been identified as an oncogene in lung and gastric
cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of
tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and
carcinoembryonic antigen, have been identified in a variety of malignant tumors.
Differences in the expression levels of TAAs between cancer cells and normal cells have
led to these antigens being investigated as diagnostic and prognostic biomarkers and as
novel targets in cancer treatment. In this review, we summarize the clinical characteristics
of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence
and development of specific cancers. This article provides an exploration of TC2N as a
potential target for the diagnosis and treatment of different types of cancers.

Keywords: TC2N, tumor-associated antigens (TAAs), cancer, signal pathway, molecular mechanism, functional
characterization, clinical feature
Abbreviations: TC2N, tandem C2 domains nuclear protein; TAAs, tumor-associated antigens; CDK5, cyclin-dependent
kinase 5; P21(CDKN1A) , cyclin dependent kinase inhibitor 1A; P53, tumor protein p53; BAX, a member of the B-cell
lymphoma-2(BCL2) gene family; BCL1, B-cell lymphoma-1; IkB, inhibitor of NF-kB; NF-kB, nuclear factor kappa-light-
chain-enhancer of activated B cells; MMP7, matrix metalloproteinase 7; MMP9, matrix metalloproteinase 9; ALK, anaplastic
lymphoma kinase; EBP1, ErbB-3 binding protein 1; AKT, serine threonine kinase; GSK3b, glycogen synthase kinase-3b;
PTEN, phosphatase and tensin homolog deleted on Chromosome 10; MMP2, matrix metalloproteinase 2; GALNT3,
polypeptide N-acetylgalactosaminyltransferase 3; RBM47, RNA binding motif protein 47.
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1 INTRODUCTION

Cancer is an important public health concern worldwide and
continues to be of great interest to the scientific community. It is
one of the leading causes of death, with approximately 14 million
new cases and 8.2 million cancer-related deaths occurring in
2018 (1). This disease is considered the biggest barrier to
improving life expectancy in countries in the 21st century (2).
Annually, over 4 million new cancer patients and over 2 million
cancer-related mortalities are reported in China. Despite the
availability of multiple treatment modalities such as surgery,
chemotherapy, radiation therapy, and targeted therapy, the 3-
and 5-year cancer-specific survival rates remain poor (3–7).
While overall cancer related mortalities have decreased (8), it
is notable that the reduction in mortality is largely due to early
detection and prevention rather than development of better
treatment options (9–12).

Most cancers are asymptomatic in the early stages of
development (13, 14) largely because of their ability to evade
immune surveillance (15, 16). Immune evasion is thought to be
driven by two major mechanisms. First, owing to altered antigen
presentation or receptor library editing, the immune system is
unable to detect tumor populations. Second, the initially effective
immune response may become ineffective owing to the presence
of an immunosuppressive tumor microenvironment (17–19).
Therefore, it is important to explore mechanisms of cancer
development to identify new markers for diagnosis and
prognosis and to develop effective and novel treatment
methods. Developments in both fronts will have substantial
implications for improving survival rates of cancer patients.

Numerous studies have shown that certain genes, such as
oncogenes and tumor suppressor genes, are risk factors for many
types of cancer (20–24). When activated, oncogenes stimulate
tumor growth whereas tumor suppressor genes prevent tumor
growth and development. In mouse models, where oncogene
expression is driven by tissue-specific promoters, tumors appear
at high frequency but disappear when the inductive stimulus is
turned off (25–27), suggesting that oncogenes are the Achilles’
heel of cancer (28). Tumor suppressor genes play a critical role in
controlling the cell cycle assuring proper proliferation and
differentiation (29). Therefore, identifying these genes is crucial
because targeting them may prevent or treat different types
of cancers.

The C2 domain was initially thought to be a protein structural
domain of calcium-dependent protein kinase C (30–32). Further
studies confirmed that the function of the C2 domain was not only
calcium-dependent phospholipid binding, but also involved in
cellular signal transduction and protein-protein interactions (33).
Several proteins that contain a structural domain called the C2
domain have been linked to the regulation of tumorigenesis. For
example, a C2 domain-containing protein, DOC2B, plays a tumor-
suppressive role in cervical cancer by inhibiting cell proliferation,
migration, and invasion (34). Conversely, another C2 domain-
containing protein, myoferlin, plays a tumor-enhancing role by
promoting metastasis in patients with triple-negative breast cancer
(35). Gene encoding tandemC2 domains nuclear protein (TC2N)—
a putative C2 domain-containing protein—has recently been shown
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to function both as an oncogene and a tumor suppressor gene (36–
38). TC2N is located on human chromosome 14q32, belongs to the
carboxyl-terminal type (C-type) tandem C2 protein family, and
contains two C-terminal C2 domains (C2A and C2B) (39). TC2N is
also an immune system gene similar to IFI27, CASS4, and
SMARCD3 (40). Given its tumorigenesis properties and its
association with the immune system, it has been proposed as a
potential target for the detection and treatment of various cancers.
In this review, we summarize recent progress in understanding the
role and underlying mechanisms of TC2N in the occurrence and
development of cancer, with a focus on lung cancer, breast cancer,
and gastric cancer.
2 TC2N IN CANCERS

TC2N expression is upregulated in different types of cancers,
including lung, breast, and gastric cancers. The relevant
clinicopathological features and the molecular mechanisms of
TC2N in these cancers are summarized in Table 1 and detailed in
the rest of this section.

2.1 Lung Cancer
2.1.1 Functional Characteristics and Clinical
Features of TC2N in Lung Cancer
TC2N is overexpressed in cancerous lung tissues and cell lines
compared with that in normal lung tissues and a human bronchial
epithelial cell line, respectively. Hao XL et al. (36) showed that
upregulation of TC2N was significantly correlated with advanced
TNM stage and high histological grade of disease. Additionally, high
TC2N expression levels were associated with poor clinical outcomes
and significantly short overall survival. Hence, TC2N expression has
been proposed as an independent prognostic factor affecting patient
survival. Mechanistically, overexpression of TC2N significantly
inhibited apoptosis, promoted cell proliferation, and increased
migration and invasion of tumor cells in vitro; in contrast,
knockdown of TC2N promoted apoptosis and inhibited
proliferation of lung cancer cells (41). Furthermore, knockdown
of TC2N in tumor tissues resulted in an increase in apoptotic cells,
supporting the hypothesis that TC2N overexpression promotes
tumorigenesis and growth of lung cancer tumors in vivo.

In summary, TC2N is a potential novel oncogene in lung
cancer, whose expression levels are correlated with cancer
progression and patient survival. TC2N stimulates cell
proliferation, migration, and invasion and reduces apoptosis of
lung cancer cells in vitro and in vivo.

2.1.2 Signaling Pathways Influenced by TC2N in
Lung Cancer
2.1.2.1 TC2N Inhibits p53 Signaling Pathway
in Lung Cancer
Hao XL et al. (36) proposed that the regulation of cell proliferation,
cell cycle, and apoptosis by TC2N is dependent on the p53 signaling
pathway. TP53, which encodes p53, was initially classified as an
oncogene due to its ability to transform cells (43–46). However, the
identification of growth-inhibiting and temperature-sensitive
mutants of p53 in sporadic cancer samples and familial cancers
December 2021 | Volume 12 | Article 764749
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has shown that p53 is in fact a tumor suppressor protein (47–53).
p53 functions as the major regulator of central signaling and cell fate
decision pathways (54). It is a nuclear transcription factor composed
of 393 amino acids with four major functional domains: a
transcriptional, a DNA binding, a tetramerization, and a
regulatory domain (55). It modifies the expression of multiple
genes involved in a variety of biological processes, including cell
cycle, apoptosis, senescence, differentiation, and DNA repair (56–
66). Moreover, p53 has been associated with diverse biological
processes, such as regeneration (67), metabolism (68, 69),
interaction with viruses (70), prevention of liver pathologies (71,
72), forming a barrier to stem cell formation (73, 74), endocrinology
circuits (75) and serving as the guardian of the tissue hierarchy (76).
p53 activity is largely controlled by post-translational modifications,
such as phosphorylation (77). CDK5 is a protein kinase that
phosphorylates p53 at Ser-15, Ser-33 and Ser-46 (78, 79) and
binding of CDK5 to p53 induces activation of the p53 signaling
pathway (77). Overexpression of TC2N interferes with CDK5-p53
interaction in the nucleus and induces significant CDK5
degradation by increasing the ubiquitination of CDK5 (Figure 1).
Therefore, an increase in TC2N levels suppresses CDK5-induced
p53 phosphorylation and p53 pathway activation. The expression of
other key players in the p53 signaling pathway, such as P21, BAX,
and BCL-2, is also downregulated by TCN2 (36). When cells
experience stress or undergo uncontrolled division and
proliferation, p53 is activated (56, 80). Under these conditions,
p53 induces p21 expression, causing cell cycle arrest (81, 82).
Furthermore, p53 triggers programmed cell death by triggering
apoptosis-related genes, including bax, a pro-apoptotic member of
the bcl-2 family, when a DNA damage cannot be repaired (83).
Hence, reduction of the downstream players in the p53 pathway by
TCN2 promotes proliferation and prevents apoptosis.

2.1.2.2 TC2N Promotes NF-kB Signaling Pathway in
Lung Cancer
In addition to suppressing the p53 pathway, TCN2 was observed to
affect another key signaling pathway in lung cancer cells (41). Over
30 years ago, Sen et al. (84) identified a protein that bound to a
specific, conserved DNA sequence in the nucleus of activated B
lymphocytes. The protein was named after the identified cell type
and the gene it affected: nuclear factor binding near the k light-
Frontiers in Immunology | www.frontiersin.org 3
chain gene in B cells (NF-kB) (85). Since its discovery, NF-kB has
been found to be involved in several key processes such as immune
regulation, inflammation, cell survival, stress response,
embryogenesis, differentiation, proliferation, and cell death (86–
96) and it functions primarily by orchestrating the expression of
many functionally diverse genes (85, 89, 93, 97, 98). Due to its
extensive physiological effects, dysregulation of NF-kB can lead to
severe consequences (99, 100), including cancer, neurodegenerative
diseases, autoimmune diseases, cardiovascular diseases, and
diabetes (85, 99–105).

Most lymphatic or solid tumors, including lung cancer,
present with increased NF-kB levels (106). NF-kB in the
nucleus is an indicator of active NF-kB signaling, and its levels
correlate with the transcription of its target genes (107).
Typically, NF-kB levels in the nucleus and its activity are
regulated by inhibitor of NF-kB (IkB). IkB acts as a
gatekeeper, limiting NF-kB migration into the nucleus by
masking its nuclear localization domains (108, 109).
Additionally, it prevents activation of NF-kB target genes by
masking the DNA-binding domains of NF-kB (108), thereby
leading to interruption of the NF-kB signaling pathway. Notably,
overexpression of NF-kB—both in the nucleus and cytoplasm of
lung cancer cells—correlated with increased expression level of
TC2N in these cells (41). Hao XL et al. (41) proposed that this
increase in NF-kB expression level is a direct consequence of
TC2N overexpression in these cells (Figure 1). Overexpression
of TC2N enhanced the phosphorylation of IkB but decreased the
total IkB protein levels, leading to increased nuclear
translocation of NF-kB and subsequent activation of the
signaling pathway (41). Additionally, TC2N modulates this
process through other downstream proteins in the pathway
such as MMP7 and MMP9 (41).
2.2 Breast Cancer
2.2.1 Functional Characteristics and Clinical
Features of TC2N in Breast Cancer
Similar to that in lung cancer tissues, the expression of TC2N was
markedly upregulated in breast cancer tissues compared with
that in adjacent non-cancerous tissues (37). However, unlike that
in lung cancer, upregulated TC2N was associated with good
TABLE 1 | Functional characteristics and clinical features of TC2N in human cancers.

Cancer
types

Expression Role Functional role Related genes Clinical features References

Lung
cancer

Upregulated Oncogene Promotes proliferation,
migration, and invasion and
inhibits apoptosis

CDK5, P53, P21, BAX,
BCL1, IkB, NF-kB, MMP7,
MMP9

Advanced TNM stage, high histological grade, and
poor clinical prognosis

(36, 41)

Breast
cancer

Upregulated Anti-
oncogene

Inhibits proliferative and colony-
forming abilities

ALK, EBP1, P55g, AKT,
Caspase-3, GSK3b, MYC,
BAD, PTEN

Early clinical stage, small tumor size, low lymph
node metastasis, high HER-2 positive rate, and
good prognosis

(37)

Gastric
cancer

Upregulated Oncogene Promotes proliferation,
migration, and invasion

MMP2, MMP9, CATSPERB,
GALNT3, RBM47

Advanced TNM stage, large tumor size, high
histological grade, advanced distant metastasis,
and poor prognosis

(38, 42)
December 2021 | Volume 12 | A
TC2N, tandem C2 domains nuclear protein; CDK5, cyclin-dependent kinase 5; P21 (CDKN1A), cyclin dependent kinase inhibitor 1A; P53, tumor protein p53; BAX, a member of the B-cell
lymphoma-2 (BCL2) gene family; BCL1, B-cell lymphoma-1; IkB, inhibitor of NF-kB; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; MMP7, matrix
metalloproteinase 7; MMP9, matrix metalloproteinase 9; ALK, anaplastic lymphoma kinase; EBP1, ErbB-3 binding protein 1; AKT, serine threonine kinase; GSK3b, glycogen synthase
kinase-3b; BAD, Bcl-2-associated death promoter; PTEN, phosphatase and tensin homolog deleted on chromosome 10; MMP2, matrix metalloproteinase 2; GALNT3, polypeptide N-
acetylgalactosaminyltransferase 3; RBM47, RNA binding motif protein 47.
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prognosis and overall survival. It positively correlated with the
early clinical stage of disease, small tumor size, low lymph node
metastasis, and high human epidermal growth factor receptor 2
(HER-2) positivity rate. Additionally, upregulated TC2N
inhibited the proliferative and colony-forming abilities of
breast cells both in vitro and in vivo. In summary, in contrast
to its role in lung cancer cells, TC2N is a potential tumor
suppressor in breast cancer.

2.2.2 Signaling Pathways Influenced by TC2N in
Breast Cancer
2.2.2.1 TC2N Inhibits PI3K/AKT Signaling Pathway in
Breast Cancer
To explain the tumor suppressive function of TC2N in breast
cancer cells, Hao XL et al. (37) proposed that upregulation of
TC2N represses the Phosphoinositide 3-kinases/serine-
threonine kinase (PI3K/AKT) signaling pathway, which is
typically constitutively active in some human cancers (110,
111). PI3K/AKT is a growth-regulating cellular pathway and it
is well established that PI3K/AKT signaling enhances tumor cell
survival, proliferation, and motility in different tumor types
(112–119). PI3Ks form a family of kinases that are expressed
in almost all mammalian cells and play essential roles in survival,
Frontiers in Immunology | www.frontiersin.org 4
migration, cell cycle progression, and cell growth (120). PI3K
phosphorylates phosphatidylinositol to form inositol lipid, which
functions as a second messenger in the human body (121).
Similarly, AKT is involved in various physiological processes
and is a key regulatory protein for cell growth, survival,
metabolism, and proliferation (116, 122–124). The
pathogenesis of a variety of human cancers is associated with
aberrant regulation of the PI3K/AKT pathway (125–127).

Anaplastic Lymphoma Kinase (ALK) is an activator of the
PI3K/AKT signaling pathway, and it induces phosphorylation of
the p55g subunit of PI3K in cancer cells, rather than the usual
p85 subunit that is phosphorylated (128, 129). It has been shown
that the interaction between ALK and p55g is crucial for ALK-
induced p55g phosphorylation (128) and subsequent activation
of the PI3K/AKT signaling pathway. Another key regulatory step
in the activation of PI3K/AKT signaling is phosphorylation of
AKT by ErbB-3 binding protein 1 (EBP1). TC2N targets both
these key steps to inhibit the PI3K/AKT signaling pathway.
TC2N forms a complex with ALK, which prevents the ALK-
p55g interaction and therefore inhibits downstream AKT
phosphorylation and consequently the PI3K-AKT signaling
pathway (Figure 2). Additionally, TC2N inhibits the
interaction of EBP1 with AKT, which is necessary for
FIGURE 1 | Underlying molecular mechanisms of TC2N in p53 and NF-kB signaling pathways in lung cancer. TC2N, tandem C2 domain nuclear protein; CDK5,
cyclin-dependent kinase 5; P53, tumor protein p53; IkB, inhibitor of NF-kB; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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phosphorylation of AKT (130, 131) and subsequent PI3K/AKT
signaling. Upregulation of TC2N has also been shown to activate
AKT inhibitors such as caspase-3 and block AKT inhibitors such
as GSK3b, MYC, BAD, and PTEN.

2.3 Gastric Cancer
2.3.1 Functional Characteristics and Clinical
Features of TC2N in Gastric Cancer
Similar to lung and breast cancer cells, TC2N is overexpressed in
a variety of gastric cancer cell lines and tumor samples compared
to normal cells and tissues (38, 42). High TC2N levels were
significantly correlated with poorly differentiated histological
classification, large tumor size, advanced TNM stage, and
advanced distant metastasis. Furthermore, patients with high
TC2N expression showed poorer prognosis regardless of TNM
stage compared to patients with low TC2N expression. In vitro,
TC2N knockdown significantly inhibited the proliferation of
gastric cancer cells, while TC2N overexpression promoted the
growth of these cells. Similar results were observed in vivo where
downregulation of TC2N inhibited the migration and invasion of
gastric cancer cells, whereas overexpression had the opposite
effect. Thus, similar to lung cancer, TC2N potentially functions as
an oncogene in gastric cancer.

2.3.2 Signaling Pathway of TC2N in Gastric Cancer
The mechanism of action of TC2N in gastric cancer remains
unclear. Shen L et al. (42) suggested that TC2N might partially
affect the migration and invasion ability of gastric cancer by
Frontiers in Immunology | www.frontiersin.org 5
regulating the expression levels of MMP2 and MMP9. MMP2
and MMP9 are known to be involved in cell invasion and tumor
metastasis (132). TC2N expression also showed strong positive
correlation with the expression of CATSPERB and other cancer
related genes such as GALNT3 and RBM47 (38). However, the
detailed molecular mechanism by which TC2N promotes gastric
cancer progression needs further evaluation.
3 CONCLUSION AND FUTURE
PERSPECTIVES

High-throughput gene expression profiling facilitates the
simultaneous measurement of the expression levels of
thousands of genes. A key application of gene expression
profiling in cancer is to identify differences in gene expression
patterns between tumor and control samples (133). Advances in
technology and the declining costs of DNA sequencing have
spurred global efforts to discover differentially expressed genes in
various cancers. From one such effort, TC2N was found to be
widely upregulated in several human cancers, including lung,
breast, and gastric cancers. TC2N levels were correlated with
multiple clinicopathological features and prognosis, such as
TNM stage, histological grade, tumor size, overall survival,
lymph node metastasis, and distant metastasis. In support of
its involvement in tumorigenesis and tumor progression, in vitro
and in vivo experiments have shown that TC2N affects
proliferation, apoptosis, migration, invasion of tumor cells and
FIGURE 2 | Underlying molecular mechanisms of TC2N in PI3K-AKT signaling pathway in breast cancer. TC2N, tandem C2 domain nuclear protein; ALK, anaplastic
lymphoma kinase; EBP1, ErbB-3 binding protein 1; AKT, serine threonine kinase; GSK3b, glycogen synthase kinase-3b; BAD, Bcl-2-associated death promoter;
PTEN, phosphatase and tensin homolog deleted on chromosome 10.
December 2021 | Volume 12 | Article 764749
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tumor growth in many cancers. The underlying molecular
mechanisms of TC2N in several cancers have also been
preliminarily explored and suggest that TC2N modulates
several key signaling pathways that influence carcinogenesis
and cancer progression, including p53, NF-kB, and PI3K/AKT
signaling pathways.

Although TC2N is a potential therapeutic target, several
questions remain to be addressed. First, the molecular
mechanism of TC2N in different types of cancers is not
completely understood. For example, while preliminary data
suggest that in gastric cancer TC2N modulates the expression
of several cancer related genes, the specific pathway affected by
TC2N is unclear. Furthermore, while the function of TC2N in
lung, breast and gastric cancer have been studied to some extent,
its potential role in other cancers, such as cancers associated with
the urinary and reproductive systems remain unexplored.
Second, while TC2N is upregulated in tumor tissues of some
specific cancers, it is not known if TC2N is also upregulated in
body fluids such as plasma and urine. The identification of
diagnostic biomarkers is a promising avenue for early cancer
diagnosis. If TC2N is detectable in plasma or urine, it may
facilitate early detection and prognosis assessment using simple
and non-invasive tests. Third, it is unknown if TC2N is a tumor-
associated antigen and requires further evaluation. Fourth,
TC2N is an immune system associated gene, but whether it
can serve as a target in personalized immunotherapies remains to
be seen. Therefore, more attention should be paid to the clinical
value of TC2N in cancer diagnosis and treatment.

In summary, TC2N has been shown to have oncogenic or
tumor-suppressive functions in different types of cancers, and
could potentially serve as a cancer-specific molecular biomarker
for early diagnosis, treatment, and prognosis assessment. While
Frontiers in Immunology | www.frontiersin.org 6
some progress has been made in the mechanistic analysis of
TC2N, several questions remain unanswered. Future work needs
to focus on understanding the precise molecular mechanism of
TC2N in carcinogenesis and tumor progression to explore the
potential clinical application of TC2N.
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