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Pharmacological Inhibition of IRE-1

Alpha Activity in Herpes Simplex Virus
Type 1 and Type 2-Infected Dendritic

Cells Enhances T Cell Activation.
Front. Immunol. 12:764861.

doi: 10.3389/fimmu.2021.764861

ORIGINAL RESEARCH
published: 05 January 2022

doi: 10.3389/fimmu.2021.764861
Pharmacological Inhibition of
IRE-1 Alpha Activity in Herpes
Simplex Virus Type 1 and Type
2-Infected Dendritic Cells
Enhances T Cell Activation
Eduardo I. Tognarelli 1†, Angello Retamal-Dı́az2†, Mónica A. Farı́as1, Luisa F. Duarte1,
Tomás F. Palomino1, Francisco J. Ibañez1, Claudia A. Riedel3, Alexis M. Kalergis1,4,
Susan M. Bueno1 and Pablo A. González1*
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Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are life-long and highly
prevalent in the human population. These viruses persist in the host, eliciting either
symptomatic or asymptomatic infections that may occur sporadically or in a recurrent
manner through viral reactivations. Clinical manifestations due to symptomatic infectionmay
be mild such as orofacial lesions, but may also translate into more severe diseases, such as
ocular infections that may lead to blindness and life-threatening encephalitis. A key feature of
herpes simplex viruses (HSVs) is that they have evolved molecular determinants that
hamper numerous components of the host’s antiviral innate and adaptive immune
system. Importantly, HSVs infect and negatively modulate the function of dendritic cells
(DCs), by inhibiting their T cell-activating capacity and eliciting their apoptosis after infection.
Previously, we reported that HSV-2 activates the splicing of the mRNA of XBP1, which is
related to the activity of the unfolded protein response (UPR) factor Inositol-Requiring
Enzyme 1 alpha (IRE-1a). Here, we sought to evaluate if the activation of the IRE-1a
pathway in DCs upon HSV infection may be related to impaired DC function after infection
with HSV-1 or HSV-2. Interestingly, the pharmacological inhibition of the endonuclease
activity of IRE-1a in HSV-1- and HSV-2-infected DCs significantly reduced apoptosis in
these cells and enhanced their capacity to migrate to lymph nodes and activate virus-
specific CD4+ and CD8+ T cells. These findings suggest that the activation of the IRE-1a-
dependent UPR pathway in HSV-infected DCs may play a significant role in the negative
effects that these viruses exert over these cells and that the modulation of this signaling
pathway may be relevant for enhancing the function of DCs upon infection with HSVs.
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INTRODUCTION

Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are
highly prevalent in the human population worldwide (1). The
global prevalence of HSV-1 and HSV-2 infection is estimated at
66.6% and 13.2%, respectively, in young adults with lifelong
persistent infections and the occurrence of reactivation episodes
throughout life with the possibility of viral shedding regardless of
clinical symptoms (2). Herpes simplex viruses (HSVs) cause a wide
range of clinical manifestations that can be mild, such as herpes
labialis, but also severe as herpes simplex keratitis (HSK), life-
threatening herpes simplex encephalitis (HSE), or neonatal
encephalitis (3). Moreover, a relation between HSV infections
and an increased risk of HIV infection exists (3). Because of its
impact on the health of individuals, numerous strategies and
approaches are constantly being evaluated to improve HSV
treatment and prevent infections with these viruses (4–6).
However, there are no vaccines available to date against these
viruses and current therapies need improvement (4). Importantly,
these viruses encode numerous molecular determinants to evade
and escape the host’s innate and adaptive immune responses (7, 8).
These viruses modulate early and late antiviral cellular processes,
such as negative modulation of interferon production, inhibition of
innate immune components, and hamper the function of adaptive
immune cells (8–10).

Dendritic cells (DCs) are immune cells which play key roles in
sensing, processing, and presenting virus-derived components to T
cells for eliciting antiviral cytotoxic CD8+ T cells (CTLs) and helper
T cells (CD4+) that support the development of B cells secreting
high-affinity antiviral antibodies (11–14). Importantly, HSVs have
been extensively reported to hamper DC function by interfering
with the viability of these cells (12, 15), and key cellular processes
related to the capacity of this cell to effectively activate T cells (8, 10,
11, 16). Given the essential roles of DCs in establishing and
regulating immunity against viruses, the outcome of these cells
during viral infection is critical for ultimately eliciting protective
immunity (14, 17). Consistent with this notion, HSV mutants that
are attenuated in DCs elicit robust protective immunity against
challenges with wild-type HSV in mice (17–19).

Recently, we reported that DCs infected with HSV-2 displayed a
nearly 50-fold increase in XBP1 splicing (XBP1s), compared to
DCs inoculated with an attenuated mutant virus (17). Importantly,
XBP1 splicing relates to the activation of the unfolded protein
response (UPR) in the cell and more specifically, the inositol-
requiring enzyme 1a (IRE-1a) pathway (20). The UPR is a cellular
process that is activated by a significant accumulation of misfolded
or unfolded proteins in the endoplasmic reticulum (ER), causing
ER stress and overpassing its protein-folding capacity (21).
However, the UPR may also be triggered by disruptions in
homeostasis (22, 23), viral infections (24), or damage-associated
inflammatory factors, such as the high mobility group box-1
protein (HMGB1) in DCs (25). Once ER stress is triggered, UPR
signaling pathways can be activated by any of three routes
described to date, each with its corresponding sensor: PERK
(double-stranded RNA-activated protein kinase (PKR)-like ER
kinase), ATF6 (activating transcription factor 6), and IRE-1a, the
most conserved UPR pathway in eukaryotes (26). Importantly,
Frontiers in Immunology | www.frontiersin.org 2
UPR activation induces the transcription of factors involved in re-
establishing ER homeostasis by attenuating mRNA translation,
increasing the protein-folding capacity within the ER thanks to the
production of protein chaperones, clearing misfolded or unfolded
proteins through ER-associated protein degradation (ERAD), and
by eliciting autophagy (27). However, if the cell cannot recover
from ER stress, the UPR may lead to apoptosis (28).

The UPR activator IRE-1a is highly conserved among species,
and once activated in the ER, it dimerizes, phosphorylates, and
carries out non-traditional splicing processes in the cytoplasm
over specific mRNAs (29). The most commonly studied target of
IRE-1a is the mRNA of Xbp1, which, after removing an intron
by splicing, is translated into the transcription factor XBP1s that
exerts numerous UPR-related processes (30, 31). Although IRE-
1a activation is frequently considered a positive process for the
cell for exiting ER stress, recently, it was reported that
constitutive activation of XBP1 in tumor-associated DCs
inhibits the capacity of these cells to activate anti-tumor T cells
(32, 33). Concomitantly, deletion of Xbp1 in DCs promoted an
anti-tumor response. These findings suggest that sustained IRE-
1a activation in DCs may lead to non-optimal immune
responses in the host that hamper their capacity to adequately
activate T cells against tumors or other antigens (34).

Numerous viruses utilize the ER in host cells to assemble their
components or direct them to other compartments, either for
post-translational modifications or for reaching the cell surface.
Importantly viral infection is usually accompanied by the
production of significant amounts of viral proteins, and thus,
infected cells are likely to undergo ER stress and UPR activation
(35). Indeed, it has been described that infection with viruses
such as influenza A (36), West Nile virus (37), cytomegalovirus
(38), hepatitis B virus (39), and hepatitis C virus (40) activate or
control at least one of the axes of the UPR response. However,
because UPR activation also induces protein translation arrest
and apoptosis, some viruses have evolved strategies to override or
modulate ER stress and the UPR (24, 41). Notably, HSV-1
infection has been reported to interfere with PERK activation
and disarm the IRE-1a-derived UPR signaling pathway early
after infection in epithelial cells, as a mechanism to avoid a
reduction in the production of viral proteins that are required for
virion assembly (42). On the other hand, two other studies
suggest that HSV-1 infection of epithelial cells activates the
JNK signaling pathway, either through ERK activation or the
kinase activity of IRE-1a to increase viral replication (43–45).
These latter findings led us to assess the contribution of the IRE-
1a pathway in DCs infected with wild-type HSV-1 or HSV-2,
and its impact on the capacity of DCs to activate T cells.

We found that inhibition of the endonuclease activity of IRE-
1a in HSV-1- or HSV-2-infected DCs significantly increases the
viability of these cells infected with either of these two viruses, as
well as their capacity to migrate to lymph nodes in vivo and to
activate virus-specific T cells. Taken together, our findings
suggest that IRE-1a activation by HSV-1 or HSV-2 in DCs
leads to detrimental effects in these cells and highlights the
existence of differences in IRE-1a activation and signaling
events between immune and non-immune cells after
HSV infection.
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MATERIALS AND METHODS

Mice
8-week-old female C57BL/6J mice were obtained from the
Jackson Laboratory (Bar Harbor, ME) and maintained at the
animal facility at the Pontificia Universidad Católica de Chile
(Santiago, Chile). The gBT-I transgenic mouse strain, encoding
an HSV-specific T cell receptor that recognizes H-2Kb (MHC-I)/
gB(498-505), was kindly shared by Dr. Francis Carbone (46) and
provided by Dr. Akiko Iwasaki at Yale University, New Haven,
CT, USA. The gDT-II transgenic mouse strain, encoding an
HSV-specific T cell receptor that recognizes I-Ab (MHC-II)/gD
(290-302) was also kindly shared by Dr. Francis Carbone (47), and
provided by Dr. David Taylor at University of Melbourne,
Australia. Mice were handled according to the guidelines of the
Institutional Ethics Committee at the Pontificia Universidad
Católica de Chile and according to the approved protocols
CBB-201/2013 and CEC 180821026.

Virus Propagation
Vero cells (ATCC CCL-81) were used to propagate and titer the
HSV-1 strain KOS (ATCC VR-1493), HSV-2 strain G (ATCC
VR-734), HSV-1 strain K26GFP (48), and HSV-2 strain (333)
ZAG (49) (kindly provided by Dr. Betsy Herold, Albert Einstein
College of Medicine, New York). Briefly, T175 flasks with Vero
cells monolayers were inoculated with either strain of HSV at a
multiplicity of infection (MOI) 0.01 in 20 ml of Opti-MEM
(Gibco, Life Technologies) and incubated at 37°C for 48 h until
visible cytopathic effect. Then, the content of the flasks was
pooled, and cell debris was removed twice by centrifugation at
15,000 x g for 10 min. The pellet was resuspended with 2 ml of
Opti-MEM and then sonicated in an ultrasonic bath for 10 min
with pulses of 15 seconds. Supernatants were stored at -80°C
until use. HSV was titrated over Vero cells in flat-bottom 96 wells
plates and screened for plaque production under a ZEISS Axio
Vert.1A inverted microscope.

DC Infection With HSV, Viability,
Maturation and Caspase-3 Activity Assays
Dendritic cells were differentiated from hind limb bone marrow
precursors of C57BL/6 mice in RPMI-1640 supplemented with
10% fetal bovine serum, 1 mM pyruvate, 2 mM Glutamine
(Thermo Fisher Scientific), 1 mM non-essential amino acids,
10 mM HEPES, 100 UI/mL Penicillin/Streptomycin, and 10 ng/
ml of recombinant murine granulocyte-macrophage-colony-
stimulating factor (GM-CSF, GenScript), as previously
described (50). The culture media was replaced every 48 h, and
after 6 days of culture, DCs were then treated with 64 µM 4µ8c
dissolved in dimethylformamide (DMF), 5 µM MKC-3946
dissolved in DMF or an equivalent volume of vehicle for 1 h.
Afterward, DCs were infected with HSV-1 (KOS), HSV-2 (G),
HSV-1 (K26GFP), or HSV-2 (333)ZAG at a MOI of 3 for 1 h at
37°C. Then, the supernatants were removed, and cells were
washed with culture media and incubated again with the
corresponding treatments (4µ8c, MKC-3946, or DMF). DCs
were collected and analyzed for infection and viability at 12
and 24 h post-inoculation (hpi). Cell viability was assessed by
Frontiers in Immunology | www.frontiersin.org 3
flow cytometry using Zombie-NIR Fixable Viability Kit
(BioLegend), over cells stained with anti-CD11c, and anti-I-Ab

(MHC-II) antibodies (BioLegend), and/or expressing the
GFP reporter protein in cells inoculated with HSV-1 K26GFP
or HSV-2 (333)ZAG strain. Cells were fixed with 2%
paraformaldehyde (PFA) and analyzed in a FACSCANTO II
flow cytometer (BD Biosciences). To assess DC maturation, after
the treatment with the IRE-1a inhibitors and HSV infection, the
cells were stained with antibodies against H-2Kb (MHC-I), I-Ab

(MHC-II), CD80, and CD86 (BioLegend) to evaluate their
surface expression in the CD11c+ population by flow
cytometry using a FACSVia flow cytometer (BD Biosciences).
Furthermore, to evaluate the cytokine profile of the treated
DCs, IL-6, IL-10, and IL-12 secretion was determined in the
cell supernatants by ELISA (BioLegend) 24 h after the
corresponding treatments, as previously reported (17).
Recombinant murine IL-6, IL-10, and IL-12 (PeproTech) were
used as standards for cytokine quantification. To evaluate the
activity of caspase-3, 3x105 DCs were seeded and infected with
HSV-1 KOS or HSV-2 G for 1 h at MOI 3. The culture media was
then replaced with fresh media. After 24 hpi, DCs were collected
and centrifuged at 400 g for 5 min at 4°C. The pellet was
resuspended in 100 µl of lysis buffer (HEPES 1 M, glycerol
50%, DTT 100 mM, Triton X-100 0.1%, KCl 4 M, EDTA 500
mM and protease inhibitor), incubated at 4°C for 15 min and
dispensed in a 96-well black plate containing 100 µl of the Ac-
DEVD-AFC (Cayman) caspase-3 substrate. Then, the mixture
was incubated for 1 h and analyzed at 400 nm excitation/500 nm
emission using a Cytation 5 Cell Imaging Multi-Mode Reader
(BioTek). DC infection with HSV was assessed by plaque
forming units (PFU) assays in triplicates, adding supernatants
from infected-DCs over Vero cells monolayers seeded 24 h prior
in a 96 well plate, extracting total DNA from infected cells and
conducting a qPCR using 200 ng of DNA per reaction with a
probe for the UL30 gene. The following primers and probe were
used : UL30_Fwd-GGCCAGGCGCTTGTTGGTGTA,
UL30_Rev-ATCACCGACCCGGAGAGGGA, UL30_Probe-/
56-FAM/CCGCCGAAC/ZEN/TGAGCAGACACCCGC/
3IABkFQ/using an Applied Biosystems StepOnePlus
thermocycler (51).

DC-T Cell Antigen Presentation Assays
DCs were treated with 64 µM of 4µ8c, 5 µM of MKC-3946, or an
equivalent volume of vehicle (DMF) for 1 h and then infected at
an MOI of 3 with HSV-1 KOS, or HSV-2 G for 1 h (adsorption)
at 37°C. Then, the supernatants were removed, washed with
culture media, and incubated with the corresponding treatments.
DCs were collected 6 h later and cocultured with 1x105 HSV-
specific T cells/well. T cells were either CD8+ gBT-I, or CD4+

gDT-II purified from spleens of gBT-I or gDT-II transgenic mice
using the corresponding T cell negative-selection kits
(MiltenyiBiotec). Uninfected DCs and DCs pulsed with gD(290-

302) or gB(498-505) peptides were used as controls as previously
described (17). To evaluate T cell proliferation, the cells were
suspended at 106/ml in PBS and incubated at 37°C for 5 min with
5 mM carboxyfluorescein succinimidyl ester (CFSE; Tocris)
before they were added over DCs in cocultures. 48 h after of
January 2022 | Volume 12 | Article 764861
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coculture, T cell activation and differentiation were determined
by ELISA, by measuring IL-2, IL-4, IL-17 and IFN-y in the
supernatants (50), and by flow cytometry using Zombie-NIR cell
viability stain and antibodies against CD4, CD8, CD25, CD44,
CD62L, CD69 and CD71 (BioLegend).

DC Migration and T Cell Activation In Vivo
DCs were treated with 64 µM of 4µ8c, 5 µM of MKC-3946, or an
equivalent volume of vehicle (DMF) for 1 h and then infected at an
MOI 3 with HSV-1 KOS, or HSV-2 G for 1 h (adsorption) at 37°C.
After 6 h of treatment, 5 x 105 treated DCs in 50 ml were stained
with 0.5 mM of CFSE and injected in the hind limb footpads of
C57BL/6 mice as previously reported (52). Two days later, mice
were euthanized and popliteal LNs were surgically removed and
homogenized in a single cell suspension to evaluate the presence of
CFSE+ DCs in these tissues using antibodies against CD11c and
MHC-II (I-Ab) by flow cytometry using a FACSVia flow
cytometer (BD Biosciences). For assessing T cell activation in
vivo, mice were inoculated in the hind limb with DCs as indicated
above and simultaneously transferred with dye-stained virus-
specific T CD4+ and CD8+ cells. Popliteal LNs were extracted
and processed 48 h later to analyse T cells using the following
surface markers: CD4, CD8, CD69, and CD71 (BioLegend) by
flow cytometry in a BD LSRFortessa X-20 (BD Biosciences). To
assess the migration of different populations of endogenous DCs
from the skin into the corresponding infiltrating lymph nodes
after HSV infection, mice were inoculated in the footpads with 1 x
106 PFU of HSV-1 KOS, 65.3 ng of 4µ8c or 9.5 ng of MKC-3946
and 5.6 ng of CFSE in 50 µl PBS. 24 h later, popliteal LNs were
extracted, processed, and analyzed by flow cytometry to determine
the presence of CFSE+ DCs using antibodies against CD11c,
MHC-II (I-Ab), CD103 and CD207 (BioLegend).

Statistical Analyses
Statistical analyses between experimental groups were assessed
either by unpaired Student’s t-test (bar graphs), one-way analysis
of variance (ANOVA) with Bonferroni’s multiple comparison
test (three or more groups), or two-way ANOVA with Tukey’s
multiple comparison test (two independent variables, with a
confidence interval of 95%), as indicated, using GraphPad Prism
(GraphPad Software).
RESULTS

Pharmacological Inhibition of the RNAse
Endonuclease Activity of IRE-1a in DCs
Reduces HSV-Induced Cell Death
Based on our previous finding that wild-type (WT) HSV-2
triggers significant splicing of the XBP1 mRNA transcript in
virus-infected DCs, as well as cell death (17), we sought to assess
the contribution of IRE-1a activation of the UPR over DC
viability and function during HSV-1 and HSV-2 infection.

First, we assessed whether inhibition of the endonuclease
activity of IRE-1a impacts DC viability upon HSV infection. For
this, DCs were treated either with 4µ8c or MKC-3946 (herein
Frontiers in Immunology | www.frontiersin.org 4
MKC), which inhibit the RNase endonuclease activity of IRE-1a
and block the splicing of the mRNA of XBP1 (53, 54). DCs were
treated with 4µ8c or MKC 1 h before infection with HSV-1 or
HSV-2, while DCs treated with vehicle (DMF) were included as a
control. As shown in Figure 1A, HSV infection of untreated DCs
caused a significant reduction in the viability of these cells 24 h
after viral inoculation, as determined by flow cytometry.
However, when cells were treated with 4µ8c or MKC before
HSV infection, DC viability was significantly higher than that
observed in vehicle-treated and HSV-infected cells. Because
HSV-induced DC death has been reported to be mediated by
caspase-3 in murine DCs, we also measured the activation of this
pro-apoptotic factor in HSV-infected DCs treated or not with
4µ8c or MKC. As observed in Figure 1B, 4µ8c- and MKC-
treated cells displayed reduced caspase-3 activity after HSV
infection in comparison to vehicle-treated and HSV-infected
DCs, which is consistent with the observation that the IRE-1a
inhibitors promoted increased DC viability upon HSV infection.

Secondly, to have a better understanding of the effects of
blocking the endonuclease activity of IRE-1a during HSV
infection in DCs, we evaluated the maturation of these cells by
assessing the surface expression of costimulatory molecules, as
well as the histocompatibility molecules MHC-I and MHC-II.
Interestingly, we observed that DCs treated with 4µ8c orMKC and
then infected with either, HSV-1 or HSV-2 displayed significantly
higher levels of MHC-I, MHC-II, CD80, and CD86, except for
HSV-2 infection and MHC-II, as compared to HSV-infected DCs
that did not receive any drug treatment (Figure 2A). Furthermore,
we evaluated the secretion of cytokines by these cells into the
media and found that IL-6, but not IL-10 or IL-12, was
significantly increased by those cells that were treated with 4µ8c
or MKC and then infected with HSV (Figure 2B).

Overall, these results suggest that IRE-1a activation seems to
play an important role in the outcome of DCs after HSV
infection, with the activation of IRE-1a negatively modulating
DC viability, maturation and cytokine secretion. Importantly,
DC death induced by HSVs seems to be highly dependent on this
pathway upon infection.

Pharmacological Inhibition of the
RNAse Endonuclease Activity of
IRE-1a in DCs Inhibits the Replication
of HSV-1 and HSV-2
To evaluate whether IRE-1a plays a role in viral replication in
DCs inoculated with HSV-1 or HSV-2, we assessed whether 4µ8c
or MKC treatment affects virus yields. As observed in Figure 3A,
we observed that IRE-1a inhibition with these drugs significantly
decreased the output of infectious HSV-1 and HSV-2 particles
recovered from the supernatants of infected DCs. Additionally,
we assessed whether DCs treated either with 4µ8c or MKC, and
then infected with HSV-1 or HSV-2 viruses encoding GFP
reporter genes affected GFP-derived fluorescence in these cells
24 h post-infection. As shown in Figure 3B, inhibition of the
endonuclease activity of IRE-1a caused a significant decrease in
GFP expression, as compared to HSV-infected cells that were not
treated with any drug. Furthermore, 4µ8c or MKC treatment
January 2022 | Volume 12 | Article 764861
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significantly decreased the amount of viral genome copies (UL30
gene) detectable in the infected DCs at 24 h post-infection
(Figure 3C). Therefore, these results suggest that the
endonuclease activity of IRE-1a in HSV-infected DC cultures
supports the replication of HSVs, along with favoring infectious
particle output from these cells.

Inhibition of the RNAse Endonuclease
Activity of IRE-1a Enables HSV-Infected
DCs to Activate CD8+ T Cells In Vitro
Because the pharmacological inhibition of IRE-1a negatively
affects the replication of HSV in DCs, while favoring cell viability,
Frontiers in Immunology | www.frontiersin.org 5
we evaluated if the inhibition of IRE-1a recovers key DC
functions after HSV infection, such as their capacity to activate
T cells. Therefore, we analyzed whether inhibition of IRE-1a
could affect the capacity of DCs to activate virus-specific CD8+ T
cells. To assess this possibility, we performed DC-T cell
cocultures using transgenic CD8+ T cells that recognize
epitopes derived from the HSV glycoprotein B (gB), presented
in MHC-I molecules (46). Importantly, supernatants recovered
from DC-T cell cocultures with HSV-infected DCs that were
treated with the IRE-1a inhibitors displayed significantly more
IL-2 (Figure 4A) and IFN-g (Figure 4B) than supernatants of
HSV-infected DCs alone. This finding is in line we the above-
mentioned observation that DCs treated with the IRE-1a
inhibitors and infected with HSV-1 display significantly more
MHC-I than HSV-infected DCs that were not treated with any
drug. Furthermore, we analyzed the proliferation of T cells
present in the cocultures using CFSE and found that virus-
specific CD8+ T cells displayed significantly increased
proliferation when cocultured with HSV-infected DCs that
were treated with any of the two inhibitors of IRE-1a
(Figure 4C). This result is consistent with the detection of
increased percentages of T cells expressing on their surface
CD25, the IL-2 receptor which is associated with T cell
activation (Figure 4D), more than T cells obtained from
cocultures with DCs that were infected with HSV-1 or HSV-2
and not treated with any of the assessed drugs. Similarly, a higher
percentage of CD8+ T cells recovered from cocultures with DCs
treated with the IRE-1a inhibitors were positive for CD71,
another T cell activation marker, with only HSV-1-infected
treated with MKC not showing significant differences as
compared to the corresponding controls (Figure 4E). No
differences were observed between cocultures when assessing
the T cell activation marker CD69 (Supplementary Figure 1A).
Finally, to assess the acquisition of molecular markers that are
associated with effector memory T cell functions that might
relate to cellular functions in vivo, we assessed the expression of
CD44 and CD62L in CD8+ T cells in the cocultures.
Interestingly, we observed increased percentages of CD8+ T
cells expressing CD62Llow/CD44 high in the DC-T cell
cocultures with IRE-1a inhibitor-treated and HSV-infected
DCs, as compared to HSV-infected DCs alone with no drug
treatment (Figure 4F). These results suggest a robust T cell
activation. In sum, these results indicated that DC treatment with
IRE-1a RNase endonuclease inhibitors before HSV infection
increases their capacity to activate virus-specific CD8+ T cells, as
compared to untreated or vehicle-treated HSV-infected DCs.

Inhibition of IRE-1a Promotes CD4+

T Cells Activation by HSV-Infected
DCs In Vitro
Subsequently, we proceeded to evaluate the role of IRE-1a on the
HSV-1- and HSV-2-infected DCs to activate virus-specific CD4+

T cells. Similar to the DC-CD8+ T cell cocultures, we performed
DC-T cell cocultures using transgenic virus-specific CD4+ T cells
that recognize a specific epitope of the HSV glycoprotein D (gD)
presented in MHC-II molecules (55). Importantly, we found that
A

B

FIGURE 1 | Inhibition of IRE-1a increases the viability of DCs infected with
HSV-1 or HSV-2. (A) DCs were pre-treated with 4µ8c (64 µM) or MKC-3946
(5 µM) for 1 hour and then infected with HSV-1 KOS or HSV-2 G at an MOI
3. Cell viability was determined by flow cytometry using Zombie® staining
over CD11c+/MHC-II+ cells. (B) Caspase-3 activity in DC cultures 24 h after
HSV-1 or HSV-2 infection was assessed by analyzing the fluorescence
derived from the Ac-DEVD-AFC caspase-3 substrate, using a multi-mode
plate reader. UT, DMF and UI correspond to untreated, vehicle-treated and
uninfected DCs, respectively. Data are means ± SEM of three independent
experiments. One-way ANOVA and Bonferroni’s multiple comparison test
were used for statistical analyses (***p < 0.001).
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in cocultures with DCs treated with either of the IRE-1a
inhibitors and infected with HSV-1 or HSV-2, significantly
more CD4+ T cell activation was observed, as compared to
cocultures with untreated and HSV-infected DCs. Indeed, the
supernatants obtained from DC-T cell cocultures with DCs
treated with 4µ8c or MKC and then infected with HSV
displayed significantly more IL-2 than those from cocultures
with vehicle-treated DCs and HSV infection (Figure 5A). In
addition, similar to the results reported for the CD8+ T cells, we
found significantly higher proliferation levels of virus-specific
CD4+ T cells in the cocultures with DCs treated with inhibitors
for IRE-1a and infected with HSV, as compared to HSV-infected
DCs without any drug, which showed lower levels of
proliferation (Figure 5B). Moreover, the percentages of virus-
specific CD25+ T cells were higher in the cocultures with the IRE-
1a inhibitors, as compared to T cells obtained from cocultures
with HSV-1 or HSV-2 infected DCs without any drug, as
measured by flow cytometry (Figure 5C). We further observed
increased percentages of virus-specific CD4+ T cells positive for
Frontiers in Immunology | www.frontiersin.org 6
CD71 in the cocultures of 4µ8c- or MKC-treated and HSV-
infected DCs, as compared to cocultures without these inhibitors
(Figure 5D). For CD69+ expression in CD4+ T cells, we only
observed significant differences in the percentages of CD69+

CD4+ T cells in the cocultures with DCs treated with 4µ8c and
infected with HSV-1, as compared to the other coculture
conditions (Supplementary Figure 1A). Similar to the results
with the CD8+ virus-specific T cells described above, increased
percentages of CD4+ T cells expressing CD62Llow/CD44 high we
observed in the DC-T cell cocultures with the IRE-1a inhibitor-
treated and HSV-infected DCs, as compared to HSV-infected
DCs with no drug treatment (Figure 5E). Finally, we evaluated
the secretion of the cytokines IFN-g, IL-4 and IL-17 in these
cocultures to determine the polarization phenotype of the
activated CD4+ T cells. Overall, we found significantly
increased levels of IFN-g secretion in the T cells cocultured
with DCs treated with 4µ8c or MKC and then HSV-infected, as
compared to cocultures with HSV-1 or HSV-2 infected DCs
only (Figure 5F).
A

B

FIGURE 2 | IRE-1a inhibition in HSV-infected DCs promotes cell maturation and cytokine secretion. (A) Expression of surface maturation markers MHC-I (H-2Kb;
upper left panel), MHC-II (I-Ab; upper right panel), CD80 (lower left panel), and CD86 (lower right panel) determined by flow cytometry in DCs (gated on CD11c+/
Zombie- cells) at 24 h post-virus inoculation. (B) Supernatants from virus-inoculated DCs were assessed by ELISA to determine the presence of IL-6, IL-10 and
IL-12. Data are means ± SEM of three independent experiments. Two-way ANOVA and Tukey’s multiple comparison test were used for statistical analyses (*p <
0.05, ***p < 0.001, ns, non-significant).
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In summary, these results indicate that inhibition of the
endonuclease activity of IRE-1a previous to HSV infection
largely recovers the capacity of DCs to activate virus-specific
CD4+ T cells.

Inhibition of IRE-1a in HSV-Infected DCs
Enhances Their Migration Capacity and
Promotes Virus-Specific T Cell Activation
In Vivo
To gain a better understanding of the results described above, in
vivo experiments were performed to assess the migration capacity
of the treated DCs using a previously reported DC migration assay
(17, 52). DCs treated with 4µ8c or MKC and then infected with
HSV-1- or HSV-2- were stained with CFSE and inoculated into the
hind limb footpads of mice. Then, the popliteal lymph nodes
(pLNs) were recovered 48 h later to assess the migration of the
CFSE+ DCs to this tissue. As shown in Figure 6A, we observed a
significantly higher proportion of CFSE+ DCs in the pLNs when
these cells were treated with 4µ8c or MKC and then infected with
HSV, as compared to HSV-infected DCs alone. Furthermore, to
assess the capacity of the transferred DCs to activate T cells in vivo,
we measured the percentages of CD69+ and CD71+ virus-specific
CD8+ and CD4+ T cells, previously transferred into themice, in the
pLNs 48 h after inoculation of the DCs. In all cases, we observed
significantly higher percentages of CD69+/CD71+/CD8+

(Figure 6B) and CD69+/CD71+/CD4+ (Figure 6C) T cells in
mice inoculated with the DCs treated with the IRE-1a inhibitors
and HSV-infected, as compared to those inoculated with the HSV-
infected DCs that were not pharmacologically treated.
Additionally, we performed an in vivo assay to determine the
migration of local DCs, residing in the skin of the mice, to the
corresponding LNs when injecting the IRE-1a inhibitors at the site
of HSV-1 inoculation in the hindlimb footpads. Interestingly, in
this case we found that the injection of the inhibitors of IRE-1a in
the footpads, in which HSV-1 was also inoculated together with
the dye CFSE to track migrating DCs, promoted the migration of
DCs (CD11c+/MHC-II+) into the pLNs (Supplementary
Figure 2A), particularly dermal DCs (CD11c+/MHC-II+/
CD103+/CD207+) (Supplementary Figure 2B) and Langerhans
cells (CD11c+/MHC-II+/CD103-/CD207+) from the periphery
(Supplementary Figure 2C).

Altogether, these results suggest that the inhibition of the
endonuclease activity of IRE-1a in HSV-infected DCs, or at the
site of inoculation of HSV-1 recovers the migrating capacity of
DCs to the draining LNs and promotes the stimulation of virus-
specific T cells in vivo.
DISCUSSION

Herpes simplex viruses have evolved numerous molecular factors to
evade the host immune response and alter the optimal function of
immunecells.Notably,DCsareakeycomponent in the initiationand
regulation of the immune response against viruses, and HSVs target
these cells to interfere with their functions. HSV-1 and HSV-2
hamper numerous cellular processes in DCs and ultimately
A

B

C

FIGURE 3 | DC treatment with 4µ8c or MKC limits HSV-1 and HSV-2 yields
in virus-infected DCs. (A) Quantification of HSV-1 KOS and HSV-2 G plaque-
forming units (PFUs) recovered from the supernatants of DCs treated with
4µ8c or MKC and then infected with HSV-1 or HSV-2 24 h after infection.
(B) Expression of the GFP-fluorescent reporter protein encoded within the
genomes of HSV-1 K26GFP and HSV-2 (333)ZAG 24 h after infection of DC
cultures pre-treated with 4µ8c or MKC. (C) Analyses of HSV-1 KOS and
HSV-2 G genome copies by qPCR (UL30 gene). UT, DMF and UI correspond
to untreated, vehicle-treated and uninfected DCs, respectively. Data are
means ± SEM of three independent experiments. One-way ANOVA and
Bonferroni’s multiple comparison test were used for statistical analyses (*p <
0.05, ***p < 0.001, ns, non-significant).
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promote their death (12, 15), which may result in the inability of the
host to establish an effective and robust antiviral response against
these viruses (17). Because of the crucial role of DCs in establishing a
protective adaptive immunity against HSVs, it is important to
understand the mechanisms by which these viruses modulate DC
functionand to identifynovel strategies forpromoting their immune-
activating functions against these viruses (12, 16, 17, 56, 57).

Some reports suggest that HSV-1 infection disarms the UPR
response. Indeed, this was described for epithelial cells infected
Frontiers in Immunology | www.frontiersin.org 8
with HSV-1, in which only the ATF6 signaling pathway was
activated early during infection, yet without the concomitant
expression of target chaperones (42). A later study reported that
HSV-1 suppresses the IRE-1a signaling pathway in epithelial
cells thanks to the virion host shutoff protein (vhs, encoded by
the UL41 gene) by reducing XBP1 mRNA levels during ER-
induced stress (58). Another study further analyzed the roles of
the RNase and kinase activities of IRE-1a in the replication of
HSV-1 in endometrium epithelial cells, and found that activating
A

CB

E FD

FIGURE 4 | IRE-1a inhibition in HSV-infected DCs enables virus-specific CD8+ T cell activation. (A) IL-2 levels in the supernatants of cocultures of DCs infected with
HSV-1 KOS (left panel) or HSV-2 G (right panel) and virus-specific gBT-I CD8+ T cells. (B) Supernatants from CD8+ T cells cocultured with HSV-inoculated DCs were
assessed by ELISA for the presence IFN-g. (C) T cell proliferation (CFSE analysis in CD3+/CD8+-gated cells) using a CFSE dilution assay 72 h after coculture with
DCs treated with 4µ8c or MKC and then infected with HSV-1 KOS at an MOI 3. A representative histogram is shown in the left panel and quantification of the
percentages of proliferating cells in the right panel. (D) Surface expression of CD25 in CD3+/CD8+ T cells cocultured with DCs treated with 4µ8c or MKC, and then
infected with HSV-1 KOS or HSV-2 G. (E) Surface expression of CD71 in CD8+ T cells cocultured with DCs treated with 4µ8c or MKC, and then infected with HSV-1
KOS or HSV-2 G. (F) Surface expression of CD62L and CD44 in CD8+ T cells cocultured with DCs treated with 4µ8c or MKC, and then infected with HSV-1 KOS or
HSV-2 G. UT, DMF, UI, gB and ConA correspond to untreated, vehicle-treated, uninfected DCs, HSV gB peptide-treated DCs and concavalin A (ConA), respectively.
Data are means ± SEM of three independent experiments. One-way and two-way ANOVA and Tukey’s multiple comparison test were used for statistical analyses
(**p < 0.01; ***p < 0.001, ns, non-significant).
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the RNase activity of IRE-1a, or inhibiting the kinase activity of
IRE-1a led to reduced viral replication (59). The latter is
consistent with a recent study that reported that inhibition of
the RNase activity of IRE-1a reduces HSV replication within
infected cells. However, the observation was particularly
mediated by abolishing an anti-apoptotic effect in HSV-
infected cells (58). In contrast, a more recent study found that
treating the epithelial cell lines HeLa or HEC-1 cells with an ER
stress inhibitor, namely tauroursodeoxycholic acid (TUDCA),
increased eIF2a phosphorylation, which induced the
phosphorylation and initial activation of PERK, ATF6, and the
Frontiers in Immunology | www.frontiersin.org 9
ER sensor chaperone protein BiP. Consequently, BiP would bind
to the luminal domains of PERK or IRE-1a to inhibit their
activation during HSV-1 infection (60).

Although numerous reports suggest that HSV negatively
modulates the UPR response in infected epithelial cells, we
reported in a previous study that this may not be the case in
DCs (17). This notion is reinforced by the findings described
herein, which indicate opposing effects between DCs and
epithelial cells infected with HSV, as inhibiting the RNase
activity of IRE-1a with 4µ8c or MKC significantly reduced
virus yields in the former cells. Furthermore, these treatments
A B

C D E

F

FIGURE 5 | IRE-1a inhibition in HSV-infected DCs enables virus-specific CD4+ T cell activation. (A) IL-2 levels in the supernatants of cocultures with DCs infected
with HSV-1 KOS (left panel) or HSV-2 G (right panel) and virus-specific gDT-II CD4+ T cells. (B) Percentages of proliferating virus-specific gDT-II CD4+ T cells (CFSE
analysis in CD3+/CD4+-gated cells) 72 h after coculture with DCs treated with 4µ8c or MKC and then infected with HSV-1 KOS at an MOI 3. (C) Surface expression
of CD25 in CD3+/CD4+ T cells cocultured with DCs treated with 4µ8c or MKC, and then infected with HSV-1 KOS or HSV-2 G. (D) Surface expression of CD71 in
CD4+ T cells cocultured with DCs treated with 4µ8c or MKC, and then infected with HSV-1 KOS or HSV-2 G. (E) Surface expression of CD62L and CD44 in CD4+ T
cells cocultured with DCs treated with 4µ8c or MKC, and then infected with HSV-1 KOS or HSV-2 G. (F) The supernatants obtained from CD4+ T cells cocultured
with HSV-inoculated DCs were assessed by ELISA to determine the presence of IFN-g, IL-4 and IL-17. UT, DMF, UI, gD and ConA correspond to untreated, vehicle
treated, uninfected DCs, HSV gD peptide-treated DCs and concavalin A (ConA), respectively. Data are means ± SEM of three independent experiments. One-way
and two-way ANOVA and Tukey’s multiple comparison test were used for statistical analyses (*p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant).
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led to increased viability of DCs after infection, suggesting that
the activation of the IRE-1a pathway during HSV infection likely
directs the cell fate towards apoptosis. This effect is opposing to
that seen in other cells, such as murine embryonic fibroblasts
(MEFs), in which the inhibition of UPR is understood as a viral
mechanism to promote viral replication, by conferring the cells
increased resistance to apoptosis and hence, increased cell
survival serving as a substrate for the virus (45).

However, the activation of the UPR response can also lead to
apoptosis (30, 44), and the findings described herein are
somewhat in line with effects reported for other viruses on this
cellular process, such as the influenza A virus (36), and the
Japanese encephalitis virus (61), in which cases it was observed
that inhibition of XBP1 mRNA splicing was associated to
decreased viral replication, although those findings were
described in neuroblastoma cell lines. Overall, the differences
we observe in this study regarding the activation of the UPR are
likely dependent on the cell type, which adds on to other
differences observed for HSVs when comparing immune and
non-immune cell responses to these viruses. For instance, upon
infection HSVs elicit anti-apoptotic effects in epithelial cells and
neurons, but apoptotic outcomes in DCs (12, 15, 16) and T cells
(8). Interestingly, our findings suggest that IRE-1a-mediated
activation of the UPR response by HSVs in DCs is a mechanism
evolved by these viruses to hamper the T cell-activating functions
of these cells and, furthermore, elicit DC death. Previous reports
have evidenced that HSV impairs the capacity of DCs to activate
T cells and that this effect is likely mediated through the
apoptosis of both, DCs and T cells in cocultures, or by the
negative modulation of TCR signaling in T cells (62–64).
Although we observed some levels of caspase-3 activity herein
in the DCs treated with the IRE-1a inhibitors, despite increased
viability in these cells in these conditions, it is possible that these
Frontiers in Immunology | www.frontiersin.org 10
levels might be below the threshold for inducing apoptosis, while
these results could also account for other viral factors activating
this pathway or by unspecific effects elicited by these IRE-1a
inhibitors (65, 66).

On the other hand, the results described herein suggest that
HSVs induce the IRE-1a pathway in DCs to reduce antigen
presentation to virus-specific CD4+ or CD8+ T cells, supported
by the differences observed for MHC-I and MHC-II surface
expression in treated and infected-DCs. Importantly, these
results are consistent with a recent report associating decreased
MHC-I expression with IRE-1a activation in DCs (33).
However, based on our current results we cannot provide a
molecular mechanism relating the increased MHC expression
observed as a consequence of DC treatment with the inhibitors of
the endonuclease activity of IRE-1a. Interestingly, a recent study
reported that DCs inoculated with an HSV-1 mutant with the
gene encoding g34.5 deleted significantly improved DC outcome
and elicited protective antiviral immunity against viral challenge
(67). Noteworthy, the g34.5 factor negatively modulates the
PERK UPR response through the inhibition of eIF2a
phosphorylation, while promoting DC maturation through
TBK1 activation (68, 69). Nevertheless, it will be interesting to
determine if particular viral factors expressed in DCs versus
epithelial cells may play particular roles in activating the IRE-1a
pathway in DCs.

Importantly, previous reports indicate that T cell activation
in vivo during HSV infection requires that dermal DCs relay
HSV antigens to the lymph nodes by capturing HSV-infected
apoptotic Langerhans cells in the skin (70–72). Interestingly, in
this study we found that DCs treated with the IRE-1a inhibitors
and infected with HSV, that were inoculated in the hindlimb
footpads of mice, displayed an enhanced capacity to migrate to
the draining LNs when compared to HSV-infected DCs that
A B C

FIGURE 6 | Inhibition of IRE-1a in HSV-infected DCs promotes the migration of DCs from the skin to draining lymph nodes and the activation of virus-specific T
cells in vivo. (A) Migration of DCs treated with 4µ8c or MKC and then inoculated with HSV-1 or HSV-2, from the hindlimb footpads to draining popliteal lymph nodes
(pLNs). Inoculated DCs were stained with CFSE and detected in the draining lymph node (CFSE+-gated, then CD11c+/MHC-II+/Zombie–-cells-analysed). (B) CD69
and CD71 surface expression in virus-specific gBT-I CD8+ T cells in pLNs 48 h after the inoculation of IRE-1a inhibitor-treated and HSV-1 or HSV-2-infected DCs in
the footpads. (C) CD69 and CD71 surface expression in virus-specific gDT-II CD4+ T cells 48 h after the inoculation of IRE-1a inhibitor-treated and HSV-1 or HSV-2-
infected DCs in the footpads. One-way ANOVA with Tukey’s multiple comparison test were used for statistical analyses (*p < 0.05, ***p < 0.001). Data are means ±
SEM (n = 2 mice/group).
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were not treated with any drugs. This finding indicates that the
inhibition of IRE-1a in DCs infected with these viruses restores
an important function in these cells, which is generally
associated with antigen presentation to T cells in the LNs.
Indeed, this enhanced migration capacity of DCs was
accompanied with increased virus-specific T cell activation in
this tissue, suggesting that an anti-HSV response in these
animals was likely initiated by these DCs. However, whether
the T cell response induced by these DCs may be sufficient to
confer protection against a later challenge with HSV remains to
be determined in future experiments. Furthermore, we found
that the injection of the inhibitors of the endonuclease activity
of IRE-1a, together with HSV-1 in the skin promoted both,
Langerhans cell and dermal DC migration from the periphery
to draining LNs after HSV-1 infection, suggesting that the
presence of these drugs, at the site of infection with HSV-1,
affects the capacity of Langerhans cells to migrate the LNs,
allowing them to reach this tissue together with dermal DCs
and thus, IRE-1a inhibition may help bypass to some extent the
relay indicated above and favor HSV antigen presentation to T
cells. Nevertheless, whether the increased DC migration that
was observed in this assay is due to a direct inhibition of IRE-1a
in HSV-infected DCs, IRE-1a inhibition in other cell types
adjacent to the migrating DCs, or to effects of IRE-1a inhibition
on tissue inflammation in the skin upon HSV-1 infection
remains to be assessed experimentally.

Taken together, our results suggest that the IRE-1a pathway
likely plays an important role in the detrimental effects exerted
by HSV-1 and HSV-2 over DC function and consequently
virus-specific T cell activation. Altogether, our findings propose
that the IRE-1a pathway may be a relevant target for new
antiviral strategies aiming at improving the immune response
against HSVs.
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Supplementary Figure 1 | CD69 and CD71 expression on the surface of CD8+

and CD4+ T cells in cocultures with IRE-1a inhibitor-treated and HSV-infected DCs.
A. Surface expression of CD69 in CD3+/CD8+ T cells (left panel), or CD3+/CD4+ T
cells (right panel) cocultured with DCs treated with 4m8c or MKC, and then infected
with HSV-1 KOS or HSV-2 G. B. Mean fluorescence intensity (MFI) of CD69 staining
in CD3+/CD8+ T cells (left panel), or CD3+/CD4+ T cells (right panel) cocultured with
DCs treated with 4m8c or MKC, and then infected with HSV-1 KOS or HSV-2 G. C.
MFI of CD71 staining in CD3+/CD8+ T cells (left panel), or CD3+/CD4+ T cells (right
panel) cocultured with DCs treated with 4m8c or MKC, and then infected with HSV-
1 KOS or HSV-2 G. UT, DMF, UI and gB or gD correspond to untreated, vehicle-
treated, uninfected DCs, and gB- or gD-peptide treated DCs, respectively. Data are
means ± SEM of three independent experiments. One-way and two-way ANOVA
and Tukey’s multiple comparison test were used for statistical analyses (*p < 0.05,
***p < 0.001, ns, non-significant).

Supplementary Figure 2 | In vivo migration of local skin resident DC populations
into popliteal LNs after footpad injection with IRE-1a endonuclease inhibitors and HSV-1
inoculation. A. Detection of CD11c+/MHC-II+ migrating DCs from the hindlimb footpads
to pLNs 24 h after injection of HSV-1, 4m8c or MKC inhibitors and CFSE tracking dye
(CFSE+-gated cells analysed for CD11c+/MHC-II+/Zombie-). B. Detection of CD103+/
CD207+migrating dermal DCs from the hindlimb footpads to pLNs 24 h after injection of
HSV-1, 4m8c or MKC inhibitors and CFSE tracking dye (CFSE+-gated cells, analysed for
CD11c+/MHC-II+/CD103+/CD207+/Zombie-). C. Detection of CD103-/CD207+

migrating Langerhans cells from the hindlimb footpads to pLNs 24 h after injection of
HSV-1, 4m8c or MKC inhibitors and CFSE tracking dye (CFSE+-gated cells analysed for
CD11c+/MHC-II+/CD103-/CD207+/Zombie-). One-way ANOVA with Tukey’s multiple
comparison test were used for statistical analyses (*p < 0.05, ***p < 0.001, ns, non-
significant). Data are means ± SEM (n = 2 mice/group).
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