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The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and
internalize a variety of endogenous and pathogen-associated ligands. Because of these
properties, its role in endocytosis as well as antigen processing and presentation has been
studied intensively. Recently, it became clear that the mannose receptor can directly
influence the activation of various immune cells. Cell-bound mannose receptor expressed
by antigen-presenting cells was indeed shown to drive activated T cells towards a
tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of
the mannose receptor have been reported to be increased in patients suffering from a
variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we
recently demonstrated that the soluble mannose receptor directly promotes macrophage
proinflammatory activation and trigger metaflammation. In this review, we highlight the role
of the mannose receptor and other CLECs in regulating the activation of immune cells and
in shaping inflammatory responses.
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INTRODUCTION

The mannose receptor (MR), also termed CD206, is a member of the C-type lectin (CLEC) family.
Members of this family contain C-type lectin domains (CTLDs), which play an important function
in ligand recognition. Typically, type I transmembrane CLECs contain multiple CTLDs at their
extracellular region, whereas type II membrane CLECs only contain a single CLEC (Figure 1). In
addition, type II transmembrane CLECs can bear signaling motives at their cytosolic tail (Figure 1).

The MR is mainly expressed by subpopulations of macrophages, immature dendritic cells (DCs)
and endothelial cells (1, 2). Its expression level varies upon the situation and can be differentially
regulated by cytokines (e.g. IL-10, IL-4, IL-13 and IFNg), prostaglandins, LPS and the transcription
factor PPAR-g (3–7). Hence, MR expression is closely related to the activation status of the MR-
expressing cell.

The MR encompasses a nearly 175 kDa type I transmembrane protein, consisting of an N-
terminal cysteine-rich (CR) domain, a fibronectin (FN) type II domain, eight C-type lectin domains
(CTLDs), a transmembrane region and a short cytosolic region. Similar to most other CLECs, a
main feature of the MR is the recognition and internalization of specific ligands.
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Since every MR region has its own binding specificity, ligands
can vary substantially in their molecular structure. The cysteine-
rich domain mediates binding to sulphated sugars (8) including
glycosylated hormones, chondroitin sulphate and sulphated
LewisX and LewisA (9), but also specific proteins attached to
sulphated glycostructures, such as CD169 and CD45 (10). With
its fibronectin type II domain, the MR recognizes collagen
(especially type I-IV) (2, 11), and mediates collagen
internalization by macrophages and liver sinusoidal endothelial
cells (2). Its CTLDs are responsible for the recognition of
glycoconjugates. More precisely, CTLD4 binds to glycostructures
with terminal mannose, fucose or N-Acetylglucosamine (GlcNAc)
in a calcium-dependent fashion (12, 13). Since these sugar
moieties are often exposed on microorganisms, the MR
contributes to the clearance of a variety of infections, including
Candida albicans (14), Leishmania (15, 16), Mycobacterium
tuberculosis (17) and Klebsiella pneumoniae (18). Hence, the MR
can bind to and internalize a variety of both endogenous ligands
and pathogens (Figure 2).

Since the intracellular region of the MR lacks any known
signaling domains, no MR-intrinsic signaling has been reported
yet. Still, the presence of the MR has been linked to a direct
induction of several target genes (19–21), probably because the
MR might assist other receptors in their signaling cascade
(Figure 2). For example, it has been demonstrated that the MR
interacts with TLR2 after binding to Pneumocystis carinii and
stimulates a TLR2-mediated signaling cascade (22). The
molecular mechanisms enabling MR-mediated stimulation of
signaling events, however, remain to be elucidated.

Apart from its membrane-bound form, the MR can also be
proteolytically cleaved by metalloproteases and released into the
extracellular space as a soluble form (sMR) (Figure 2) (23, 24).
Consequently, sMR can be detected in the supernatant of MR-
Frontiers in Immunology | www.frontiersin.org 2
expressing cells and in the serum of mice and humans as a
soluble protein. Additionally, a recent study also indicated the
presence of sMR in extracellular vesicles (25).

As the sMR encompasses all extracellular regions of full
length MR, preserving its main ligand binding properties
(23, 24), this suggests that proteolytic cleavage must occur
directly after the transmembrane region, in close proximity to
the cell membrane. MR shedding occurs constitutively and levels
of sMR correlate with the amount of total MR expressed in the
cells (23). In addition to constitutive shedding in MR-expressing
cells, MR shedding is specifically stimulated by fungal particles
(P. carinii, Candida albicans, Aspergillus fumigatus and
zymosan) and requires Dectin-1-mediated signaling (9, 26).
However, whether this is due to activation of specific proteases
involved in MR shedding or to other reasons has not been
elucidated so far.
THE MR MEDIATES ANTIGEN UPTAKE
AND PROCESSING FOR CROSS-
PRESENTATION

Due to its ligand binding capacities and its role in the clearance
of multiple pathogens, the endocytic properties of the MR have
been extensively studied. Under normal conditions, the MR
localizes to the plasma membrane and in early endosomes,
from where it is constantly recycled, even in the absence of
ligands. Upon ligand binding, the MR is internalized in a
clathrin-dependent fashion, a process mediated by the
FENTLY motif in the cytoplasmic tail of the receptor. The
di-aromatic YF motif is responsible for its intracellular
trafficking into early endosomes (27).
FIGURE 1 | The CLEC family. Type I transmembrane CLECs typically contain multiple CTLDs at their extracellular region, whereas type II CLECs contain only one
CLEC. All CLECs display individual expression patterns. Parts of the figure were created using templates from Servier Medical Art, which are licensed under a
Creative Commons Attribution 3.0 Unported License; https://smart.servier.com. CTLD, C-type lectin domain; FN type II, fibronectin type II domain; CR, cysteine-rich
domain; CLEC, C-type lectin; ITAM, immunoreceptor tyrosine-based activation motif; ITIM, immunoreceptor tyrosine-based inhibitory motif; DC, dendritic cell; MF,
macrophage; FcRg, Fc receptor gamma chain; C, C-terminus; N, N-terminus.
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Specific intracellular routing of MR-internalized antigens into
early endosomes (28–33) was shown to have pronounced
consequences for its role in antigen presentation. In fact, MR–
internalized antigens are targeted towards a distinct non-
degradative early endosome population, where they are rescued
from lysosomal degradation and concomitant presentation on
MHC II molecules (28). Mechanistically, the MR has been
postulated to actively prevent the fusion of such early endosomes
with lysosomes (34, 35). From this early endosomal compartment,
MR-internalized antigens are predominantly processed for antigen
presentation on MHC I molecules, a process called cross-
presentation (Figure 2) (28, 36). Additionally, ligand binding to
the MR induces its ubiquitination, which in turn contributes to the
recruitment of the cross-presentation machinery. Interestingly, MR
cross-linking using antigens conjugated to MR-specific antibodies
can also induce lysosomal targeting and concomitant MHC II-
restricted presentation of the internalized antigens (37–39).
Additionally, antibody-mediated cross-linking of the MR
has been demonstrated to activate an anti-inflammatory
immunosuppressive program in antigen-presenting cells (APCs)
(19), pointing out the possibility that ligand binding and receptor
cross-linking might regulate the functional outcome of MR-
mediated antigen recognition. The role of the MR in antigen
uptake, processing and presentation, however, is extensively
described elsewhere (40–42) and is not a central topic of
this review.

In addition to its role in endocytosis, the MR has also been
postulated to be involved in macrophage migration, as MR-
deficient bone marrow-derived macrophages display increased
migration independent of a CSF-1 gradient (43). Although the
underlying molecular mechanisms remain to be identified, it is
thinkable that these effects were mediated by MR-mediated
interaction with collagen.
Frontiers in Immunology | www.frontiersin.org 3
MEMBRANE-BOUND MR ON ANTIGEN-
PRESENTING CELLS INDUCE T CELL
TOLERANCE

Apart from its function in antigen recognition, internalization
and processing for cross-presentation in APCs, the membrane-
bound MR has been shown to directly regulate the function of
other immune cells. Due to its association with antigen uptake
and presentation, the MR became an attractive receptor in
antigen targeting strategies. Such antigen targeting towards the
MR has been linked to the induction of antigen-specific tolerance
(44). In fact, in a mouse model of experimental autoimmune
encephalomyelitis, injection of mannosylated myelin peptides
surprisingly inhibited the onset of disease (45). Additionally, MR
engagement on monocyte-derived DCs contributed to the
induction of a regulatory phenotype (19, 46) and MR
expression is mainly restricted to immunoregulatory cells,
including tolerogenic DC subtypes, liver sinusoidal endothelial
cells and alternatively activated macrophages (47, 48), for which
the MR constitutes one of the main marker proteins.

Recent advances demonstrate that the membrane-bound MR
is not a mere marker for tolerogenic cells, but also plays an active
role in the induction of T cell tolerance (Figure 3) (11). Indeed,
CD8+ T cells activated by MR-expressing DCs displayed a clearly
reduced cytotoxicity. This impaired T cell activation was
mediated by a direct interaction of the membrane-bound MR
on APCs with CD45 on T cells. CD45 is an immune cell-specific
phosphatase which can be expressed as different isoforms
depending on the immune cell subset. CD45 isoforms differ in
the presence of the alternatively spliced exons A, B and C (49)
and are frequently used to identify or distinguish bone marrow-
derived immune cell subsets. Functionally, CD45 has been
shown to play an important role in signaling mediated by the
FIGURE 2 | Cellular functions of the MR. The membrane-bound MR can recognize extracellular ligands, leading to their internalization. Endocytosed antigens are targeted
into early endosomes, from which they are processed mainly for cross-presentation onto MHC I molecules and subsequent CD8+ T cell activation. Furthermore, the MR can
assist other molecules in their signaling cascade, like enhanced TLR2 signaling after recognition of P. carinii. Finally, the MR can be shed by metalloproteases and released
as a soluble form (sMR) in the extracellular space. MHC, major histocompatibility complex; MR, mannose receptor. Parts of the figure were created using templates from
Servier Medical Art, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.
October 2021 | Volume 12 | Article 765034
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T and B cell receptors (50), whereas little is known about the role
of CD45 in other immune cells. Importantly, the interaction of
membrane-bound MR with CD45 on CD8+ T cells during T cell
activation caused inhibition of its phosphatase activity, which
resulted in T cell reprogramming and a significant upregulation
of tolerance-associated genes. One of these genes encodes
CTLA-4, which was mainly responsible for the impaired T cell
cytotoxicity (11).

Surprisingly, MR-mediated inhibition of CD45 did not alter
T cell receptor (TCR) signaling, as TCR-induced Lck activity,
phosphorylation of ZAP70, LAT and ERK, intracellular calcium
release and NFAT activation were not clearly influenced by the
presence of the MR on the APC. However, transcription factor
binding prediction analysis at the CTLA-4 promoter identified B-
cell lymphoma 6 (Bcl-6), a transcription repressor normally
involved in the differentiation of T follicular helper cells (51), as
novel regulator of CTLA-4 expression. Using computational
analyses, Electrophoretic Mobility Shift Assay (EMSA) and
chromatin immunoprecipitation (ChIP) experiments, two Bcl-6
binding sites were identified within the CTLA-4 promoter. Indeed,
Bcl-6 recruitment towards the CTLA-4 promoter prevented
CTLA-4 transcription. Moreover, Bcl-6 expression was induced
Frontiers in Immunology | www.frontiersin.org 4
by CD45 phosphatase activity during T cell activation. Hence,
MR-mediated inhibition of CD45 prevented the induction of Bcl-6
in activated T cells, eventually leading to the expression of CTLA-4
and the induction of T cell tolerance (Figure 3) (11), which was
also confirmed in vivo. Injection of wild-type or MR-deficient
DCs, that were previously transduced with OVA-expressing
adenoviruses, resulted in an upregulation of CLTA-4 and
impaired cytotoxic activity of antigen-specific T cells after
priming by MR-expressing DCs (11). Accordingly, MR-deficient
mice displayed a higher capacity of clearing an adenoviral
infection when compared to wild-type mice (11), substantiating
a regulatory function of the membrane-bound MR in vivo.
sMR CORRELATES WITH
INFLAMMATORY DISEASES AND
INDUCES MACROPHAGE ACTIVATION

As mentioned above, the MR can be shed by proteolytic cleavage
and released into the extracellular space. In contrast to the
regulatory effect of the membrane-bound MR on T cell
activation, the soluble form of MR has rather been associated
with inflammation, as increased sMR serum levels have been
observed in patients suffering from diverse inflammatory diseases.

First evidence for an association between sMR serum levels
and disease progression came from a study in which increased
sMR serum levels were observed in hospitalized patients when
compared to a healthy control population (52). These differences
were already pronounced in endocrinological and hematological
patients, but became obvious in critically ill patients with sepsis
and severe liver disease. Accordingly, the highest sMR
concentrations were measured in the serum of patients from
the intensive care unit. Similar observations were made in
patients with liver cirrhosis, alcoholic liver disease and acute-
on-chronic liver failure, a condition characterized by acute
decompensation and organ failure following an extreme
inflammatory response. Here, sMR concentrations were
demonstrated to correlate with disease severity, portal
hypertension, gut permeability, bacterial translocation and
even mortality, displaying increased levels in non-survivors
(53–58). Additionally, a modest but significant gender-
independent correlation of sMR serum levels with age was
observed (52).

Increased sMR levels were also observed in patients with a
wide variety of inflammatory diseases, such as pulmonary
tuberculosis (59), pulmonary fibrosis (60), multiple myeloma
(61, 62), rheumatoid arthritis (63), chronic joint inflammation
(64), pneumonia (65, 66), interstitial lung disease (67, 68) and
gastric cancer (69). Strikingly, in these studies, sMR levels
positively correlated with disease severity and mortality. As
such, the sMR has been proposed as a new biomarker for
inflammation (56, 57, 69–71). In fact, for several inflammatory
diseases, including sepsis and pulmonary fibrosis, the sMR has
even been suggested to be a better biomarker than those
previously reported, such as sCD163, C-reactive protein or
October 2021 | Volume 12 | Article 765034
FIGURE 3 | Membrane-bound MR on antigen presenting cells induces CD8+

T cell tolerance. Upon CD8+ T cell activation in the absence of the MR (left),
expression of the transcriptional inhibitor Bcl-6 is induced. Bcl-6 binds to the
CTLA-4 promoter and prevents its expression. During T cell activation in the
presence of the MR (right), the MR on APCs interacts with CD45 on cytotoxic
T cells. Such interaction prevents the upregulation of Bcl-6 and induces
CTLA-4 expression and CD8+ T cell tolerance. APC, antigen presenting cell;
MR, mannose receptor; TCR, T cell receptor. Parts of the figure were created
using templates from Servier Medical Art, which are licensed under a Creative
Commons Attribution 3.0 Unported License; https://smart.servier.com.
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procalcitonin (60, 72). However, in all these studies, a functional
role of the sMR in the onset of these inflammatory diseases has
not been investigated so far.

The hypothesis of a putative functional role of sMR in
inflammatory diseases is further supported by observations
that MR-deficient mice are protected against inflammation-
mediated renal injury in a mouse model of crescentic
glomerulonephritis (CGN) (73). Macrophage infiltration in the
kidney plays a dominant role in the pathophysiology of CGN
(74, 75) and their phenotype is shaped by the kidney resident
mesangial cells (MCs) (76). Interestingly, the protective effect of
MR deficiency on CGN was associated with reduced macrophage
infiltration in the kidney and impaired MC-mediated
macrophage activation, as demonstrated by a reduction in
both TNF secretion and phagocytosis-induced reactive oxygen
species production. Although the potential contribution of
sMR deficiency to CGN protection was not considered, these
results provided the first evidence that MR may regulate
proinflammatory activation of macrophages.

Importantly, a recent study demonstrated that the sMR can
actually drive proinflammatory macrophage activation (77).
sMR induced an inflammatory phenotype of both murine and
human macrophages, as reflected by increased secretion of
proinflammatory cytokines (TNF, IL–6, IL–12 and IL–1b) and
a shift in cellular metabolism towards increased glycolysis (77), a
hallmark of proinflammatory macrophage activation (78). In
addition, RNAseq analyses also supported macrophage
reprogramming towards an inflammatory phenotype (77), as
the transcriptomic signature of sMR-treated macrophages
Frontiers in Immunology | www.frontiersin.org 5
displayed close similarities with the one of macrophages
treated with TNF, prostaglandin E2 and the TLR2 ligand
Pam3CSK4, a combination of stimuli used in a previous study
to mimic a macrophage phenotype associated with chronic
inflammation (79). Together, this demonstrates that sMR
triggers an inflammatory response in macrophages.

At a mechanistic level, and similar to the effect of membrane-
bound MR on T cells, sMR binds CD45 on macrophages, leading
to an inhibition of CD45 phosphatase activity (77). Using specific
inhibitors and siRNA-mediated downregulation of CD45, it was
confirmed that sMR-induced proinflammatory macrophage
activation was dependent on inhibition of CD45 (Figure 4). A
screening for overrepresented transcription factor motifs in the
promoter regions of all differentially expressed genes and
identified NF-kB as the major transcription factor involved in
sMR-induced macrophage activation. Accordingly, sMR
treatment resulted in downregulation of IkBa, an inhibitor of
NF-kB, and enhanced nuclear translocation of both NF-kB
subunits p65 and p50 as well as recruitment of p65 to the TNF
promotor. One of the known substrates of CD45 that has been
associated with activation of NF-kB is Src, a kinase that is
inactivated under homeostatic conditions by CD45-mediated
dephosphorylation (80). Activated Src was shown to
phosphorylate Akt (81), and both phosphorylated Src and Akt
were reported to promote NF-kB activation (82–85). Using a
combination of pharmacological and genetic tools, it was
demonstrated that sMR-mediated inhibition of CD45 indeed
resulted in a Src/Akt/NF-kB-mediated cellular reprogramming
toward an inflammatory phenotype (Figure 4) (77).
FIGURE 4 | The sMR induces proinflammatory activation of macrophages. Under homeostatic conditions (left), CD45 in macrophages dephosphorylates Src. At increased
sMR concentrations (right), binding of sMR to CD45 inhibits its phosphatase activity, leading to phosphorylation and activation of Src, which in turn activates an Akt/NF-kB
pathway, causing macrophage reprogramming towards an inflammatory phenotype. sMR, soluble mannose receptor. Parts of the figure were created using templates from
Servier Medical Art, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.
October 2021 | Volume 12 | Article 765034
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sMR IS A NOVEL DRIVER OF
METAFLAMMATION

Proinflammatory macrophage accumulation in metabolic tissues
is one of the hallmarks of obesity-induced metaflammation, a
chronic state of low-grade inflammation that is triggering
metabolic dysfunctions. Indeed, recruitment of CCR2+

monocytes to visceral white adipose tissue (WAT) and the
liver promotes tissue inflammation, insulin resistance and
impaired glucose homeostasis (86–89). This detrimental effect
is believed to be mainly driven by monocyte differentiation into
CD11c-expressing proinflammatory macrophages and enhanced
production of TNF and IL-1b, leading to inhibition of canonical
insulin signaling (90–92). Consequently, tissue-specific insulin
resistance promotes ectopic lipid deposition and the
development of hepatic steatosis, together contributing to
whole-body insulin resistance. In support of this, genetic or
pharmacological inhibition of CCR2-dependent monocyte
recruitment to WAT and liver was shown to mitigate tissue
inflammation and metabolic dysfunctions in obese mice (87,
88, 93).

In accordance with other inflammatory diseases discussed
above, we recently reported that serum sMR levels were
increased in high-fat diet (HFD)-fed obese mice and obese
humans, and positively correlated with adiposity (77). Given
that the sMR induces a pro-inflammatory phenotype in
macrophages as described above and proinflammatory
Frontiers in Immunology | www.frontiersin.org 6
macrophages drive insulin resistance in metabolic tissues, these
observations suggested the possibility that sMR-mediated
proinflammatory macrophage activation in obesity may
contribute to metabolic dysfunctions. Indeed, HFD-fed MR-
deficient mice exhibited reduced numbers of CD11c-expressing
obesity-associated macrophages in both WAT and liver, and were
protected against hepatic steatosis, insulin resistance and glucose
intolerance, independent of body weight changes (77)
(Figure 5A). Of note, acute diphtheria toxin (DT)-mediated
depletion of MR-expressing cells in obese CD206-DTR mice
was also previously reported to improve whole-body glucose
tolerance and insulin sensitivity when compared to wild-type
mice (94), further substantiating a role for the MR in regulating
metabolic homeostasis. In this study, the authors attributed the
improved metabolic phenotype of these MR-deficient mice to
increased proliferation and differentiation of adipocyte precursors
in WAT secondary to downregulation of transforming growth
factor (TGF)-b signaling pathway. However, since inflammatory
macrophages and proinflammatory gene markers, especially Tnf,
were also significantly reduced in WAT from obese MR-depleted
mice, at least part of these observations could also be due to
impaired MR-induced activation of macrophages.

More importantly, intraperitoneal administration of
recombinant sMR to healthy lean mice acutely increased
circulating proinflammatory cytokines (77), supporting that
sMR can also trigger proinflammatory macrophage activation
in vivo. As such, chronic treatment with sMR increased
A B

FIGURE 5 | The sMR in metaflammation. (A) Wild-type mice on HFD (left) have high serum sMR, which is associated with increased hepatic steatosis, CD11c+ KCs
and CD11c+ ATMs. Together, this is associated with increased insulin resistance and glucose intolerance. MR-deficient mice on HFD (right) have no serum sMR,
which is associated with protection against hepatic steatosis, lower CD11c+ KCs and ATMs. Together, this is associated with lower insulin resistance and glucose
intolerance. (B) sMR i.p. injections in mice on chow diet increased serum proinflammatory cytokines, associated with increased proinflammatory macrophages in
adipose tissue, both associated with mild insulin resistance. sMR i.p. injection in mice on HFD increased insulin resistance. ATMs; adipose tissue macrophages; i.p.,
intraperitoneal; HFD, high-fat diet; KCs, Kupffer cells; sMR, soluble mannose receptor. Parts of the figure were created using templates from Servier Medical Art,
which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.
October 2021 | Volume 12 | Article 765034
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adipose tissue macrophage numbers, WAT expression of
proinflammatory cytokines (Figure 5B) and reduced whole-
body insulin sensitivity in lean mice, a detrimental metabolic
effect that was even more pronounced when mice were
concomitantly fed a HFD (77). These findings unequivocally
identified the sMR as novel driver of macrophage activation
and metaflammation.
OTHER CLECs IN THE REGULATION OF
METAFLAMMATION

The proinflammatory effect of the MR on macrophages and its
role in the development of obesity-induced metaflammation
raises the question whether such properties are unique to the
MR or rather a general feature of CLECs.

In general, CLECs can play a role in different kinds of
immune responses. However, there are some striking
similarities in the regulation of immune cell function between
the MR and macrophage galactose-type lectin (MGL), another
CLEC member that is also highly expressed on alternatively-
activated macrophages. Similar to the MR, MGL lacks internal
signaling motifs, but has been reported to enhance TLR2-
mediated signaling (95). Additionally, membrane-bound MGL
on APCs interacts with CD45 on T cells, inhibiting its
phosphatase activity (96). Of note, in this study, the underlying
molecular mechanisms seem to involve reduced T cell receptor
signaling, and therefore differ slightly from MR-induced
T cell tolerance. Nevertheless, MGL-induced inhibition of
CD45 prevented effective activation of cytotoxic T cells (96).
Strikingly, the immunometabolic phenotype of obese MGL-
deficient mice resembles the phenotype of obese MR-deficient
mice (97). Upon HFD feeding, both genotypes display
reduced body weight gain, exclusively due to lower fat mass
accumulation, protection against hepatic steatosis, and improved
glucose tolerance and insulin sensitivity when compared to wild-
type mice. Interestingly, these metabolic features were associated
with reduced numbers of inflammatory macrophages in adipose
tissue and a tissue-specific decreased in gene expression of
Ccl2 (MCP-1) and Tnf (77, 97). Although a potential
interaction between MGL and CD45 on macrophages has not
been investigated yet, it is tempting to speculate that MGL may
inhibit CD45 phosphatase activity in macrophages, resulting in
proinflammatory macrophage activation. The absence of such an
interaction could potentially contribute to the protective
immunometabolic phenotype of obese MGL-deficient mice.
However, it is worth underlining that a soluble form of MGL
has not been reported so far, suggesting that MGL-mediated
effects, unlike those induced by the sMR, might require direct
cell-cell interaction.

Another CLEC that has been involved in metaflammation is
Dectin-1. As for MR-deficient mice, Dectin-1-deficient mice are
protected from HFD-induced obesity (98). Dectin-1 expression
was upregulated in WAT from obese mice and humans, and
associated with proinflammatory adipose tissue macrophages
Frontiers in Immunology | www.frontiersin.org 7
(ATMs). Accordingly, treatment with a Dectin-1 antagonist
improved insulin sensitivity in obese mice and reduced adipose
tissue CD11c+ obesity-associated macrophages, while treatment
with a Dectin-1 agonist did the opposite. However, since Dectin-
1 ligation induces cellular signaling that directly leads to
activation of NF-kB (99), it is likely that Dectin-1 promotes
metaflammation through a different molecular mechanism than
the MR. Nevertheless, increased metalloprotease-mediated
MR shedding in response to Candida albicans and b-glucan
particles was dependent on Dectin-1 and its intracellular
signaling pathway (9), which offers the possibility that the
immunometabolic phenotype of obese Dectin-1-deficient mice
may in part be explained by reduced sMR production.

Macrophage-inducible C-type lectin (Mincle) has also been
associated with a variety of inflammatory diseases, such as
rheumatoid arthritis, allergic contact dermatitis, hepatitis and
diet-induced obesity (100–103). Macrophage expression of
Mincle was shown to be induced by saturated fatty acids and
macrophage-adipocyte interactions (103). Accordingly, WAT
Mincle expression was localized to crown-like structures of
macrophages surrounding dying adipocytes during obesity
(104). Although Mincle-deficient mice display similar weight
gain compared to wild-type mice upon HFD feeding, obesity-
induced crown-like structures, hepatic steatosis and whole-body
insulin resistance and glucose intolerance are significantly
mitigated when compared to wild-type mice (104, 105). As
Mincle ligation induces FcRg-mediated signaling, eventually
resulting in activation of NF-kB in macrophages (99),
Mincle-mediated macrophage activation is probably occurring
via distinct molecular pathways, independent of CD45 and
the MR.

Of note, there is a variety of other CLECs that were associated
with metaflammation or chronic inflammatory diseases for
which the mechanistic underpinnings are poorly defined. For
example, expression of the lectin-like oxidatively-modified low-
density lipoprotein (Ox-LDL) receptor (LOX–1) – also named
CLEC8A – is increased in visceral WAT of HFD-fed obese mice
(106). Obese LOX-1-deficient mice display reduced HFD-
induced CCL2/MCP-1, macrophage inflammatory protein-1a
(MIP-1a) and IL-6 expression in WAT, suggesting a role for
LOX-1 in regulating adipose tissue inflammation. Interestingly,
LOX-1 is expressed on endothelial cells (107) and human
macrophages (108), and similar to the MR, it can be
proteolytically cleaved to release a soluble form (109, 110).
Although no functional role has been described for soluble
LOX-1 to date, it is known that cleavage of LOX-1 is triggered
by the pro-inflammatory factors oxLDL, C-reactive protein,
TNF, IL-8 and IL-18 and regulated by membrane cholesterol
(111–114). Its cleavage is mediated via serine proteases that have
been shown to be upregulated during obesity, potentially
increasing bioavailability of soluble LOX-1 in these conditions
(115). Interestingly, soluble LOX-1 serum levels have been
shown to be correlated with the occurrence and severity of a
variety of inflammatory cardiovascular diseases, including
stroke, arteriosclerosis and acute coronary syndrome (116–
122). Whether soluble LOX-1 is merely a biomarker for these
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diseases, or might be functionally involved in disease
progression, remains to be identified.

The Dendritic Cell-Specific Intercellular adhesion molecule-
3-Grabbing Non-integrin (DC-SIGN) - also termed CD209 or
CLEC4L - is increased on monocyte-derived dendritic cells (Mo-
DCs) from post-menopausal type 2 diabetic obese women, which
is thought to modulate their adhesion capacity to vascular cell
walls and migration to peripheral tissues (123). Besides this
association with obesity, there is limited data on the putative
role of DC-SIGN in the context of metaflammation. Similar to
the MR, DC-SIGN can be detected as soluble form (sDC-SIGN)
in serum (124) but its functions remain also largely unknown
and would definitely require dedicated studies.

In contrast to the abovementioned detrimental roles of
several CLECs in the context of obesity-induced metabolic
dysfunctions, in vivo overexpression or administration of a
soluble form of CLEC2 improved hepatic steatosis, hepatic
fatty acid oxidation and whole-body glucose tolerance (125,
126). CLEC2 is expressed on platelets, dendritic cells,
neutrophils and Kupffer cells, and its soluble form induced
alternative activation of hepatic Kupffer cells, a feature that was
postulated to drive the metabolic benefits, although this remains
to be firmly established.

In conclusion, the proinflammatory effects of sMR and its role
in obesity-induced metaflammation are not a general feature of
CLECs. However, while the number of studies is limited,
different CLECs have been linked to metaflammation, with the
majority playing detrimental roles in the control of insulin
sensitivity. Although some homogeneity in molecular
mechanisms might exist (e.g. immunometabolic phenotypes of
MGL-deficient and MR-deficient mice), other CLECs likely
aggravate metabolic dysfunctions independent of interaction
with CD45 on macrophages. As the conclusions from these
studies were mostly drawn using whole-body knockout mice,
future studies using conditional knockout models are warranted
to identify the cellular source and underlying molecular
mechanisms responsible for CLEC-mediated control of
metabolic homeostasis.
DISCUSSION AND FURTHER
PERSPECTIVES

Since the MR lacks signaling motifs, it was generally assumed
that it functions as a mere endocytic receptor, internalizing
extracellular material for clearance and antigen presentation.
Recent advances have made clear that the MR can actively shape
immune responses by directly regulating immune cell activity
(11, 73, 77). Until now, the membrane-bound MR has been
shown to induce T cell tolerance, whereas the sMR stimulates an
inflammatory response in macrophages, both via inhibition of
CD45. However, it remains unclear whether these observed
differences are merely due to a distinct cell type-dependent role
of CD45 or rather to different effects of the soluble versus
membrane-bound MR. As membrane-bound MR could cross-
link CD45 or alter its composition and clustering in the
Frontiers in Immunology | www.frontiersin.org 8
cell-membrane, a different response in terms of immune cell
activation compared to its soluble form could be possible. First
indications suggested that sMR might also promote T cell
tolerance (11), pointing out that the recipient cell might
determine the MR-induced effects rather than the form of MR
interacting with the cells. Future studies will have to validate this
hypothesis and show whether interaction of macrophages with
membrane-bound MR also results in the induction of an
inflammatory response. Similarly, the exact role of other
soluble CLEC receptors, such as LOX-1, needs to be
investigated carefully.

Moreover, it remains unclear whether the MR also influences
the functionality of other immune cells, like CD4+ T cells, DCs
and B cells. Since all these cells express CD45, a similar
regulation by interaction with MR could be possible.
Therefore, the identification of the CD45 isoforms interacting
with the MR needs to be monitored carefully, since these
isoforms differ substantially depending on the cell type and
inflammatory status.

Another important open question regarding increased sMR
serum concentrations during inflammation is the identification
of its source. As mentioned above, the MR is mainly expressed by
macrophages, DCs and endothelial cells (1, 2). During
metaflammation, we observed increased MR expression in liver
and adipose tissue but not spleen, in particular in macrophages
and liver sinusoidal endothelial cells (77). As such, it can be
expected that these cells are responsible for increased sMR
production, resulting in enhanced local and systemic sMR
concentrations and in macrophage-mediated metaflammation.
Since the expression of the MR is directly regulated by PPARg
(7), and free fatty acid-activated PPARg signaling is upregulated
in lipid-associated macrophages during obesity (127), this
transcription factor could be one of the key players in the
regulation of MR expression and shedding. It is thus tempting
to speculate that increased MR expression and hence sMR serum
levels might be a result of metaflammation-associated activation
of PPARg in macrophages. In addition, MR is constitutively
cleaved by yet unidentified metalloproteases (23, 24). Since
obesity was shown to alter the metalloprotease expression
profiles of adipose tissue and liver (128–130), it needs to be
investigated whether obesity-induced metalloprotease expression
in metabolic tissues may increase MR shedding.

Additionally, the correlation of sMR serum concentrations with
the inflammatory status of various human populations should be
monitored carefully and in an unbiased fashion, using a large and
representative cohort not selected for specific inflammatory
conditions. Naturally, future studies should address whether
sMR-mediated activation of macrophages plays a functional role
in the onset and progression of such conditions. In order to
experimentally address this putative function of the sMR in
different diseases, the availability of reliable methods to quantify
sMR serum levels is a prerequisite. For this purpose, ELISA-based
methods to quantify human and mouse sMR are commercially
available. Such ELISA kits have been reported manyfold to reliably
determine sMR levels in human serum (52). However, studies
reporting sMR levels in murine sera are rare, which might be
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explained by a lack of reliability of the available products. Indeed,
we recently developed a method based on immunoprecipitation
and fluorimetry to monitor murine sMR serum levels in the
context of metaflammation (77), as we obtained false positive
detection of sMR serum levels from MR-deficient mice using a
commercially available ELISA kit. However, since this technique is
elaborate and time-consuming, the establishment of a reliable
ELISA is of interest to monitor sMR in mouse serum in
future investigations.

In conclusion, should the sMR be confirmed to contribute to
the induction of inflammation in a broad spectrum of diseases, it
would definitely constitute a potential target for therapeutic
intervention. As such, approaches aimed at reducing,
eliminating or inactivating sMR might reduce macrophage
activation and could contribute to mitigation of disease. In
addition, the molecular mechanisms leading to increased sMR
serum concentrations are also of great interest, as these could
provide additional leads for therapeutic interventions.
Frontiers in Immunology | www.frontiersin.org 9
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