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Nicotinamide adenine dinucleotide (NAD+) is an important cofactor in many redox and
non-redox NAD+-consuming enzyme reactions. Intracellular NAD+ level steadily declines
with age, but its role in the innate immune potential of myeloid cells remains elusive. In this
study, we explored whether NAD+ depletion by FK866, a highly specific inhibitor of the
NAD salvage pathway, can affect pattern recognition receptor-mediated responses in
macrophages. NAD+-depleted mouse bone marrow-derived macrophages (BMDMs)
exhibited similar levels of proinflammatory cytokine production in response to LPS or
poly (I:C) stimulation compared with untreated cells. Instead, FK866 facilitated robust
caspase-1 activation in BMDMs in the presence of NLRP3-activating signals such as ATP
and nigericin, a potassium ionophore. However, this FK866-mediated caspase-1
activation was completely abolished in Nlrp3-deficient macrophages. FK866 plus
nigericin stimulation caused an NLRP3-dependent assembly of inflammasome
complex. In contrast, restoration of NAD+ level by supplementation with nicotinamide
mononucleotide abrogated the FK866-mediated caspase-1 cleavage. FK866 did not
induce or increase the expression levels of NLRP3 and interleukin (IL)-1b but drove
mitochondrial retrograde transport into the perinuclear region. FK866-nigericin-induced
mitochondrial transport is critical for caspase-1 cleavage in macrophages. Consistent with
the in vitro experiments, intradermal coinjection of FK866 and ATP resulted in robust IL-1b
expression and caspase-1 activation in the skin of wild-type, but not Nlrp3-deficient mice.
Collectively, our data suggest that NAD+ depletion provides a non-transcriptional priming
signal for NLRP3 activation viamitochondrial perinuclear clustering, and aging-associated
NAD+ decline can trigger NLRP3 inflammasome activation in ATP-rich environments.
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INTRODUCTION

Aging is a complex and multisystem process characterized by a
decline in the physiological integrity of an organism, leading to
tissue degeneration (1). Aging in itself is not a disease; however,
aged tissues are more susceptible to multiple disease-causing risk
factors (2). Aging is often accompanied by chronic low-grade
inflammation, known as inflammaging (3). Inflammaging can be
triggered by endogenous metabolites or cellular debris and
contributes to the etiology of major aging-associated diseases
(4–6). However, the molecular underpinnings of how aging-
related changes promote or propagate inflammation need
further investigation.

Intracellular nicotinamide adenine dinucleotide (NAD+) levels
steadily decline with age in both rodents and humans (7). NAD+ is
an essential electron acceptor in several redox reactions that
maintain intracellular homeostasis (8). NAD+ also functions as a
cofactor for non-redox NAD+-consuming enzymes, such as poly-
ADP-ribose polymerases (PARPs) and sirtuins (SIRTs) (9). NAD+

is synthesized either from tryptophan in the de novo pathway or by
recycling nicotinamide (NAM) in the salvage pathway (9). In
mammals, the salvage pathway is the predominant source of
NAD+ biosynthesis due to its high adaptability (7). Nicotinamide
phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for
NAD+ biosynthesis in the salvage pathway, converts NAM to
nicotinamide mononucleotide (NMN), which is subsequently
converted into NAD+ by NMN adenyltransferase (10). Reduced
NAMPT expression at both mRNA and protein levels has been
observed in multiple tissues during aging and is primarily
responsible for the aging-associated NAD+ decline (11–13).

NAD+ decline is implicated in the pathophysiology of various
diseases , inc luding metabol ic , card iovascular , and
neurodegenerative diseases (14). The supplementation of NAD+

using NAD+ pathway intermediates attenuates these degenerative
disorders (11). Thus, NAD+ biosynthesis can be a potent
therapeutic target for many aging-associated diseases. However, it
is unclear whether NAD+ depletion can trigger or promote chronic
proinflammatory responses that are closely associated with
increased susceptibility to aging-associated diseases. Of note, a
previous study showed that NAD+ depletion inhibits
lipopolysaccharide (LPS)-induced Toll-like receptor (TLR)
signaling in human monocytes (15). Similarly, inhibition of
NAMPT (using FK866, a NAMPT-specific inhibitor) modulated
the proinflammatory responses in macrophages (16). In this
context, we assessed whether FK866-induced NAD+ decline can
modulate pattern-recognition receptor (PRR)-mediated responses
in myeloid cells. Consequently, we propose that NAD+ depletion
can trigger NLRP3 activation in macrophages and induce in vitro
and in vivo inflammasome activation in the presence of NLRP3-
activating stimuli.
MATERIALS AND METHODS

Mice
C57BL/6 (Orient Bio) and Nlrp3 -/- (Jackson Laboratory) mice
were bred at Yonsei University College of Medicine under
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specific pathogen-free conditions. To obtain myeloid-specific
Sirt1-deficient mice (Sirt1fl/fl;LysM Cre mice), homozygous
Sirt1fl/fl mice (C57BL/6) were crossed with LysM Cre
transgenic mice (C57BL/6, Jackson laboratory). Mice aged 9–
12 weeks were used in the experiments. All experimental
procedures were approved by the Institutional Ethical
Committee, Yonsei University College of Medicine. Animal
experiments were performed in accordance with the guidelines
of the Institutional Ethical Committee. Mice were shaved 24 h
prior to injection, and intradermally administered with FK866 (7
mg/kg) once a day, for two consecutive days. After the last FK866
injection, ATP was intradermally administered (12.5 mg/kg) at
the same injection site. Six hours after ATP injection, the mice
were sacrificed and subjected to various analyses.

Reagents and Antibodies
FK866, lipopolysaccharide (LPS), nigericin, ATP, poly (dA:dT),
poly (I:C) and nicotinamide mononucleotide (NMN) were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Flagellin
purified from P. aeruginosa was obtained from In vivoGen (San
Diego, CA, USA). FK866 used in the in vivo experiments was
purchased from Cayman (Ann arbor, MI, USA). Ciliobrevin D
was obtained from Calbiochem (San Diego, CA, USA). Anti-
mouse caspase-1 and anti-mouse NLRP3 antibodies were
purchased from Adipogen (San Diego, CA, USA). Anti-
apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) antibody was purchased from Cell
Signaling Technology (Beverly, MA, USA). Anti-mouse IL-1b
antibody was obtained from R&D Systems (Minneapolis, MN,
USA). Anti-mouse gasdermin D (GSDMD) and anti-VDAC1
antibodies were purchased from Abcam (Cambridge, MA, USA).
Anti-mouse b-actin antibody was purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA).

Cell Culture
Mouse bone marrow cells were isolated from the femurs of
C57BL/6, Nlrp3 -/- or Sirt1 -/- mice and cultured in L929-
conditioned DMEM for 5–7 days to differentiate them into
bone marrow-derived macrophages (BMDMs). BMDMs were
maintained in L929-conditioned DMEM supplemented with
10% fetal bovine serum, and antibiotics. Immortalized NLRP3-
GFP-expressing BMDMs were provided by Dr. E.S. Alnemri
(Thomas Jefferson University, Philadelphia, USA).

Intracellular NAD+ Quantification
Intracellular NAD+ level was measured by NAD/NADH-Glo™

Assay kit (Promega, WI, USA), according to the manufacturer’s
instructions. Briefly, cells were grown in a 96-well plate. After
appropriate treatment, cells were washed and lysed in
bicarbonate buffer containing 1% dodecyl trimethyl
ammonium bromide, followed by treatment with 0.4 N HCl at
60°C for 15 min. After neutralization with 0.5 M Trizma base,
NAD/NADH-Glo™ Detection Reagent was added to each
sample. The plates were incubated at room temperature for 30
min, and the luminescence was recorded using a microplate
luminometer (Centro XS3 LB960, Berthold).
December 2021 | Volume 12 | Article 765477
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Assay of PRR-Mediated Response
To activate TLR or RIG-I-like receptor (RLR) signaling, cells
were treated with LPS or transfected with poly (I:C), respectively.
TLR- or RLR-mediated responses were determined by measuring
the extracellular secretion of IL-6 or TNF-a using a Quantikine
ELISA Kit (R&D Systems, Minneapolis, MN, USA) or cellular
mRNA expression of the cytokines using quantitative real-time
PCR. To induce NLRP3 inflammasome activation, cells were
treated with LPS, followed by treatment with ATP or nigericin.
To stimulate AIM2 or NLRC4 inflammasome, cells were
transfected with poly (dA:dT) or flagellin, respectively, using
Lipofectamine 2000. Inflammasome activation was determined
by the presence of active caspase-1 (p20) and active IL-1b (p17)
in the culture supernatants using immunoblotting and by
extracellular IL-1b quantification using ELISA.

Assay of NLRP3 Inflammasome Assembly
To measure the oligomerization of NLRP3, speck-like aggregates
of NLRP3-GFP were assessed using confocal microscopy, in
NLRP3-GFP-expressing BMDMs. To determine the
oligomerization of ASC, discuccinimidyl suberate (DSS,
Thermo Scientific)-mediated cross-linking assay was performed
as described previously (17).

Immunoblot Analysis
Cells were lysed in a buffer containing 25 mM Tris-Cl (pH 7.5),
150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS,
and protease inhibitors. Soluble lysates were fractionated using
SDS-polyacrylamide gel electrophoresis and transferred to
polyvinylidene difluoride membranes. Cell culture supernatants
were precipitated using a methanol/chloroform mixture as
described previously (18) and immunoblotting was performed.
All blot images are representative of at least three
independent experiments.

Cytokine mRNA Expression
Total RNA was extracted using TRIzol reagent (Invitrogen) and
reverse transcribed using a PrimScript RT Master Mix (Takara)
according to the manufacturers’ protocol. Template cDNA was
amplified using SYBR Premix Ex Taq (TaKaRa) by quantitative
real-time PCR. Primers used were as follows: 5′ - AGT TGC CTT
CTT GGGACT GA -3′ and 5′ - TCC ACGATT TCC CAGAGA
AC -3′ (mouse Il-6); 5′-GCC CAT CCT CTG TGA CTC AT-3′
and 5′-AGG CCA CAG GTA TTT TFT CG-3′ (mouse Il-1b); 5′-
CGT CAG CCG ATT TGC TAT CT-3′ and 5’-CGT CAG CCG
ATT TGC TAT CT-3’ (mouse TNF-a); 5′-CGC GGT TCT ATT
TTG TTG GT-3′ and 5′-AGT CGG CAT CGT TTA TGG TC-3′
(mouse Rn18s).

Immunofluorescence Assay
Cells were grown on coverslips in 12 or 24-well plates. Following
treatment, cells were fixed using 4% formaldehyde and
permeabilized using 0.2% Triton X-100. After blocking with 4%
BSA, cells were incubated with anti-Tom 20 antibody (Cell
signaling) and Phalloidin-Alexa488 (Invitrogen), followed by the
Cy3-conjugated anti-rabbit IgG (Jackson Immuno Research or
Invitrogen), and observed using a confocal microscope (Zeiss,
Frontiers in Immunology | www.frontiersin.org 3
LSM700 or LSM780). To quantify perinuclear mitochondria, the
ratio of Cy3 fluorescence intensity of the region surrounding nucleus
region (within 5 mm) to the total intracellular Cy3 fluorescence
intensity was calculated using ZEN microscopy software.

Detection of In Vivo Caspase-1 Activation
A Caspase-1-activatable probe was synthesized according to a
previous study (19). To detect active caspase-1 in the skin of
mice, caspase-1 probe (100 mg/100 ml of saline/mouse) was
intravenously injected via tail 2 h before measurement. In vivo
fluorescence in mouse skin was determined using an IVIS
spectrum In Vivo imaging system (PerkinElmer, Waltham,
MA, USA). The fluorescence intensity was analyzed using the
Living Image software.

Statistical Analysis
All values were expressed as the mean ± SEM. Data were analyzed
using one-way analysis of variance (ANOVA) with Dunnett’s
post-test for the comparison of all groups with control group or
two-way ANOVA with Bonferroni post-test for comparisons
between two groups. p values ≤ 0.05 were considered significant.
Analyses were performed using GraphPad Prism 5.
RESULTS

Intracellular NAD+ Depletion by FK866
Promotes Inflammasome Activation in the
Presence of ATP or Nigericin
Costimulation
Mouse BMDMs treated with FK866 (100 nM, 21 h), a highly
specific inhibitor of NAMPT, exhibited a significant reduction in
intracellular NAD+ (Figure 1A) but without any cytotoxic effects
(data not shown). We then examined the effect of NAD+ depletion
on the innate immune response in macrophages against the
following PRR ligands. FK866-induced NAD+ depletion did not
impair or increase the LPS-triggered induction of proinflammatory
cytokines such as IL-1b, IL-6, and TNF-a, as determined by their
cellular mRNA levels in macrophages (Figures 1B–D).
Subsequently, LPS-induced secretion of proinflammatory
cytokines was not affected by FK866 (Figures 1E, F). FK866-
pretreated BMDMs exhibited similar levels of poly (I:C)-triggered
IL-6 production compared with untreated cells (Figure 1G).
Meanwhile, FK866 pretreatment caused a slightly-increased
production of type 1 interferon in response to LPS stimulation
(Supplementary Figure 1). These data suggest that NAD+

depletion did not significantly impair both TLR4- and RLR-
mediated responses in macrophages.

The effect of NAD+ decline on inflammasome signaling was
then assessed. FK866 pretreatment regardless of LPS
costimulation failed to induce IL-1b secretion by BMDMs
(Figure 1H), suggesting that NAD+ depletion alone cannot
trigger inflammasome activation. Additionally, FK866-
pretreated BMDMs showed normal caspase-1 activation in
response to NLRP3-activating stimulus (LPS + ATP)
(Figure 1I). Similarly, NAD+ depletion did not affect both
December 2021 | Volume 12 | Article 765477
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AIM2- and NLRC4-mediated inflammasome activation
promoted by the transfection of poly (dA:dT) and flagellin,
respectively (Figure 1J).

Next, we examined whether NAD+ depletion can act as an
inflammasome-priming signal. Treatment with NLRP3-
activating second signal alone, such as ATP and nigericin, did
not induce caspase-1 activation but caused robust caspase-1
cleavage following FK866 pretreatment (Figures 1K, L). These
NLRP3-activating second signals (ATP and nigericin) were
thought to contribute to the NLRP3 activation via inducing
potassium efflux (20). ATP or nigericin stimulation in NAD+-
depleted BMDMs resulted in the cleavage of gasdermin D
(GSDMD), a specific caspase-1 substrate (Figures 1K, L).
Moreover, FK866 treatment induced a time-dependent
Frontiers in Immunology | www.frontiersin.org 4
caspase-1 activation in BMDMs (Figure 1M). These results
indicate that NAD+ depletion followed by NLRP3-activating
second signals can trigger inflammasome activation.
NAD+ Depletion Promotes NLRP3-
Dependent Inflammasome Activation in
the Presence of an NLRP3 Stimulator
To examine whether FK866 functions as a priming signal for
NLRP3 activation, we assessed the induction of NLRP3 or
proinflammatory cytokines in BMDMs. However, unlike LPS,
FK866 did not upregulate the expression of inflammasome
components, such as NLRP3, ASC and pro-IL-1b in BMDMs
(Figure 2A). In addition, FK866 treatment failed to induce or
A B C D E

G H I

K L MJ

F

FIGURE 1 | FK866-induced NAD+ depletion promotes caspase-1 activation in macrophages costimulated with ATP or nigericin. (A) Quantification of intracellular NAD+

level in mouse BMDMs treated with FK866 (100 nM) for the indicated times (n = 2). (B–D) Quantification of Il-1b (B), Il-6 (C), or Tnf-a (D) mRNA levels in mouse BMDMs
pretreated with FK866 (100 nM, 21 h), followed by LPS treatment (0.1 µg/ml, 3 h, n = 3). (E–G) Quantification of IL-6 or TNF-a in culture supernatants of mouse BMDMs
treated with LPS (0.1 µg/ml, 3 h) or transfected with poly (I:C) (1 µg/ml, 3 h) in the presence or absence of FK866 pretreatment (n = 3). (H) Quantification of IL-1b in
culture supernatants of mouse BMDMs treated with FK866 (100 nM, 4 h) or LPS (0.25 µg/ml, 2 h) alone, LPS followed by FK866 (4 h), or LPS followed by ATP (3 mM,
0.5 h) treatment (n = 4). (I) Immunoblots from mouse BMDMs treated with FK866 (21 h), followed by LPS and ATP (3 mM, 1 h) treatment. (J) Immunoblots from mouse
BMDMs transfected with poly (dA:dT) (1 µg/ml, 2 h) or flagellin (0.25 µg/ml, 2 h) in the presence or absence of FK866 pretreatment. (K, L) Immunoblots from mouse
BMDMs treated with ATP (3 mM, 1 h) or nigericin (5 mM, 1 h) in the presence or absence of FK866 pretreatment (100 nM, 21 h). (M) Immunoblots from mouse BMDMs
treated with nigericin (5 mM, 1 h) in the presence of FK866 pretreatment (100 nM, 4~21 h). Cell culture supernatants (Sup) or cell lysates (Lys) were immunoblotted with
the indicated antibodies. **P < 0.005, ***P < 0.001, n.s., not significant.
December 2021 | Volume 12 | Article 765477
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increase IL-6 and P2X7 mRNA production (Figure 2B and
Supplementary Figure 2). These findings suggest that FK866-
induced NAD+ decline might act as a priming signal for NLRP3
activation in the absence of transcriptional activation.

Further, we examined whether NAD+ depletion triggers
NLRP3-dependent inflammasome activation using Nlrp3-
deficient BMDMs. FK866 along with ATP or nigericin
treatment led to the robust cleavage of caspase-1 and GSDMD
in wild-type BMDMs. However, FK866-mediated inflammasome
activation was clearly abrogated in Nlrp3-knockout cells
(Figures 2C, D). The assembly of NLRP3 inflammasome was
measured by the oligomerization of ASC, an essential adaptor
molecule of inflammasome, and NLRP3. FK866 + nigericin
treatment induced the oligomerization of ASC in wild-type but
not inNlrp3-deficient BMDMs (Figure 2E). Furthermore, FK866
priming followed by nigericin treatment led to robust formation
of speck-like NLRP3 aggregates in BMDMs expressing NLRP3-
GFP (Figure 2F). Collectively, these results demonstrate that
Frontiers in Immunology | www.frontiersin.org 5
NAD+ depletion, followed by NLRP3-activating stimulation,
promotes the assembly and activation of NLRP3 inflammasome.

NAD+ Supplementation by
NMN Abrogates FK866-Mediated
NLRP3 Inflammasome Activation
ToconfirmwhetherNAD+depletion is pivotal for FK866-mediated
inflammasome activation, NMN was exogenously added to
BMDMs. NMN restored the intracellular NAD+ levels against
FK866-induced NAD+ depletion in BMDMs (Figure 3A). In
particular, NAD+ restoration clearly abolished the FK866 + ATP-
or nigericin-induced caspase-1 activation (Figures 3B, C),
respectively, indicating that intracellular NAD+ is critical for
FK866-mediated NLRP3 inflammasome activation. However,
NMN treatment did not affect LPS + nigericin-induced
inflammasome activation (Figure 3D). These results indicate that
intracellular NAD+ decline is critical for FK866-driven NLRP3
inflammasome activation in macrophages. Of interest, LPS
A B C

D

E F

FIGURE 2 | FK866-induced NAD+ depletion promotes NLRP3-mediated inflammasome activation in the presence of ATP or nigericin stimulation. (A) Immunoblots
from the cell lysates of mouse BMDMs treated with FK866 (100 nM, 6 or 20 h) or LPS (0.1 µg/ml, 3 h). (B) Quantification of Il-6 mRNA levels in mouse BMDMs
treated as in (A). (C, D) Immunoblots of Nlrp3 +/+ or Nlrp3 -/- mouse BMDMs treated with ATP (3 mM, 1 h) or nigericin (5 mM, 1 h) alone, or FK866 (100 nM, 21 h) or
LPS (0.1 µg/ml, 3 h), followed by ATP or nigericin treatment. (E) Immunoblots of disuccinimidyl suberate (DSS)-crosslinked pellets (pel + DSS) or cellular lysates (Lys)
from Nlrp3+/+ or Nlrp3-/- mouse BMDMs treated with FK866 or LPS, followed by treatment with nigericin. (F) Representative immunofluorescence images of NLRP3-
GFP-expressing BMDMs treated with FK866 or LPS, followed by nigericin treatment. Arrows indicate speck-like aggregates of NLRP3 (green). DAPI represents the
nuclear signal (blue). Scale bars, 10 mm. Cell culture supernatants (Sup) or cell lysates (Lys) were immunoblotted with the indicated antibodies.
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treatment slightly increased intracellular NAD+ level in BMDMs
(Supplementary Figure 3). This result suggest that LPS priming
does not mediate NAD+ depletion for NLRP3 activation.

Intracellular NAD+ Depletion Drives
Mitochondrial Translocation to
Perinuclear Region
To address the non-transcriptional priming role of FK866 treatment,
we assessed the involvement of SIRT1 in FK866-induced NLRP3
activation using myeloid-specific Sirt1-deficient BMDMs. NAD+

depletion results in the decrease in SIRT1 activity. Therefore, we
checked whether SIRT1 inactivation can act as a priming signal for
NLRP3 activation. However, FK866-mediated caspase-1 activation
remained unchanged regardless of SIRT1 expression
(Supplementary Figure 4). Furthermore, ATP alone was not able
to induce caspase-1 activation in Sirt1-deficient BMDMs
(Supplementary Figure 4). These findings indicate that SIRT1 is
not involved in the FK866-induced inflammasome activation.

NLRP3-activating signals are known to induce mitochondrial
retrograde transport into the perinuclear region to form
mitochondria-associated membrane (MAM), facilitating NLRP3-
ASC association to form NLRP3 inflammasome inside MAM (21,
22). Intriguingly, we observed that FK866 treatment resulted in
mitochondrial translocation into the perinuclear regions
(Figures 4A–C). Furthermore, NMN supplementation blocked
the FK866-induced mitochondrial translocation (Figure 4D and
Supplementary Figure 5). Additionally, the blockade of
mitochondrial retrograde transport by ciliobrevin D, a selective
inhibitor of dynein, abolished FK866/nigericin-induced caspase-1
activation (Figure 4E). These data indicate that intracellular NAD+

depletion drives mitochondrial translocation into the perinuclear
region associated with the activation of NLRP3.
FK866-Mediated NAD+ Depletion Promotes
In Vivo NLRP3 Inflammasome Activation
To validate the contribution of NAD+ depletion in NLRP3
activation under physiological conditions, we induced topical
Frontiers in Immunology | www.frontiersin.org 6
NAD+ depletion in mouse skin by intradermally injecting FK866.
FK866 caused negligible IL-1b production in the skin, but in the
presence of ATP costimulation, FK866 induced robust IL-1b
production in the skin (Figure 5A). However, there were no
differences in IL-6 production in the lesional skin between the
ATP alone and FK866-ATP-administered groups (Figure 5B).
These data indicate that FK866 with ATP costimulation can
trigger inflammasome activation in the skin. Meanwhile, ATP
injection appears to promote IL-6 production in the skin possibly
via inducing cell death. To examine whether the increased IL-1b
in the skin of FK866/ATP-injected mice is due to NLRP3
inflammasome activation, we examined cytokine production in
Nlrp3-deficient mice. Consequently, FK866 + ATP-mediated IL-
1b production was markedly abolished in the skin of Nlrp3-
knockout mice, but IL-6 production was similar between the two
mice groups (Figures 5C, D).

Toestablish the invivo relevanceofFK866-induced inflammasome
activation, we employed a selective caspase-1-activatable probe, which
emitsCy5.5fluorescence only in active caspase-1-containing cells (19).
Consistent with the above data, FK866/ATP intradermal
administration, but not FK866 nor ATP alone, caused robust
caspase-1 activation in the mouse skin (Figure 5E). However, this
FK866-mediated skin caspase-1 activation was not observed in the
Nlrp3-deficient mice (Figure 5F), indicating that NAD+ depletion
facilitates in vivo NLRP3-dependent inflammasome activation under
ATP costimulation.
DISCUSSION

NAD+ decline is considered an important trigger for aging-associated
pathophysiology (14). DecreasedmRNAandprotein level ofNAMPT
ispotentially implicated in the aging-associatedNAD+decline (12, 13).
Here, we employed FK866, a highly specific noncompetitive inhibitor
of NAMPT, to deplete intracellular NAD+ and examined the role of
NAD+ decline on the PRR-mediated response in macrophages.

Previous studies suggest that NAD+ homeostasis is closely
related to the immune potential and polarization status of
A B C D

FIGURE 3 | Restoration of NAD+ abolishes NLRP3-dependent inflammasome activation. (A) Quantification of intracellular NAD+ level in mouse BMDMs treated with
FK866 and NMN (100 or 500 mM) for 21 h, as indicated (n = 3). (B) Immunoblots from mouse BMDMs treated with FK866 and NMN (500 mM) for 21 h, followed by
nigericin treatment (5 mM, 1 h). (C) Immunoblots from mouse BMDMs treated with FK866 and NMN (500 or 1000 mM) for 21 h, followed by ATP treatment (3 mM, 1 h).
(D) Immunoblots from mouse BMDMs treated with FK866 and NMN (500 mM) for 21 h or LPS and NMN for 3 h, followed by nigericin treatment (5 mM, 1 h). Cell culture
supernatants (Sup) or cell lysates (Lys) were immunoblotted with the indicated antibodies.
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macrophages (23). In particular, they showed that FK866 treatment
impairs inflammatory macrophage polarization (16), attenuates
LPS-induced TLR4 signaling in human primary monocytes (15),
and reduces phagocytic activity of macrophages (24), suggesting
that intracellular NAD+ depletion might reduce the
proinflammatory potential of macrophages. In contrast, results
from our study indicate that NAD+ depletion did not significantly
impair TLR4 or RIG-I signaling responses in BMDMs. We infer
that the role of NAD+ depletion in PRR-mediated immune
responses may be different depending on the cellular context.
More importantly, we found that NAD+ depletion acts a robust
non-transcriptional priming signal for NLRP3 inflammasome
activation in the presence of ATP or nigericin costimulation.

NLRP3 inflammasome is unique among PRRs, as it can sense
endogenous damage-associated molecular patterns (DAMPs)
that cause sterile inflammation (25, 26). We thus speculate that
NLRP3 inflammasome can be activated by aging-related factors
or alterations. In particular, aging-associated systemic TNF-a
upregulation primes NLRP3 inflammasome activation by
Frontiers in Immunology | www.frontiersin.org 7
upregulating NLRP3 expression (27). Further, macrophages
from aged mice showed stronger NLRP3 inflammasome
activation than from younger mice (28). However, the effect of
aging-associated intracellular NAD+ decline on NLRP3
inflammasome activation has remained elusive.

Although we presented diverse in vitro and in vivo evidences
for the NLRP3-stimulating role of NAD+ depletion in this study,
the molecular mechanism of NAD+ depletion-mediated NLRP3
priming is still unclear. A potential explanation observed in this
study is the mitochondrial relocation mediated by FK866.
Mitochondria have been considered a hub organelle to
modulate innate immune responses including RLR-mediated
anti-viral signaling band NLRP3 inflammasome pathway (29).
Misawa et al. showed that NLRP3-activating inducers such as
ATP and nigericin lowered intracellular NAD+, which led to a-
tubulin acetylation via inhibition of NAD+-dependent SIRT2
activity (22). The acetylated a-tubulin facilitates mitochondrial
retrograde transport, which subsequently promotes the assembly
of NLRP3 inflammasome. A recent study suggests that oxidative
A

B

C D

E

FIGURE 4 | FK866-induced NAD+ depletion triggers mitochondrial transport to perinuclear regions. (A) Representative immunofluorescence images from mouse
BMDMs treated with FK866 for 12 or 21 h, after staining with anti-TOM20 antibody (red) and phalloidin-Alexa 488 (green). DAPI represents the nuclear signal (blue).
(B) Intensity profiles (right panel) of the nucleus and mitochondria along the white line (left panel) crossing the nucleus in mouse BMDMs, untreated or treated with
FK866 (21 h). (C) Quantification of mitochondrial area surrounding the nucleus (5 mm) per total mitochondrial area, as stained by TOM20, in mouse BMDMs treated
with FK866 (n = 22–40). (D) Quantification of perinuclear mitochondrial area per total mitochondrial area from mouse BMDMs treated with FK866 in the presence of
NMN (500 mM) for 21 h (n = 11–31). (E) Immunoblots of mouse BMDMs pretreated with ciliobrevin D (5 mM) and FK866 (100 nM) for 12 h, followed by nigericin
treatment (5 mM, 1 h). Cell culture supernatants (Sup) or cell lysates (Lys) were immunoblotted with the indicated antibodies. ***P < 0.001, n.s., not significant.
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stress induces perinuclear clustering of mitochondria in a
microtubule-dependent manner (30). Similarly, we found that
intracellular NAD+ depletion induced a robust mitochondrial
perinuclear clustering. We speculate that mitochondrial stress
such as NAD+ depletion can drive mitochondrial retrograde
transport, critical for the assembly of NLRP3 inflammasome.
Interestingly, He et al. recently showed that aging-associated
SIRT2 deficiency caused an increased NLRP3 acetylation, which
facilitates the activation of NLRP3 inflammasome (28). Further
investigations are needed to clarify how NAD+ decline can drive
NLRP3 inflammasome activation under diverse circumstances.

Generally, NLRP3 inflammasome activation requires two
independent priming and activating events (31). However,
distinguishing the two events can be challenging. Our data
demonstrated that intracellular NAD+ decline can provide a
priming signal without transcriptional induction, and cause
mitochondrial retrograde transport leading to NLRP3
activation. As mentioned earlier, NLRP3-activating signals
drive mitochondrial translocation into the perinuclear region.
We thus reasoned that priming events cannot be strictly
distinguished from activating events under a certain context.

Danger signals or DAMPs, such as ATP, may be accumulated
or present at higher levels in the aged tissue than in the young
Frontiers in Immunology | www.frontiersin.org 8
tissue (32). Therefore, chronic inflammasome activation is more
likely to occur in the aged tissue with lower NAD+ and ATP-rich
conditions. Extracellular ATP can be increased by exposure to
various environmental stimuli such as ultraviolet radiation (33).
Therefore, we speculate that aging-associated NAD+-depleted
cells or tissues are more susceptible to the sudden increase in
extracellular ATP. Similarly to other NLRP3-activating
stimulators or alterations, we propose that aging-associated
NAD+ decline can trigger NLRP3 inflammasome activation as
a sterile inflammation in the context of ATP-rich conditions.
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