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Epigenetic mechanisms modulate gene expression and function without altering the base
sequence of DNA. These reversible, heritable, and environment-influenced mechanisms
generate various cell types during development and orchestrate the cellular responses to
external stimuli by regulating the expression of genome. Also, the epigenetic modifications
influence common pathological and physiological responses including inflammation,
ischemia, neoplasia, aging and neurodegeneration etc. In recent past, the field of
epigenetics has gained momentum and become an increasingly important area of
biomedical research As far as eye is concerned, epigenetic mechanisms may play an
important role in many complex diseases such as corneal dystrophy, cataract, glaucoma,
diabetic retinopathy, ocular neoplasia, uveitis, and age-related macular degeneration.
Focusing on the epigenetic mechanisms in ocular diseases may provide new
understanding and insights into the pathogenesis of complex eye diseases and thus
can aid in the development of novel treatments for these diseases. In the present review,
we summarize the clinical perspective of infectious keratitis, role of epigenetics in
infectious keratitis, therapeutic potential of epigenetic modifiers and the
future perspective.

Keywords: keratitis, epigenetics, methylation, histone modifications, infectious

INTRODUCTION

While the base sequence of the gene remains same, epigenetic mechanisms alter its expression and
thus its function. This can happen via altered methylation of DNA, post-translational modifications
of histones, introduction of non-coding RNAs, remodeling of the chromatin etc. Epigenetic
mechanisms are known to play an important role in several pathophysiological conditions,
including those of the ocular surface. Exposure of cornea to pathogens, leading to inflammation
and keratitis, has previously shown to involve epigenetic mechanisms (1, 2).

Though our understanding of epigenetic mechanisms in keratitis has advanced to some extent in
recent past, the clinical implications in terms of therapeutics and treatments are yet to be explored.
Some of the examples of how the mechanistic understanding of epigenetics can potentially aid drug
discovery in eye diseases can be: 1) Latent infection of HSV1 (Herpes Simplex Virus 1) in corneal
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cells can lead to persistent recurrence of keratitis (3). Knowing
how to epigenetically reactivate the virus from its protective
latent state could help in combating it via anti-HSV treatment.
Knowing how to keep the virus in its latent state irrespective of
epigenetic triggers could help in keeping the virus in a senile
latent state without acute infection. 2) Fungal pathogens are
known to vary their histone modifications to garner virulence
and drug resistance. Down regulation of histone acetylation leads
to increased inflammatory response in fungal keratitis, and
histone deacetylase inhibitors could emerge as promising
treatment (4). 3) In case of degenerative Keratoconus, the non-
coding RNAs have potential to affect the expression of about
1000 genes (5).

Hence, understanding the epigenetic networks and
interactions can possibly help in the early detection of diseases
of the ocular surface and also lead to the development of novel
therapeutic approaches (6). In the present review, we briefly
summarize the role of epigenetics in ocular diseases followed by
specifically focusing the infectious keratitis and epigenetic
changes from a diagnostic and therapeutic perspective which
can be possibly translated into novel therapies in the near future.

EPIGENETICS AND IT’S ROLE IN
OCULAR DISEASES

‘Epigenetics’ refers to the heritable, reversible and environment-
influenced mechanisms that affect the gene expression without
altering the underlying DNA sequences (1, 7, 8). The term was
initially used to refer to the complex interactions between the
genome and the environment, involved in the development and
differentiation of distinct cell lineages in higher organisms (9,
10). The epigenetic mechanisms that potentially mediate this
dynamic interaction between the genes and the environment
comprise of DNA methylation, chromatin remodeling, histone
variants, post-translational modifications of histone and
deployment of non-coding RNAs (11). Various factors
contribute in the acquisition, maintenance and inheritance of
diverse epigenetic modifications.

The modification of DNA and histone tails regulates the
structure of chromatin and accessibility of DNA to
transcriptional machinery. The principal epigenetic modification
found in DNA is covalent attachment of methyl group by DNA
methyl-transferase (DNMTs) enzymes at C5 position of cytosine
residues in CpG dinucleotide sequence, which is a mark for
transcriptional repression (12). On the other hand, histones can
restructure the chromatin in transcriptionally permissive or
restrictive states by undergoing diverse post-translational
modifications such as acetylation, methylation, phosphorylation,
ubiquitination etc. (13). These modifications are written, read and
erased by a variety of histone modifying enzymes. The type, site,
combination and the extent of histone modification adds the
complexity of histone code (13-15). Besides modifications of
DNA and histones, long non-coding RNAs (IncRNAs), micro
RNAs (miRNAs), small inhibitory RNAs (siRNAs) and piwi
interacting RNA (piRNAs) can also mediate transcriptional

silencing as reviewed by Wei et al. (2017) (16). Also, the
temporal and spatial regulation of transcription is regulated by
ATP-dependent chromatin remodelers that re-configure the
nucleosomes in response to environmental and developmental
cues (17). These chromatin remodeling enzymes have been
classified in subfamilies i.e. Switch/sucrose non-fermentable
(SWI/SNF), imitation switch (ISWI), chromodomain helicase
DNA-binding (CHD) and INOS80 (18). Additionally, the
replacement of canonical histones with the variants also leads to
diversity of nucleosomes’ structure and function. The histone
variants, their chaperones/remodeler machineries and linkage to
various diseases have been extensively reviewed recently (19, 20).

The human epigenome gets influenced by various factors
such as diet, age, environmental factors, smoking and the
infections. Evidences are growing that natural infections alter
the epigenome by modulating the immune response and
longitudinal disease risk. Most of the studies in infection-
induced epigenetic changes have been done with respect to
carcinogenic microbes and very less is known about epigenetic
effects of non-carcinogenic microbial infections (21). Even less is
known about the role of epigenetics in ocular infections and
diseases. In this section, we briefly summarize the reported
literature on involvement of different epigenetic mechanisms in
ocular diseases (Figure 1). Some of the common eye disorders
where role of epigenetic mechanism have been revealed, include
retinoblastoma, diabetic retinopathy, age-related macular
degeneration (AMD), glaucoma, cataract, keratoconus, corneal
dystrophies, pterygium, keratitis etc. (2, 6, 22, 23), which affect
different parts of the eye as shown in Figure 1. From the point of
view of type of epigenetic mechanism involved, a large number of
genes have been reported to undergo hyper- or hypo-methylation
in different eye diseases such as: MMP-2/CD24 and TGM-2 in
Pterygium; GSTP1, OGGI1, ERCC6 and CRYAA in cataract;
TGFBIp in corneal dystrophies; GSTM1, GSTM5 and IL17RC in
AMD, MSH6, CD44, PAX5, GATAS5, TP53,VHL, GSTP1, MGMT,
RBI and CDKN?2 in retinoblastoma; RACI in diabetic retinopathy;
LOXLI in pseudo-exfoliation syndrome; TGF-BI in glaucoma;
RASSFIA and telomerase reverse transcriptase gene in uveal
melanoma etc. The level of various micro-RNAs has also been
reported to be altered in different eye diseases such as up-
regulation of hsa-miR-143-3p, hsa-miR-181a-2-3p, hsa-miR-
377-5p and hsa-miR-411a in Pterygium; up-regulation of hsa-
mir-494, hsa-let-7e, hsa-mir-513a-1, hsa-mir-518c, hasmiR-129,
hsa-mir-198, hsa-mir-492, hsa-mir-498, hsa-mir-320, mir-503,
and hsa-miR-373 in retinoblastoma; and down-regulation of
hsa-mir-29b1 and 200b in diabetic retinopathy etc. Besides
these, histone modifications also seem to play important role as
revealed by H3K9 deacetylation in ERCC6 in cataract; global
histone acetylation in uveal melanoma etc.

These studies definitely attract our attention towards possible
involvement of different epigenetic mechanism in induction,
execution and promotion of various eye disorders with an
opportunity to explore this area for better diagnostic and
therapeutic targets. Having convinced with that, we next focus
on infectious keratitis as another important eye disease of global
concern and the epigenetic mechanisms involved in it.
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FIGURE 1 | Key epigenetic modifications in common ocular diseases: Diverse epigenetic modifications are associated with the common ocular diseases occurring
in different parts of the eye. MMP2, matrix metalloproteinase 2; CD24, CD24 molecule; TGM2, transglutaminase 2; hsa-miR, human microRNA; GSTP1, pi-class
glutathione-S-transferase; OGG1, 8-oxoguanine DNA glycosylase 1; ERCCB6, excision repair 6 chromatin remodeling factor; CRYAA, crystalline Alpha-A; TGFBIp,
transforming growth factor B- induced; GSTM1/5, glutathione S-transferase isoform mui1/mub5; IL17RGC, interleukin-17 receptor C; MSHB, mutS homolog 6; CD44,
cluster of differentiation 44; PAX5, paired box 5; GATA5, GATA binding protein 5; TP53, tumor protein 53; VHL, Von Hippel-Lindau gene; GSTP1, glutathione S-
transferase pi-1; MGMT, methylguanine methyltransferase; RB1, retinoblastoma 1; CDKN2, cyclin-dependent kinase inhibitor 2; 5hmC, 5-hydroxymethyl cytosine;
RAC1, rac family small GTPase 1; LOXL1, lysyl oxidase-like 1; TGF-B1, transforming growth factor-B1; RASSF1A, RAS association domain family 1A gene; TM,

trabecular meshwork; LC, the lamina cribrosa.

INFECTIOUS KERATITIS - TYPES,
CLINICAL FEATURES, AND
MANAGEMENT

Keratitis refers to inflammation of cornea i.e. clear tissue in the
front of eye covering pupil and iris. Depending on the causative
agent, keratitis is broadly classified as non-infectious or
infectious. The non-infectious keratitis results due to injury,
exposure to intense sunlight, dry eyes, weak immunity etc. The
infectious one on the other hand is caused by variety of microbes
i.e. bacteria, viruses, fungi, parasites etc. (Figure 2). The cornea,
which remains protected anatomically by the eyelids, a healthy
tear film & its protective factors, an active lacrimal drainage
system and a tenacious epithelial cover gets inflamed if any of
these protective factors is breached by microbial invasion.
Infectious keratitis or corneal ulceration is traditionally
described as a defect in the corneal epithelium, accompanied
with infiltration and inflammation. Active keratitis and its
sequelae in the form of corneal perforation or scarring can
cause significant morbidity and even complete vision loss (24).

* Infectious keratitis is the most common cause of corneal
blindness in both developing and developed world (25).
Estimated incidence of infectious keratitis is reported to be
ranging from 2.5 to 799 per 100,000 population-year,
depending on the study design and geographical location

(26). A higher rate of infectious keratitis in under-resourced
countries and a wide variation in prevalence of causative
organisms and thus, the frequency of microbial keratitis has
been reported from different parts of the world (26, 27)).
These variations have been widely attributed to poor
environmental and personal hygiene, lack of awareness and
healthcare, agriculture and work-related trauma etc. But
variations are also expected to exist in terms of diets and
metabolites in different geographical & socio-economical
regions. Thus, the gut microbiome-host immune
interactions along with ocular surfaces microbiota also vary
which in turn indicate the involvement of epigenetics in
varied induction and promotion of infectious keratitis.
Dysbiosis i.e. imbalance in gut microbiome has already been
reported to be associated with bacterial keratitis (28).

Bacterial keratitis is the commonest form of infectious keratitis
globally with incidence ranging from 50 to 60% (29). The potential
risk factors for bacterial keratitis include contact lenses, aqueous
tear deficiencies, trauma, decreased immunologic defenses, eyelid
alterations or malposition, neurotrophic keratopathy, topical
corticoid medications and surgery (30). The common corneal
ulcers causing bacteria are Staphylococcus spp., Streptococcus spp.,
Enterobacteriaceae (including Serratia, Klebsiella, Enterobacter
and Proteus) and Pseudomonas spp. Fungal keratitis on the
other hand is seen in 6-30% of cases and mainly caused by
Aspergillus and Fusarium species (31). Incidence of HSV (Viral
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keratitis) and Acanthamoeba keratitis are 15-40% and 0-5%
respectively (32). Also, mixed infections comprising of infliction
by more than one organism is also seen in 2-15% of patients (29).

Clinically, the patient presents with complaints of redness,
pain, watering, diminished vision and intolerance to light referred
to as photophobia. As far as diagnosis is concerned, distinguishing
features such as - feathery borders and fixed hypopyon in fungal
keratitis, diminished corneal sensations in viral keratitis and ring
infiltration in acanthamoeba keratitis are used for clinical
diagnosis (29) (Figure 2). Confirmatory diagnosis of infective
keratitis is made conventionally on microbiological examination
which includes smear examination, culture and polymerase chain
reaction (PCR) evaluation (33). Acanthamoeba cysts have
additionally been reported to be detected on confocal
microscopy (34). However, culture negative keratitis poses
significant problem to clinicians. Next generation sequencing
(NGS) can help in diagnostic accuracy of infectious keratitis
especially in culture-negative cases. Tian et al. (35) have
analyzed differentially expressed genes (DEGs) in bacterial and
fungal keratitis. A total of 148 DEGs were found only in bacterial
keratitis and 50 DEGs only in fungal keratitis. Besides, they also
identified 117 co-expressed gene pairs among bacterial keratitis
DEGs and 87 pairs among fungal keratitis DEGs. Also, a total of
nine biological pathways and seven KEGG pathways were
screened and found that TLR4 is the representative DEG
specific to bacterial keratitis, and SOD2 is the representative
DEG specific to fungal keratitis, and hence can be used as
promising candidate genes to distinguish between bacterial and
fungal keratitis. Thus, at molecular level, genes can be quantified
for identifying the causative agent for specific therapeutic
outcomes. Though NGS can undoubtedly provide better insights

FIGURE 2 | Infectious keratitis caused by different agents: (A) Bacterial keratitis (B) Fungal keratitis (C) Herpes necrotizing stromal keratitis (D) Early Acanthamoeba
keratitis (E) Late Acanthamoeba keratitis. Adopted from https://www.intechopen.com/chapters/69696 under Creative Commons Attribution 3.0 License.

about the ocular surface microbiome in pathophysiological
circumstances, but it is not clear whether these can be effectively
used to determine etiology of infection or antibiotic sensitivity. As
far as management of keratitis is concerned, antimicrobial agents
(36-39) besides collagen crosslinking (40-42) have been the
mainstay for therapy. But, in the light of differential gene
expression, specific pathways involved and eye-microbiota-
immune interaction; it will be interesting to explore the
epigenetic mechanisms involved so that specific epidrugs can be
identified for treating infectious keratitis caused by particular type
of microbe.

EPIGENETICS OF INFECTIOUS KERATITIS

Bacterial keratitis or often referred as ‘corneal ulcer’, is the most
common form of infectious keratitis. Bacteria can induce
inflammatory cascade through the interaction of pathogen
associated molecular patterns (PAMP) with Toll-like receptors
(TLR) expressed on corneal and conjunctival epithelial cells and
subsequently activate the mitogen-activated protein kinases
(MAPK) cascade and NF-kB, leading to increased production of
inflammatory cytokines. Importantly, the production of
inflammatory cytokines is under the control of epigenetic factors
like histone acetylation/deacetylation (43). However, very little is
known about epigenetic mechanisms in bacterial keratitis.
Nonetheless we might be able to learn from pathogenesis of
bacterial infections in other systems where the role of epigenetic
factors has been investigated and can be extrapolated in the field of
bacterial keratitis. In cardiomyocytes, lipopolysaccharide (LPS), a
component of the bacterial cell wall, was found to increase histone
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deacetylase (HDAC) activity. Since HDAC3 regulates TNF
production, its inhibition decreases LPS-stimulated tumor
necrosis factor (TNF) expression caused by the accumulation of
nuclear factor kappa-B (NF-xB)/p65 at the TNF promoter
(44, 45).

Herpetic keratitis is another common infectious corneal
disease, caused by Herpes simplex virus 1 (HSV1). HSV1 infects
corneal epithelial cells and sensory neurons thereby establishing
latent infection, leading to recurrence of HSV1 in the cornea upon
activation of virus under the influence of various stimulatory
factors. Only the latency associated transcript (LAT) remains
persistently expressed and lytic genes remain transcriptionally
repressed, thereby maintaining the latency phase. Therefore, in
order to understand and treat HSV infection, it is critical to
understand the mechanism by which HSV1 is maintained in
latent phase and how HSV1 is activated. The division of active
and inactive genome has been shown to have epigenetic control.
Histone modification for active transcription i.e. di-methylation of
H3K4 and acetylation of H3K9 and H3K14 in LAT region and for
inactive transcription ie. trimethylation of H3K27 along with
macro H2A histone variant have been reported to execute this.
Moreover, chromatin insulators seem to separate the epigenetic
domains of LAT and lytic genes. Abrogation of these insulators
and CTCF (the protein that binds vertebrate insulators) binding
possibly pave the way for transition from lytic to lysogenic phase
(3, 46). Additionally, in neuronal cells, HDAC inhibitors
(trichostatin-A) have been reported to reactivate the HSV1
infection in LAT-independent manner too (47).

Neurotrophic keratitis, also known as neurotrophic
keratopathy, is a degenerative corneal disease caused by damage
of trigeminal innervation. This damage to corneal innervation
(from the trigeminal nucleus to the corneal nerve endings at
different levels on the fifth cranial nerve) can be caused by various
ocular surface disease, systemic diseases and central or peripheral
nervous damages (48, 49). Though neurotrophic keratitis does not
come under infectious keratitis directly but is most commonly
induced by HSV (herpetic keratitis), the neurotrophic virus (50).
With reactivation of latency by various stimulatory factors, virus
travels back to the corneal epithelium along the axon and causes
damage to corneal nerve with a severe reduction of sub-basal nerve
plexus density with resultant diminished corneal sensation or
corneal anesthesia (51). Thus, the epigenetic mechanisms
involved in herpetic keratitis can be extrapolated to understand
and manage neurotrophic keratitis too.

The pathogenesis of fungal keratitis remains poorly understood
and therefore, its treatment is also yet to be explored more,
especially from epigenetic perspective. However, Xiaohua Li
et al. (4), have recently reported the attenuation of fungal
keratitis in mice by histone deacetylase inhibitor, suberoylanilide
hydroxamic acid (SAHA). It implies histone acetylation-
deacetylation as potentially important target for understanding
the fungal keratitis and expedite research in this area for better
diagnosis and therapeutics. Additionally, a comprehensive human
corneal miRNA expression profile and associated regulatory role
in fungal keratitis has been reported (52) which again indicate the
possible role of epigenetics in fungal keratitis as well.

Acanthamoeba keratitis, caused by Acanthamoeba castellanii
remains a challenge to treat because of encystation. Even a single
cyst in the tissue can cause re-infection and therefore, an effective
strategy must inhibit cyst formation as well besides killing the
pathogen. Epigenetic modification of the genes and proteins
involved in initiation & maintenance of cyst and transition from
cyst to active form can thus be a potential target for the same.
Expression of encystation-mediating cyst-specific cysteine
proteinase (CCSP) gene is regulated by DNA methylation (53).
Similarly, silent-information regulator 2 like protein (SIR-2), which
is a nicotinamide adenine dinucleotide-dependent deacetylase plays
role in growth and encystation of Acanthamoeba (54). Though
there are no direct reports available for involvement of epigenetics
in Acanthamoeba keratitis, these reports suggest that epigenetic
mechanisms play vital roles in Acanthamoeba physiology and
pathology and thus, can be explored for medical purposes.

EPIGENETICS MODIFIERS AS A
POTENTIAL THERAPEUTIC MOLECULE

Dysregulated epigenetics is involved in a wide range of diseases like
cancer, blood disorders, neurological and neurodegenerative
disorders, and respiratory disorders (55). The ability to reverse the
epigenetic modifications makes them an attractive druggable target
(56). The changes in epigenetic landscape can be used as diagnostic
markers as well as therapeutic targets in both invasive and non-
invasive samples (57). Besides pharmacokinetic effects of epigenetic-
based drugs, one can also consider the pharmacodynamics effects of
epigenetics. The pharmacoepigenetics, the study of the epigenetic
basis for variations in drug response is a growing field which
highlights that the genes encoding drug-metabolizing enzymes,
nuclear receptors, drug transporters etc. are under epigenetic
control and thus, can affect the pharmacodynamics of drugs (58).

The epigenetic modifiers fall into three main categories i.e.
writers (ones that mark DNA and histones with chemical
groups), readers (which read those marks) and erasers (which
remove these marks). All three have been targeted for developing
epigenetic-based drugs. Besides having precise knowledge about
molecular targets and the mechanism of action involved, the
demonstration of efficacy is what ultimately matters for drug.
The epigenetic-based drugs are a reality now, but we need to be
aware that it’s a recent development and there are concerns
about specificity, adversity, best schedule, ideal dosing,
downstream effectors etc. Nevertheless, there are many epi-
drugs which are either already approved by the U.S. Food and
Drug Administration (FDA) or they are at advanced stages of
approval. But most of them are for cancers. Presently, epi-drugs
in three epigenetic target classes (i.e. DNMT, HDAC and EZH2
inhibitors) have been approved for the treatment of diverse
malignancies (59). So far, there is no approved epigenetic-
based biomarker and drug by the U.S. FDA for ocular diseases,
particularly keratitis.

However, some of the recent studies have demonstrated
promising therapeutic potential of epigenetics in infectious
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keratitis, which develops our hope that we might have epi-drugs
for ocular diseases soon as well. For example, Sivakarthik
Varanasi et al. (60), have shown that 5-azacytidine (Aza; a
cytosine analog), a DNA methyltransferase inhibitor, inhibits
the progression of herpatic keratitis and limits the HSV-1-
induced ocular inflammatory lesions by enhancing regulatory
T-cell function. Similarly, attenuation of fungal keratitis in mice
by histone deacetylase inhibitor, suberoylanilide hydroxamic
acid (SAHA) has been recently reported by Xiaohua Li et al.
(4),. Also, Hae-Ahm Lee et al. (61) have recently shown that
histone deacetylase inhibitors MPK472 and KSK64 can be
potential therapeutic targets for Acanthamoeba keratitis, which
otherwise is difficult to treat because of cyst formation. These
HDAC:s inhibit the encystation of Acanthamoeba and have low
cytopathic effects on human corneal epithelial cells, and
therefore can be promising epidrugs for Acanthamoeba
induced keratitis.

Using combinations of epigenetic modifiers can also be an
important strategy in reducing inflammation and/or disease, for
example, a single dose of combinatorial administration of as 5-
Aza-2-deoxycytidine (Aza) and trichostatin A (TSA) (Aza+TSA)
after the onset of acute lung injury (ALI) has been found to be an
effective method to attenuate lung vascular hyper permeability
and inflammatory lung injury (62).

In context of viral diseases, epigenetic modifiers in the latency
period of infection can be controlled in two steps i) Shock and
kill strategy-using epigenetic modifiers to revoke the expression
of virus and use anti-viral drugs to decrease viral load and ii)
block and lock strategy- using epigenetic modifiers permanently
silencing the latent virus (63). Similar strategy could be potential
used in case of ocular inflammatory disorders and infectious
keratitis complications (64).

CONCLUSIONS AND
FUTURE PERSPECTIVE

Disease’s state represents an accelerated situation of tissue
damage and aging. The role of epigenetics in maintaining
normal development and function is reflected by the facts that
many diseases develop when aberrant type of epigenetic
footprints are introduced or are added at the wrong time or at
the wrong place. DNA methylation, histone modifications and
nucleosome positioning are generally used as a biomarker of
tissue aging, it is not just marking time like a clock on the wall
but “actually controlling the time-speed within cells” (65).

Age-associated DNA damage drives erroneous distribution of
proteins at various cellular compartments. In case of epigenomic
machinery it may cause unwanted genes to switch on/off
associated with various diseases/degenerated state. In ocular
context, epigenetic reprogramming has shown promising results
in promoting optic nerve regeneration, reversal of vision loss in
glaucoma, and reversal of vision loss in aging animals.

Corneal keratitis specifically neurotrophic keratitis is a
condition of nerve degeneration. Manipulating epigenetic clock,
thereby promoting nerve innervations could be one of the
strategies to induce diseases clearance and healing. One

approach will be to rewire the epigenetic memory rather than
totally erasing it, by either controlling the dose, time exposure or
different permutation and combinations modulating of Yamanaka
factors. The reversal state can be driven by changing landscape of
the tissue associated with earlier time stamp, thereby triggering
local tissue regeneration (66-69). With the evolution of
therapeutics, we have moved from small molecule drugs like
aspirin to large molecule biologist such as insulin now moving
into multicomponent system therapeutics, which may enable
epigenetic reprogramming to induce targeted regeneration in the
tissue of interest. Degeneration changes in a tissue associated with
disease or aging are often linked with system level changes in
functional gene clusters such as inflammation, fibrosis,
neurodegeneration and vascular defects. Regeneration can be
often looked at reversal of cell state with projections along these
functional axes and changing the epigenetic state and effective
time stamp and potential therapeutics using multiple factors

It is very essential to understand the epigenetic machinery
and diseases specific function of its component to design and
develop targeted epigenetic therapy. Importantly, it is critical to
know the specific inhibitors other than the widely used pan
inhibitors in clinical trials and further explore their roles in
regulating specific gene expression in a more defined fashion
during infection development and progression.

In the recent years, epigenetic studies advancement has
provided novel insights and has significantly increased our
knowledge about the interactions between pathogens, cellular
factors, histones, and nonhistones modifying enzymes. As most
of the epigenetics modifications are reversible, rewiring this
complex machinery could be critical in determining the
infection and also subsequent recovery. In case of viral keratitis,
it is important to permanently maintain the virus in latency by
erasing its reactivation epigenetic memory, so that the reactivation
could be bypassed. Alternatively, using the epigenetic modifiers
that targets the host rather than the pathogens could be helpful in
tackling the complications of drug induced resistance in bacteria
and viruses. In addition, addressing the role of the less studied
post-translational modifications such as phosphorylation or
sumoylation can shed light on new aspects of the dynamic host-
pathogen interplay in case of infectious keratitis. Altogether, new
therapeutic approaches are actively needed to treat infectious
keratitis especially for viral infections and understanding the
epigenetics of infectious keratitis and thereby repurposing drugs
targeting epigenetic players could lead to major therapeutic
breakthroughs in the treatment of ocular keratitis.

There are few important considerations to be taken into
account, it is important to decrease the risk of epigenetic
instability and abnormalities that could result due to continuous
use of wide spectrum inhibitors over long-term. Therefore, it is
very important to focus our research on identifying diseases
specific inhibitors rather than global nonspecific inhibitors.
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