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Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered
to possess direct anti-cancer activity at high doses. VitC acts through oxidant and
epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro
and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-
dose VitC can contribute to control of tumors by modulating the immune system, and
studies have been done interrogating the role of physiologic-dose VitC on novel adoptive
cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor
immune cells, as well as the mechanisms underlying those effects. We address important
unanswered questions concerning both VitC and ACTs, and outline challenges and
opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based
anti-cancer therapies.

Keywords: immune checkpoint therapy (ICT), CAR (chimeric antigen receptor) T cells, vitamin C (ascorbic acid),
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INTRODUCTION

Vitamin C (or L-ascorbic acid, hereafter referred to as VitC) is a nutrient with a six-carbon
structure, synthesized from glucose and abundant in fruits, vegetables and in the kidney and liver of
most animals (1). Species such as guinea pigs, fruit bats, and humans are unable to synthesize VitC,
due to a mutation in the gene encoding L-gulonolactone oxidase, which catalyzes the last step of
VitC synthesis (2, 3). In nature, VitC exists in two different redox forms. The ascorbic acid (reduced)
form enters cells using sodium-dependent VitC transporters (SVCTs), whereas the dehydroascorbic
acid (oxidized) form enters cells via glucose transporters (GLUTs) (4). Inside the cells, the
Abbreviations: ACT, adoptive cellular therapy; BET, bromodomain and extra-terminal motif proteins; CAR, chimeric antigen
receptor; CTLA-4, Cytotoxic T-lymphocyte-associated protein 4; DC, dendritic cells; Erk, extracellular signal-regulated
kinases; GLUTs, glucose transporters; H2O2, hydrogen peroxide; ICT, Immune checkpoint therapy; IKK, IkB Kinase; i.v.,
intravenous; mTOR/C1, mammalian target of rapamycin/complex 1; NAC, N-Acetyl-cysteine; NFAT, Nuclear factor of
activated T cells; PD-1, Programmed cell death protein 1; pVC, phospho-modified Vitamin C; ROS, reactive oxygen species;
SVCTs, sodium-dependent VitC transporters; TCR, T-cell receptor; TET, ten-eleven-translocation; VitC, Vitamin C.
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dehydroascorbic acid is reduced back to ascorbic acid which
then interacts with different enzymatic systems such as
monooxygenases, dioxygenases and hydroxylases, involved in the
regulation of numerous biological processes (5). When VitC is not
transported inside the cells, it is converted into 2,3-L-
diketoglutonate, which is further degraded into oxalate, CO2 and
L-erythrulose (1). VitC was initially described to play a crucial role
in extracellular matrix composition by acting as cofactor for prolyl
hydroxylase, the enzyme responsible for collagen biosynthesis (6).
Defective collagen synthesis due to VitC deficiency causes scurvy,
a bleeding diathesis secondary to poor wound healing.

VitC has also long been investigated as anti-cancer agent,
either in monotherapy or in combination therapy (7), although
its effectiveness in cancer has been a subject of controversy.
Cameron and colleagues first reported the clinical efficacy of high
doses of intravenous (i.v.) VitC in advanced cancer patients (8,
9). In these studies, patients with different types of cancer, who
received 10 g of VitC intravenously daily for 10 days and orally
thereafter, showed superior overall survival rate compared to the
untreated group. These encouraging results could not be
reproduced in other early-phase clinical trials, which used the
same total dose, delivered entirely orally (10, 11). However, later
work revealed that differences in the route of delivery probably
explained the discrepant results (12), and it is now proposed that
the anti-cancer benefits of VitC require high systemic
concentrations that can only be achieved by intravenous
delivery. Recent studies have also reported that VitC
supplementation at physiologic doses also improves the
function of anti-cancer immunotherapies – notably, ACTs-
suggest ing benefic ia l ro les for VitC at both high
(pharmacologic) and low (physiologic) doses. Figure 1 depicts
the timeline in the development of the VitC usage for anti-
cancer therapy.

VitC has mostly been understood to exert its anticancer
activity through reactive oxygen species-induced oxidative
stress (13–18), as well as through modulation of epigenetic
programs (19, 20). These mechanisms preferentially affect
cancer cells, and VitC is not toxic to normal cells at these
Frontiers in Immunology | www.frontiersin.org 2
doses. Indeed, previous studies have shown a critical and
beneficial function of VitC in immune cells, as VitC is present
at high intracellular concentrations in lymphocytes (25, 26), and
VitC deficiency has been associated with impaired immunity
(27). Such immune-modulatory functions of VitC were shown to
be regulated at the epigenetic level (28). As it is now quite clear
that immune cells have a profound impact on tumors, it is not
surprising that recent in vivo murine studies have demonstrated
that VitC can also contribute to tumor control by modulating the
immune system and, interestingly, by enhancing the efficacy of
immune checkpoint inhibitor therapy (21–24).

In this review, we focus on what is known about how VitC
modulates anti-tumor immune cell function and shed some light on
the mechanistic basis of its activity. We also discuss its relevance for
current translational immunotherapeutic approaches, highlighting
outstanding challenges and unanswered questions as well as current
evidence to support the contention that VitC therapy may be a safe
and powerful adjunct for cancer immunotherapy, improving
efficacy while limiting toxicity.
PHARMACOKINETICS OF VITAMIN C

Following the original observations reporting the controversy on
the use of VitC as anticancer agent, pharmacokinetic studies
have been performed both in humans and mice to investigate the
effects of high-dose VitC, considering different routes of
administration and elucidating underlying mechanisms (12,
29). These studies delivered increasing doses of VitC via oral
and/or i.v. routes and subsequently measured VitC
concentrations in the plasma and tissue. Oral administration of
high dose VitC resulted in physiologic plasma concentrations,
resulting from tight control by factors such as intestinal
absorption, tissue transport, and renal reabsorption and
excretion (12). In contrast, repeated i.v. administration, which
bypasses intestinal regulation, resulted in high plasma and tissue
concentrations (12, 29).
FIGURE 1 | Timeline of discoveries related to the anti-cancer function of Vitamin C (VitC). Advances made over past decades identified VitC as potential anti-cancer
agent at high dose yielding remarkable clinical efficacy when given intravenously, and not through oral administration. Mechanistically, VitC at high dose preferentially
kills tumor cells in vitro or delays tumor growth in vivo by exerting pro-oxidant effects and by disrupting iron metabolism, as well as through modulation of epigenetic
mechanisms mediated by TET enzymes. Numbers in brackets refer to corresponding references.
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VITAMIN C AND TUMOR CELLS

VitC at pharmacologic (high, 1 mM) doses was reported to kill
tumor cells in vitro and delay tumor growth in vivo, essentially
through pro-oxidant mechanisms (13, 14). Pharmacologic-dose
VitC induces the generation of hydrogen peroxide, which reacts
with labile ferrous iron to generate hydroxyl radical known to its
action in compromising membrane and DNA integrity as well as
glucose metabolism, ultimately leading to cell death (30, 31).
Several other mechanisms underlying increased tumor
susceptibility to death after high-dose VitC treatment were
recently reviewed (32) and include the increased expression of
VitC transporters [SVCTs (33) and GLUTs (34)], as well as the
decreased concentrations of antioxidant defenses (catalase and
superoxide dismutase) and the enhanced cellular levels of
prooxidant metal ions (18). These mechanisms likely
contribute to VitC-mediated killing of tumor cells; Shenoy
et al., testing the effect of VitC on clear cell renal cell
carcinoma (ccRCC), showed that short-term exposure (6h) to
1 mM VitC was toxic to ccRCC. However, although the tumor
killing effect was forestalled by the addition of catalase, this
protective effect disappeared with longer exposures (96h),
suggesting an additional, oxidant-independent mechanism of
VitC. In subsequent analyses, the authors demonstrated that
this effect of VitC was epigenetically mediated (35). Similar
observations were also made using lymphoma models (19, 22),
and it was shown that pharmacologic-dose VitC exerts
antitumor activity through Ten-eleven-translocation (TET)-
mediated DNA demethylation (19, 22, 35). In these settings,
epigenomic and transcriptomic interrogations from tumor cell
samples treated with high-dose VitC revealed enhanced TET-
mediated global genome-wide demethylation (increased 5-
hydroxymethylcytosine levels) and increased expression of genes
encoding human endogenous retroviruses (HERVs) associated with
elevated locus-specific demethylation (22). Increased TET
expression promotes the effectiveness of cancer immunotherapy
(21), and HERVs are known to increase tumor immunogenicity
both by increasing tumor mutational burden (36). Furthermore,
data from Luchtel et al. showed that VitC-pretreatment of
lymphoma cells enhanced their killing by CD8 T cells in vitro
(22). Together, these data indicate that VitC-facilitated epigenetic
modifications enhance tumor immunogenicity, accounting for
improved antitumor effect. Based on these and other findings,
investigation into high-dose VitC therapy is ongoing in cancer
clinical trials.
MECHANISM OF ACTION OF VITAMIN C
ON IMMUNE CELLS

As stated above, VitC acts on tumor cells through oxidant and
epigenetic mechanisms. Emerging data indicate that VitC also
acts on immune cells in these ways. Free radicals and other
reactive oxygen species (ROS), at low dose, are crucial regulators
of cell signaling and activation. Indeed, ROS produced in small
amounts can positively regulate T-cell receptor (TCR) signaling
Frontiers in Immunology | www.frontiersin.org 3
pathways, thus promoting T-cell activation and proliferation. In
support of this, ROS have been shown to be essential for TCR
signaling-associated events (37, 38). For example, the moderate
generation of ROS following TCR-signaling modulates the
phosphorylation of the extracellular signal-regulated kinases
(Erk)1/2 (39, 40). In addition, ROS such as H2O2 can lead to
activation of the IkB kinase complex (IKK) (38). However, an
overproduction of ROS in the microenvironment causes
oxidative stress, leading to damage including cellular
dysfunction, cell death, cellular aging, and cancer (41, 42).
VitC is a critical non-enzymatic antioxidant that exerts
antioxidant activity at micromolar concentrations. This ROS-
buffering activity influences cell signal transduction, and the
influence of physiologic doses of VitC on TCR signal
transduction in general has been recently reviewed. Possible
targets include molecules in the proximal TCR signaling
complex, as well as downstream signaling molecules such as
p38, Erk1/2, NF-kB, NFAT, and PI3K-Akt-mTOR pathway
members (43, 44).

Several other studies have described the role of VitC in
modulating gene expression in different settings. Duarte et al.
reported a genome-wide effect of physiologic-dose VitC in
human dermal fibroblasts (45), and Chung et al. identified a
number of important genes selectively regulated in human
embryonic stem cells cultured in the presence of physiologic
dose of VitC (46). Several genes controlling immune function are
known to be epigenetically regulated by physiologic dose of VitC,
independently of its antioxidant activities. Indeed, compelling
evidence suggests that VitC regulates many epigenetic processes,
including DNA demethylation and histone modification (28, 46)
by interacting with TET (47, 48) and Jumonji C-domain-
containing (JmjC) enzymes (49, 50), respectively. TET enzymes
convert 5-methylcytosine into 5-hydroxymethylcytosine and
further into 5-formylcytosine and 5-carboxylcytosine (47, 48),
whereas JmjC demethylases largely regulate chromatin through
lysine demethylation of histones (49). VitC-facilitated DNA and
histone demethylation is independent of its antioxidant activity.
The current model proposes that VitC acts by converting ferric
iron (Fe3+) into ferrous iron (Fe2+), which is essential to maintain
the enzymes in their fully catalytic form (51). Interestingly, VitC
appears to be highly effective in reducing Fe3+ over other
reducing agents (52). Several other epigenetic modifying
enzymes were also reported to rely on VitC as a cofactor (53),
which maintain them in their fully catalytic form, thereby
facilitating active gene demethylation crucial for T cell
differentiation and function.

Oxidant effects and epigenetic modification are the two best
understood mechanisms by which VitC regulates various
biological processes. However, the interdependence between
these two mechanisms has not yet been investigated.
Considering that the availability of VitC inside cells is largely
controlled by redox status, Young et al. speculated that redox
status in the nucleus could impact the availability of VitC to
DNA and histones (28). This view becomes much more
complicated by a consideration of the complex and redox-
independent influences of other factors, such as cytokines, on
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epigenetic processes. Indeed, previous murine studies examining
the role of IL-2 and IL-6 in the DNA methylation process in
regulatory T cells (Treg) have demonstrated the crucial role of
IL-2 in the recruitment and binding of TET to the Treg-specific
demethylated region (TSDR), whereas IL-6 was reported to
hinder that binding (54, 55). Further study is clearly required
to fill the gaps in our knowledge of how redox status and
epigenetic processes are linked to each other.
VITAMIN C AND ANTITUMOR
IMMUNE EFFECTS

In addition to the direct antitumor effect of VitC at high doses,
recent studies show that the effect of VitC on immune cells can
mediate indirect antitumor effects (22, 23). Interestingly, many of
these effects also occur at physiologic doses of VitC. Here, we
summarize what is known about the effects of VitC on immune
cells with anti-tumor activity (namely NK cells, CD4 and CD8 T
cells, and gd T cells) in the context of cancer immunotherapy. We
also discuss the mechanistic basis of its effect with a brief focus on
potential targets in TCR signaling. A schematic overview of the
influence of VitC on different immune cells is presented
in Figure 2.

Natural Killer Cells
NK cells, part of the innate immune system, are capable of rapid
and potent killing of virally infected or malignant cells without any
prior priming (56, 57). A previous study by Huijskens et al.
demonstrated that addition of physiologic-dose VitC to
peripheral blood mononuclear cells (PBMC) in vitro cultures
resulted in a moderately increased proportion of NK cells (58)
expressing both inhibitory and activating NK receptors. However,
the expression of these receptors was not significantly affected by
VitC. Subsequent studies fractionated NK cells further according
to their CD56 surface expression to differentiate less mature
(CD56bright) from more mature (CD56dim) NK cells (59–61).
Immature CD56bright NK cells exhibit high levels of activating
CD94/NKG2C but low frequencies of inhibitory receptors 2DL1
and 2DL3; conversely, mature CD56dim NK cells are 2DL1 and
2DL3 high (59, 60, 62, 63). In this setting, addition of VitC in vitro
resulted in increased expression of inhibitory receptors on
immature CD56bright (both at the gene and protein levels), but
not on mature CD56dim NK cells (63). These results suggest that
VitC preferentially affects immature NK cells, influencing
peripheral NK cell development by inducing a more inhibitory
phenotype. It is not known whether VitC influences the
developmental expression of other NK cell receptors, or how
VitC-mediated changes affect NK cell anti-tumor function. It is
possible that VitC-induced upregulation of inhibitory receptors
inhibits NK cell cytotoxicity against tumor cells, as upregulation of
inhibitory receptors by another epigenetic-modifying drug,
decitabine, impaired NK cell anti-tumor activity (64).
Furthermore, impaired NK cytotoxic function in the presence of
VitC has been reported in in vitro studies (58, 65). In contrast,
some murine and human (66, 67) studies have reported that VitC
Frontiers in Immunology | www.frontiersin.org 4
augmented the cytotoxic function of NK cells; these studies
typically compared VitC depletion with supplementation at
physiologic doses, suggesting that there may be an optimal dose
range. Clearly, more extensive investigation is needed to fully
understand the effect of VitC on NK cell function.

ab T Cells
T cells expressing the ab T-cell receptor (TCR), comprising CD4
and CD8 T cells, release cytolytic granules (68, 69) and produce
cytokines, including IFN-g; after tumor antigen challenge
[reviewed in (70)]. Physiologic-dose VitC enhances human
T-cell proliferation (44, 71), and exerts both direct and indirect
effects on CD4 and CD8 T-cell subsets. A murine study reported
that VitC treatment of dendritic cells (DCs) increased
phosphorylation of p38, Erk1/2 and NF-kB relevant for DC
activation, resulting in elevated production of IL-12, which in
turn drove naïve T cells towards the Th1 phenotype, increasing
IFN-g and decreasing IL-5 secretion (72). This was confirmed in
a follow-up study demonstrating that murine CD4 and CD8 T
cells showed increased IFN-g production when cocultured with
VitC-pretreated DC (73). Furthermore, in vivo injection of VitC-
pretreated DCs increased IL-12 and IL-15 levels and augmented
the generation of memory CD8 T cells; these cells exhibited
strong cytotoxic activity against melanoma cells both in vitro and
in vivo (73). Less has been reported on the direct effects of VitC
on ab T cells, and to our knowledge no studies have been
reported describing the effects of physiologic-dose VitC on ab T
cells against cancer. Luchtel et al. reported that VitC-
pretreatment of isolated human CD8 T cells led to an increase
in global 5-hmC levels and enhanced their in vitro cytotoxic
activity against lymphoma cells (22). Notably, this increase in
CD8 T cell cytotoxicity also occurred in vivo; however,
physiologic-dose VitC has not been tested in this context.

gd T Cells
gd T cells are prototypical unconventional T lymphocytes and
express a TCR composed of variable Vd genes paired with
different Vg elements. Studies have shown that infiltration of
gd T cells into tumors correlates with favorable prognosis in
several cancer types (74); however, gd T cells have not yet been
widely adopted as anti-cancer cellular therapies. Approaches to
improve gd T-cell expansion and effector function were recently
reviewed (75), and we have previously shown that VitC and its
derivative, L-ascorbic acid 2-phosphate (pVC), can increase the
in vitro proliferation of gd T cells. We have also shown that pVC
and VitC (at low dose) treatment led to reduced intracellular
ROS levels, increased proportion of cells in G2/M phase, and
increased Ki-67 expression, as well as increased glycolysis and
mitochondrial respiration (76). These findings are consistent
with the induction of effector and memory programs within gd T
cells (77–79). Indeed, treatment of gd T cells with physiologic-
dose VitC improved ex vivo expansion and yielded cell products
that expressed higher levels of costimulatory molecules,
increased cytokine production, and superior cytotoxic activity
against tumor cells (24). These data suggest that VitC may be a
useful adjunct for gd T cell immunotherapies. Along these lines,
this study showed that the adoptive transfer of VitC-expanded gd
November 2021 | Volume 12 | Article 765906
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T cells, but not control gd T cells, significantly prolonged the
survival of humanized mice transplanted with human lung
tumor cells (24). Remarkably, a subsequent phase I clinical
trial found that repeated infusion of VitC-treated allogeneic gd
T cells increased overall survival rates in lung and liver cancer
patients (24).

In summary, VitC appears to exert its effects on immune cells
in a dose- and context-dependent manner. At in vitro doses
above 57 µM, VitC is toxic to human gd T cells (76); 1mM VitC
treatment of human ab T cells enhanced cytotoxic activity
Frontiers in Immunology | www.frontiersin.org 5
against lymphoma cells (22), but required pretreatment with
catalase to protect against VitC-mediated ab T cell toxicity.
Thus, an alternative to the use of pharmacologic-dose VitC may
be pVC, which resists oxidation in culture medium and releases
the reduced VitC form once inside the cells via alkaline
phosphatase-mediated hydrolysis (80). pVC therefore has no
extracellular prooxidant effect, but still facilitates intracellular
biological effects. Indeed, we have seen no toxicity with pVC at
doses approaching 1mM, while continuing to see marked
metabolic (76) and epigenetic effects (81).
A

B

FIGURE 2 | Immunomodulatory functions of Vitamin C. (A) Mechanisms of action of Vitamin C; VitC exerts an immune-modulatory effect on immune cells through
two main mechanisms, antioxidant activity and epigenetic modulation (by providing ferrous iron to the TET enzymes, which maintains them in their fully catalytic form,
thereby ensuring an active DNA demethylation). (B) Effects of Vitamin C on immune cells with anti-tumor functions. VitC exerts both direct and indirect effects on NK,
ab and gd T cells by modulating their proliferation, differentiation, and effector functions. AA, ascorbic acid; DHA, dehydroascorbic acid; GSH, glutathione; GSSG,
glutathione disulfide: SVCTs, sodium-dependent vitamin C transporters: GLUTs, glucose transporters: TETs, ten-eleven translocation enzymes; ROS, reactive oxygen
species; 5mC, 5-methylcytosine; 5hmC, 5-hydroxymethylcytosine.
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VITAMIN C AND CANCER
IMMUNOTHERAPY

Chimeric Antigen Receptor T Cells
CAR design, biology, and clinical efficacy have been extensively
reviewed elsewhere (82, 83). Very briefly, CARs are TCR
surrogates with a modular design comprising an antigen-
binding domain, an extracellular hinge region, a transmembrane
domain, and an intracellular tail incorporating the TCR signaling
domain CD3z. Despite their overall structural similarity, there are
significant differences in proximal signaling after antigen
recognition between CARs and TCRs (83, 84). However, given
that VitC can modulate activation-induced TCR signaling (43), it
is probable that VitC affects proximal CAR signaling. Additionally,
gd T cells treated with pVC have reduced ROS levels, and ROS are
known to interact with molecules involved in proximal TCR
signaling (85). Moreover, VitC may increase c-Jun levels (43)
and Nuclear Factor of Activated T cell (NFAT) activity (86), and
both c-Jun and NFAT have been shown to influence CAR T cell
function (87). Specific studies on the effects of VitC on CAR
signaling have not yet been reported.

Immunomodulatory effects of antioxidants and epigenetic
activators on CAR T cell function and development have been
described (88–90). Manufacturing anti-CD19-CAR T cells in the
presence of the antioxidant N-acetyl-cysteine (NAC) resulted in
enforcement of a stem cell memory-like phenotype (Tscm),
including displayed Tscm-specific metabolic features, improved
self-renewal, and superior anti-tumor function in vivo (88).
Similar observations were also made when manufacturing anti-
CD19-CAR T cells in the presence of JQ1, an inhibitor of
bromodomain and extra-terminal motif (BET) proteins (90).
Interestingly, VitC was also reported to play a crucial role in the
generation and maintenance of induced pluripotent stem cells
(91), and the combination of NAC and VitC promotes the
acquisition of long-term T cell memory in aged mice (92).
Additionally, we recently demonstrated that VitC increased the
proliferation of IL-2/IL-15-expanded human gd T cells, which was
accompanied by a switch to memory T cell-like metabolism and
improved anti-tumor function (24, 76). IL-15-expanded CAR T
cells also exhibit an enhanced proliferative capacity and anti-
tumor function in vivo in part through reduced mammalian target
of rapamycin complex 1 (mTORC1) signaling, which enforces a
Tscm phenotype (93). Taken together, these findings suggest that
VitCmay be a beneficial addition to the CAR T cell manufacturing
process, and we are currently investigating this possibility.

Immune Checkpoint Therapy
The antagonistic potential of monoclonal antibodies to suppress
the function of immune inhibitory receptors such as CTLA-4
and PD-1, known as ICT, has led to remarkable clinical
responses against many tumors (94). Unfortunately, ICT is not
universally effective (95, 96), and expanding the therapeutic
scope of this revolutionary modality would be of great value.

Interestingly, evidence is mounting that VitC can augment
the effects of ICT. Recent studies showed that pharmacologic-
dose VitC potentiates PD-1 blockade, resulting in increased
Frontiers in Immunology | www.frontiersin.org 6
macrophage and CD8 T-cell tumor infiltration, increased
granzyme B production, and significant tumor regression (21,
22). Similarly, addition of high doses of VitC to CTLA-4 and/or
PD-1/PD-L1 blockade delayed tumor growth and led to
pronounced tumor regression in different tumor mouse models
(23). Although mechanistic data are not completely elucidated in
these studies, it is interesting that VitC treatment enhances T cell
trafficking in solid tumors (97). VitC may also amplify the effects
of checkpoint inhibitor therapy through its role as an epigenetic
facilitator possibly increasing the expression of retroviral
elements and neoantigens (22). Taken together, these studies
point the way to therapeutic combination of VitC and ICT in
early-phase clinical trials.
CONCLUDING REMARKS

Recent advances in immunotherapy have ushered in a new era in
cancer treatment, but many challenges remain to be solved for
successful implementation of cancer immunotherapy, including
adverse side effects of treatment, off-target toxicity, tumor
resistance, tumor evolution, and an immunosuppressive tumor
microenvironment, all of which limit translational efficacy across
a wide variety of tumors. VitC has recently reemerged as a potent
immunomodulatory small molecule, acting on immune cells
through well-known antioxidant and epigenetic mechanisms as
well as emerging direct signaling effects. Mounting evidence
suggests that VitC may be of great therapeutic benefit in
combination with immunotherapies, in particular CAR T-cell
therapy and immune checkpoint inhibition. Pharmacologic i.v.
concentrations of VitC possess anticancer properties, but
combinatorial immunotherapeutic approaches may be required
for tumor clearance. The addition of physiologic doses of VitC
(or pVC) during manufacturing of adoptive cellular therapies
may also be beneficial for enhancing T cell proliferation and
maintenance of T stem cell phenotype. Although it has been
demonstrated that VitC may have some synergistic effects when
combined with ACTs, further investigation is needed to better
define the optimal dosing, route, and schedule strategies as well
as predictive biomarkers of susceptibility of immune/tumor cells
to VitC treatment as it pertains to ACT. It is of great interest to
study these interactions in more detail, and potentially to
incorporate VitC into future immunotherapeutic clinical protocols.
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