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Cellular composition and structural organization of cells in the tissue determine effective
antitumor response and can predict patient outcome and therapy response. Here we
present Seg-SOM, a method for dimensionality reduction of cell morphology in H&E-
stained tissue images. Seg-SOM resolves cellular tissue heterogeneity and reveals
complex tissue architecture. We leverage a self-organizing map (SOM) artificial neural
network to group cells based on morphological features like shape and size. Seg-SOM
allows for cell segmentation, systematic classification, and in silico cell labeling. We apply
the Seg-SOM to a dataset of breast cancer progression images and find that clustering of
SOM classes reveals groups of cells corresponding to fibroblasts, epithelial cells, and
lymphocytes. We show that labeling the Lymphocyte SOM class on the breast tissue
images accurately estimates lymphocytic infiltration. We further demonstrate how to use
Seq-SOM in combination with non-negative matrix factorization to statistically describe
the interaction of cell subtypes and use the interaction information as highly interpretable
features for a histological classifier. Our work provides a framework for use of SOM in
human pathology to resolve cellular composition of complex human tissues. We provide a
python implementation and an easy-to-use docker deployment, enabling researchers to
effortlessly featurize digitalized H&E-stained tissue.

Keywords: self-organization, in silico staining, e-pathology, cell subtype classification, segmentation
INTRODUCTION

Cell organization in the tissue is deliberate (1–3) with specific cell types arranged into spatial
structures driving tissue function both in health and disease, as well as patient outcome and therapy
response in disease (2–5). Additionally, hospitals around the world routinely digitalize histological
tissue slides collecting vast amounts of image data. Automatic extraction of clinical and actionable
org October 2021 | Volume 12 | Article 7659231
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information from histological images is, therefore, the next aim
in the field of digital pathology. However, automatic reading of
digitized histological specimens is hindered by a complex nature
of the images characterized by cellular and spatial heterogeneity,
where both cell morphology and spatial distribution are
parameterized by high dimensional space. While machine
learning and, in particular, deep learning models applied to
histopathology provide the first evidence that automatic slide
reading might be possible (6–8), the narrow focus of these
models on specific diseases or cell types (9) as well as their
black-box nature hinders their interpretability and widespread
use (10). Digital pathology thus needs more transparent models
allowing for manual validation and broader application.

Parallel to computer vision methods, biochemical methods
based on immunohistochemical tissue staining or RNA
Sequencing (RNA Seq) can be used to resolve tissue
architecture. Interestingly, spatially resolved multiplexed
imaging was demonstrated to outperform conventional
biomarker studies in predicting patient response to anti-PD-1/
PD-L1 therapies (11). Biochemical techniques, such as
immunohistochemistry, multiplex ion beam imaging by time
of flight (MIBI-TOF) (12), or termed co-detection by indexing
(CODEX) (13), are based on immune staining and require
sophisticated reagents, lengthy staining optimizations, and
specialized visualization equipment, and are thus unfit for
large-scale datasets. Single-cell RNA Seq techniques like Drop-
Seq (14) offer transcriptomic profiling at scale but entirely lose
the spatial tissue context and do not accurately capture all cell
types, as certain cell populations die because of tissue
dissociation and other cells are too large to fit the
microfluidics. These problems can be solved with new spatial
transcriptome profiling platforms like Slide-seq (15), yet with a
resolution tradeoff, as they can only profile small groups of cells.
More importantly, both single-cell RNA seq and spatial
transcriptomic platforms entirely lose information about
cell morphology.

In this work, we leverage nuclear segmentation, self-
organization algorithms, and non-negative matrix factorization
(NMF) to automatically and quantitatively summarize nuclear
morphology and spatial organization in the histological images.
Our method, called Seg-SOM, performs nuclear segmentation,
classification, and in silico nuclear labeling on the hematoxylin
and eosin (H&E)-stained tissue section images routinely used in
the clinic. Seg-SOM serves as a histological image dimensionality
reduction method that provides descriptive H&E image statistics.
The technique utilizes an artificial neural network called self-
organizing map (SOM) (16) that learns to group nuclei by
morphological features, such as nuclear shape and size, into a
lower-dimensional space that is visually interpretable. We show
that Seg-SOM can delineate major cellular lineages and reveal
nuclear substates. We validate our approach using multicolor
immunofluorescence and apply the workflow to two large breast
cancer image datasets we generated to (1) predict lymphocyte
infiltration and (2) devise spatial biomarker to classify breast
ductal carcinoma in situ (DCIS) lesions into changes that
presented alone or accompanied by invasive breast cancer. We
Frontiers in Immunology | www.frontiersin.org 2
anticipate our approach can facilitate a greater understanding of
cell morphological and spatial dynamics in complex tissue
environments, and their relationships with disease stage or
other clinical correlates. Importantly, Seg-SOM opens the door
to mining vast amounts of archival data and publicly available
histological images without requiring additional staining or
hand-labeled training sets. To that end, we have made our
code publicly available. Modular implementation of our
pipeline allows for easy-to-use application and extension to
specific use cases.
RESULTS

Seg-SOM Workflow: Segmentation, Self-
Organization, Clustering, and Applications
Quantification of cell morphology is challenging because the
visual features of each cell are parametrized by high dimensional
space. The purpose of the Seg-SOM method is to transform the
high dimensional visual features of each cell into an
interpretable, lower-dimensional space where they can be used
for in silico labeling of cells. In this manuscript, we focus on
features pertaining to the morphological appearance of
cellular nuclei.

The Seg-SOM pipeline consists of three parts: (1) nuclear
segmentation (Figure 1A, box 1), (2) training of a self-
organizing map (SOM) and hierarchical clustering of
discovered nuclear subtypes (Figure 1A, box 2), and (3) in
silico labeling (Figure 1A, box 3). The pipeline takes a standard
H&E image as an input (Figure 1B). An input image is next fed
into a segmentation neural network assigning every pixel in an
input image as nuclei or nuclear border (Figure 1C).
Subsequently, every nucleus is extracted from the segmented
image and converted into a feature vector using PCA
decomposition. The SOM is trained on a collection of the
feature vectors, representing all nuclei present in the
investigated dataset, learning to self-organize the nuclei into
nodes on a user-defined grid (Figure 1D). During this self-
organization process, each node on the SOM grid learns its own
signature feature vector. As the SOM model trains successively
on the PCA decomposed feature vectors of each segmented
nucleus in the dataset, the elements of each SOM grid node’s
feature vector are learned by the model automatically, through
the learning and update algorithm. The adjacent nodes on a
SOM grid are organized so that they constitute a continuum of
nuclear shapes and visually resemble each other. We chose a 7×7
hexagonal SOM grid composed of 49 total cell nuclei nodes,
which we found to be sufficient for representing the nuclear
heterogeneity present in the training set. The learned SOM nodes
(Figure 1D) display an organizational structure along the two
major axes of the SOM grid, with the left-right axes organized by
a large to small nuclear size gradient, and the top-bottom axes
organized by nuclear aspect ratio.

We used hierarchical clustering of the SOM node feature
vectors to group them into nuclear clusters (Figure 1E). We
found that six clusters work well to differentiate between major
October 2021 | Volume 12 | Article 765923

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yuan et al. SOM for e-Pathology
C D

F

E

B

A

FIGURE 1 | Seg-SOM pipeline reveals spatial nuclear organization in complex tissue images. (A) A schematic of Seg-SOM pipeline workflow. (1) Input H&E images
are used for nuclear segmentation using a convolutional neural network (CNN). (2) SOM is trained on PCA feature vectors describing each nucleus in the dataset,
and discovered SOM nodes are hierarchically clustered into classes. (3) Segmented H&E images are in silico labeled according to the hierarchical SOM class they
belong to. (B) Standard hematoxylin and eosin (H&E) stained image showing a cluster of epithelial cells in the center, with a region of lymphocytic infiltration on the
top right side. (C) Cellular nuclei segmented from an H&E input image in (A), by the nuclei segmentation neural network; background indicated in white and nuclei
indicated in black. (D) Segmented nuclei organized by the SOM into a 7×7 node grid. The learned axes arrange nuclear size in the vertical direction and nuclear
aspect ratio in the horizontal direction. SOM nodes are colored by the classes learned by hierarchical clustering. (E) The linkage tree for the 49 SOM nodes, with six
hierarchical clusters shown in different colors. The nodes with the smallest nuclei are themed Debris and colored yellow. The cyan-colored small and round nuclei
nodes are called Lymphocyte. Nuclei of intermediate size, corresponding to colors red, blue, and pink, are called Epithelial1, Epithelial2, and Epithelial3. Long nuclei
with a high aspect ratio, colored green, are annotated as Fibroblasts. (F) The segmented H&E image corresponding to (B, C), in silico labeled by hierarchical SOM
clusters, showing the concentration of Epithelial1, Epithelial2, and Epithelial3 nuclei in the center of the image (red, pink, and blue), and the Lymphocyte nuclei
enriched in the top right corner.
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tissue cell lineages that can be appreciated from the H&E
staining: epithelial cells, fibroblasts, and lymphocytes. Based on
the shape size and the spatial distribution in the tissue, we
annotated each of the hierarchical clusters to further assist in
the interpretation of the results. The small yellow matter grouped
in SOM hierarchical class 1 (Figure 1E), with physical sizes
between 0.1 and 2 μm, likely correspond to small bits of
extracellular matter and are not real cell nuclei, and hence we
term them “Debris.”We call the cyan-colored nuclei, grouped by
clustering into class 2, Lymphocytes. The SOM hierarchical
Lymphocyte class nuclei have sizes between 2 and 10 μm, are
small, and nearly circular in shape (Figure 1E). The hierarchical
SOM class 1, called here Debris, and class 2, called here
Lymphocyte, form the first major branch of the clustering
dendrogram (Figure 1E). The second dendrogram branch
consists of (1) the larger, highly circular blue nuclei, measuring
between 10 and 15 μm in diameter, which we annotated as
“Epithelial1”; (2) the smaller, diversely shaped nuclei measuring
between 10 and 12 μm in diameter of red nuclei are called
“Epithelial3”; and (3) the large, relatively high-aspect ratio, pink
nuclei, between 15 and 25 μm, which we called as “Epithelial2”.
Hierarchical clustering of SOM nodes additionally identified a
scattered population of cells with elongated nuclei that likely
correspond to fibroblasts, which are labeled in green.
Frontiers in Immunology | www.frontiersin.org 4
The learned grid of SOM nodes and the corresponding
feature vectors can be used to digitally “stain” segmented
nuclei on other images (Figure 1F). This is achieved by
comparing the PCA feature vector of every nucleus on a new
image to feature vectors to the trained SOM nodes and assigning
the new nuclei to a SOM node with the smallest root-mean-
square error. The nucleus in question is then colored by the
hierarchical classification of its designated SOM node.

SOM grid can be extended to encompass other cell
morphological features, such as cell color and texture. When
including other visual features in the SOM grid, it may become
desirable to extend the SOM model to higher dimensions. The
spatial dimensionality of the SOM grid determines the number of
axes of information that can be represented, and we have also
trained four-dimensional SOM models that self-organize into
axes of nuclear size, shape, texture, and color information
(Supplementary Figure 3).

Validation of SOM Clusters With
Immunofluorescence Staining
We used immunofluorescence staining to validate nuclei type
annotations of clustered SOM nodes. CD3 was used to delineate
T cells and pan-cytokeratin (KER) to delineate epithelial cells
(Figure 2A). First, we show that the spatial pattern and density of
C DBA

FIGURE 2 | Validation of SOM in silico labeling with immunofluorescent staining. (A) A representative image of a TMA core and corresponding magnified regions: stained
with CD3 (cyan) and KER (red), (B) H&E stained, and (C) in silico labeled with hierarchical SOM classes. Bottom panels of (A–C) are magnifications of the region boxed in
the upper panel. (D) Mean CD3 and KER staining intensities of 15 IDC TMA tissue cores were shown for each of the SOM hierarchical classes. a.u., arbitrary units.
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the CD3-stained T cells (turquoise stain Figure 2A)
corresponded to small, densely packed nuclei in the stromal
compartment on the corresponding H&E image (Figure 2B),
and the SOM hierarchical class was annotated as Lymphocytes
(Figure 2C). Secondly, we show that spatial distribution and
density of the epithelial cell clusters stained by KER (red stain
Figure 2A) and arranged in apparent tumor island clusters on
the H&E stain (Figure 2B) reflects nuclei labeled by hierarchical
SOM classes annotated as Epithelial1, Epithelial2, and
Epithelial3, and indicated by nuclei colored red, blue, and pink
(Figure 2C). We further quantified the fluorescence staining
intensity of each Seg-SOM hierarchical class (Figure 2D) by
computationally collecting results from 15 breast cancer tissue
microarray cores with breast invasive carcinoma in situ (IDC).
Quantification of CD3 signal intensity around the nuclei shows
that CD3 staining is significantly enriched in Lymphocyte SOM
class compared to other hierarchical SOM clusters (Figure 2D,
top). Furthermore, we show that SOM-labeled epithelial clusters
have significantly higher KER staining intensity compared to
Lymphocyte and Fibroblast SOM clusters (Figure 2D, bottom).
Therefore, we have shown there is a strong correlation between
the KER and CD3 normalized stain intensity and the Seg-SOM
identified Epithelial and Lymphocyte class nuclei, respectively.

Seg-SOM Estimates Lymphocyte
Infiltration in the Tissue
The tumor ecosystem is a complex mixture of transformed
cancer cells and a variety of associated normal cell types like
infiltrating immune cells, fibroblasts, endothelial cells, and other
cell types (17). Tumor-infiltrating lymphocytes (TILs) reflect an
adaptive immune response to tumors. TILs are well documented
to determine therapy responsiveness (17) and are associated with
favorable prognosis (18, 19). Nowadays, in situ lymphocyte
infiltration evaluation is being increasingly suggested to be
added as a new component to the traditional TNM (Tumor
size, lymph Node spread, Metastasis presence) scoring (20–22).
TIL estimation is also being used as an inclusion criterion to
select patients for clinical trials or prescreen candidates for
immunotherapy targeting T-cell responses like anti-CTLA4,
anti-PD-1, and anti-PDL1 antibodies. We show that Seg-SOM
labeling can serve to estimate lymphocytic infiltration. We
applied the Seg-SOM method to a dataset composed of 266
tissue microarray core images of the subsequent stages of breast
cancer progression including normal breast ducts (normal),
breast ducts with hyperplasia/early neoplasia (EN), breast ducts
involved with ductal carcinoma in situ (DCIS), and regions of
invasive ductal carcinoma (IDC). We show how the Seg-SOM
pipeline can identify hierarchical SOM Lymphocyte nuclei class
(cyan) and combined Epithelial1, Epithelial2, and Epithelial3
hierarchical SOM class nuclei (red) (Figure 3A) on the
representative H&E-stained tissue microarray cores with high
and low lymphocyte infiltration. To quantify the accuracy of the
Seg-SOM pipeline in estimating the lymphocytic infiltration, we
asked whether the number of nuclei assigned as hierarchical
Lymphocyte nuclei class corresponds to an infiltration score
assessed by a surgical pathologist, which we call here an
Frontiers in Immunology | www.frontiersin.org 5
immunoscore. When considering all stages of progression, we
find a moderately strong correlation (r = 0.5) between the
number of Seg-SOM-annotated Lymphocyte nuclei and the
immunoscore, at an extremely high confidence level (p < 2e-
16) (Figure 3B). When examining the individual correlations
between the number of hierarchical SOM Lymphocyte class
nuclei and the immunoscore, stratified by breast tumor
progression stage (Figure 3C), we find that the correlation is
stronger for normal and EN tissue types (r > 0.5), compared to
DCIS (r = 0.21) and IDC (r = 0.43). This could be due to greater
morphological pleomorphism in the cancerous lesions, which
leads to irregularly shaped epithelial nuclei being categorized as
SOM hierarchical Lymphocyte class nuclei. Moreover, we show
that the lymphocyte infiltration increases with tumor
progression as the immunoscores and the number of Seg-SOM
identified Lymphocyte class nuclei are higher in DCIS and IDC
compared to normal breast ducts (Supplementary Figure 1).
The calculated average immunoscores are 1.20, 1.42, 1.48, and
1.76 for normal, EN, DCIS, and IDC, respectively. The average
hierarchical SOM Lymphocyte class nuclei counts per stage are
686, 1,150, 1,263, and 1,792, respectively. These results show that
the Seg-SOM pipeline can be successfully used to estimate
lymphocyte infiltration in complex images of histological
tissue sections.

Highly Interpretable Feature Extraction
With Seg-SOM for Breast Cancer
DCIS is a risk factor and a precursor lesion for IDC. Recent
advances in contemporary cancer screening imaging techniques,
like mammography, caused a significant increase in DCIS
detection rates. However, studies show that only 13–52% DCIS
patients do progress and develop IDC (23, 24). This raises
concern that many DCIS patients get overtreated. Therefore,
methods of improving DCIS stratification are urgently needed.
We run the Seg-SOM pipeline on a dataset composed of 285
DCIS tissue microarray core images of samples from patients
that were diagnosed with DCIS only (IDC-negative, n = 93) or
patients diagnosed with DCIS with a concurrent IDC (IDC-
positive, n = 192) (Figure 4A) to identify tissue architecture
features predictive of whether DCIS is likely to present alone or
accompanied by IDC. We hypothesize that IDC-negative DCIS
tumor microenvironment (TME) differs from that of IDC-
positive DCIS TME, and that tissue architecture features
discriminating IDC-positive from IDC-negative DCIS lesions
can reveal predictors of DCIS progression to IDC. The dataset is
composed of pictures containing exclusively DCIS lesions, and
thus we aimed to identify IDC-positive patients based only on
the appearance of the DCIS.

Proximity of different cell subtypes in the tissue enables cell
interactions and determines tissue fate. Each of the SOM nodes
represents a distinct nuclear morphology and enables the
discovery of nuclear subtypes and substates. Using the SOM
grid trained on the IDC-negative/positive DCIS dataset, we
constructed a set of features that characterize how different
nuclear morphologies are spatially organized within the image.
Specifically, we computed pairwise distances between cell nuclei
October 2021 | Volume 12 | Article 765923

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yuan et al. SOM for e-Pathology
representing each of the 49 SOM nodes and displayed the results
using an interaction matrix (Figures 4B, C). The interaction
matrix measures 49×49 elements, and each element of the matrix
describes how likely nuclei from every two SOM nodes are
spatially close to each other on the pictures of the dataset
analyzed. Henceforth, we also use the term “interaction” to
describe a scenario in which nuclei of one SOM node are
spatially close to those of another node. We next reduced the
dimensionality of the full interaction matrix to a 100-
dimensional feature set using non-negative matrix factorization
(Figures 4B, D). Subsequently, we trained an L1 classifier on the
dimensionally reduced interaction matrix and extracted the top
five features most predictive of DCIS being IDC-positive
(Figures 4B, E). We next used the top five predictive
interaction features to train a second L2 classifier (Figures 4B, F).
We performed 5,000 iterations of the whole process, with five-
fold cross-validation over the entire dataset (Figure 4B). Based
only on the top five features, the classifier showed significant
discriminative power to classify IDC-negative and IDC-positive
DCIS pictures. It achieved an overall F1 score of 0.766 and AUC
of 0.696 (Table 1 and Supplementary Figure 2) in comparison
to an F1 score of 0.744 and AUC of 0.779 achieved on the
training dataset. The comparable F1 scores between training
and test datasets indicate the model is not overfitting, and the
Frontiers in Immunology | www.frontiersin.org 6
higher AUC score on the training set indicates the prediction
probabilities are better calibrated for the sample distribution of
the training set.

Of the top five selected model features, four features are
negatively weighted, predicting the patient whom DCIS was
imaged is more likely to be IDC-negative, while a single
feature, Feature #3, is positively weighted, predicting a greater
likelihood of the patient being IDC-positive (Figure 4F). We
visualized the top five predictive spatial interaction features in
the context of the SOM grid (Figures 5A–E left panel) and
present them next to an example of DCIS region enriched in each
feature, colored by SOM hierarchical classes (Figures 5A–E
middle panel), and H&E staining (Figures 5A–E right panel).
The five top features are visualized on the SOM grid using
rectangles and lines highlighting and connecting interacting
SOM nodes. The color of the rectangle indicates the
hierarchical SOM class of the node. The brightness of the
rectangle surrounding each SOM node indicates its total
weighted contribution to the interaction feature and reflects
the abundance of that node’s nuclear type. The brightness of
the white node-connecting lines indicates the strength of
interactions between SOM nodes. Feature #1 indicates
lymphocyte infiltration, as it highlights interactions between a
few hierarchical Lymphocyte class nuclei with hierarchical SOM
C

BA

FIGURE 3 | SOM in silico labeling can be used to predict lymphocyte infiltration in TME. (A) Left panel, H&E images of breast tissue TMA cores with high and low
lymphocyte infiltration, respectively. Right panel, corresponding images of segmented nuclei in silico labeled with SOM hierarchical classes into either combined SOM
Epithelial class (red) or SOM Lymphocyte class (cyan). (B, C) TIL infiltration assessed by a pathologist as an immunoscore (1-low, n = 155; 2-medium, n = 89; 3-
high, n = 22), plotted against the number of SOM Lymphocyte class nuclei predicted by the Seg-SOM pipeline (B), estimated on breast progression dataset
composed of 285 breast TMA images combined and (C) stratified by different stages of breast cancer progression: normal breast ducts (normal, n = 56), ducts with
early neoplasia (EN, n = 62), ducts with ductal carcinoma in situ (DCIS, n = 58), and regions of invasive ductal carcinoma (IDC, n = 90). Scale bars in (A) are 375 µm.
October 2021 | Volume 12 | Article 765923
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Fibroblast class nodes (Figure 5A). Features #2 and #4 are
enriched in larger, epithelial nuclei, primarily from the first
row of the SOM grid (Figures 5B, D). Features #2 and #4
display overlap of SOM nodes and have a relatively large
correlation coefficient of 0.2. Feature #3 characterizes a
different epithelial nuclear SOM node, which the model
associated with an increased likelihood of IDC-positivity. In
Frontiers in Immunology | www.frontiersin.org 7
spite of rather subtle differences in the nuclear shape of nuclei
enriched in Feature #3, and those enriched in Features #2 and #4,
the model indicates significant differences in the predictive
power of these nuclei’s distribution in IDC-negative vs IDC-
positive DCIS pictures. Compared to Features #2 and #4, Feature
#3 describes interactions of cells all based around a single SOM
node with an increased lymphocyte involvement (Figure 5C).
Additionally, Seg-SOM labeling shows that Feature #3
(Figure 5C middle panel) displays a different spatial
organization with lower cell density compared to Features #2
and #4 (Figures 5B, D middle panel). Finally, Feature #5 is
enriched in a set of epithelial cells with elongated and larger
nuclei (typically of 12 × 24 μm) colored purple and blue by the
hierarchical clustering scheme. (Figure 5E). The model weight of
Feature #5 is strong, at −0.33, and its negative leaning influences
the classification well beyond its error bar, indicating its
robustness. The negative model weight of Feature #5 is
TABLE 1 | Results of logistic classification of IDC-positive vs. IDC-negative
DCIS.

Precision 0.764
Recall 0.794
F1 0.776
AUC 0.696
The averaged precision, recall, F1, and area-under-the-curve (AUC) of 5,000 iterations of
logistic regression model trained with five-fold cross-validation.
C D FE

BA

FIGURE 4 | Spatial organization of SOM nodes predicts whether DCIS is likely to be IDC-negative or IDC-positive. (A) IDC-negative and IDC-positive DCIS dataset
description. (B) A schematic representation of spatial feature extraction and IDC-positive/negative DCIS classification workflow. (C–E) Visualization of selection of top
five spatial features; (C) an interaction matrix representing an average spatial distance between each of 49 SOM nodes. (D) 100 spatial features obtained by non-
negative matrix factorization of the interaction matrix. (E) Top five spatial features with the largest magnitude of coefficients obtained with L1 Feature selection.
(F) Top five logistic regression features weights obtained by 5,000 iterations of a five-fold cross-validation procedure used to classify IDC-negative and IDC-positive
DCIS images. Red error bars indicate the standard deviation of the weights from 5,000 instances of five-fold cross-validation used to train the logistic regression model.
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FIGURE 5 | Visualization of top predictive features for IDC-positivity prediction in DCIS. (A–E) Left panel, visualization of the spatial interaction Features #1–5 in the
context of the SOM node grid. Features #1–5 were learned during the IDC-negative IDC-positive classification task illustrated in Figure 4. The intensity of the white
lines shows the interaction strengths between different SOM nodes in the given feature. The intensity of the tile surrounding each node shows the sum of all
interactions with the node; in other words, it indicates how prominently the node contributes to the given feature. Middle and right panels, representative images of
DCIS tissue regions enriched in Features #1–5. Middle panel, segmented and in silico SOM-labeled cell nuclei, colored by the hierarchical SOM class. Right panel,
corresponding H&E images. Scale bars have 200 µm.
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consistent with previous findings and clinical scoring practice
(25) where nuclei with a long aspect ratio are typically associated
with low-grade tumor cells and a lower chance of IDC progression.

In summary, our analysis of spatial nuclear distribution
between different SOM-discovered nuclear subtypes disclosed a
complex system of cell interactions predictive of whether DCIS is
likely to be diagnosed alone or accompanied by the IDC in breast
cancer patients. We revealed four nuclear subtype interaction
patterns associated with DCIS lesions that are indicative of lower
risk of progression from DCIS to IDC, and one epithelial/
lymphocyte interaction pattern that correlates with an
increased risk of DCIS to be accompanied by IDC.
DISCUSSION

We describe a computer vision method, Seg-SOM, that can
discover nuclear subtypes in complex histological images based
on their morphology. We use it to visualize nuclear heterogeneity
and tissue architecture and thus reveal information that
traditionally requires immune-staining and/or professional
histological assessment. The Seg-SOM method operates on
H&E stains routinely used in clinical practice. The Seg-SOM
workflow consists of three primary steps: (1) nuclear
segmentation, (2) nuclei grouping based on their shape and
size performed by the self-organizing map algorithm combined
with hierarchical clustering of SOM nodes, and (3) in silico cell
type staining. SOMs have been previously used in digital
pathology for red blood cell classification (26), megakaryocyte
subtypes clustering (27), and analyzing 3D cell surface
information (28). This work is the first to present the
combination of SOMs and NMF as a general tool for
dimensionality reduction of nuclear morphology, the grouping
of nuclei in complex tissues, discovering nuclear subtypes,
nuclear in silico labeling, and extracting machine learning
features as potential spatial biomarkers.

In this work, we perform nuclear segmentation on H&E-
stained tissue images, yet tissue images of any nuclear stain can
be used as input to the Seg-SOM method. We further note that
while we used a convolutional neural network (CNN) for nuclear
segmentation, any other cell segmentation technique can
be used.

We validated our annotation of hierarchical SOM nuclei
classes and the in silico cellular staining by comparing them
with immunofluorescent staining for markers of epithelial cells
and lymphocytes, KER, and CD3, respectively. We did not expect
Seg-SOM labeling to identically reproduce the results of
immunofluorescent staining, as the Seg-SOM organizes cells only
based on the shape of their nuclei, while immunofluorescence, used
for the annotation validation, indicates the cytoplasmic protein
expression. However, we show significant enrichment of CD3 IF
staining around hierarchical SOM Lymphocyte class compared to
hierarchical SOM Epithelial and Fibroblast classes, and enrichment
of KER IF staining around hierarchical SOMEpithelial1, Epithelial2,
and Epithelial3 classes compared to hierarchical SOM Lymphocyte
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and Fibroblast classes. This result demonstrates that Seg-SOM can
be reliably used to in silico stain H&E images.

Furthermore, applying the Seg-SOM pipeline to two breast
tissue image datasets, we demonstrate two applications of the
Seg-SOM method. First, using in silico labeling, Seg-SOM
allowed us to highlight tumor-infiltrating lymphocytes (TIL)
and estimate TIL infiltration in normal and cancerous breast
tissue. Secondly, we demonstrate how SOM nodes can be used to
construct interpretable features of nuclear spatial organization
for machine learning tasks. We show how analysis of the spatial
distribution and proximity of different SOM-identified nuclear
subtypes can be used for the classification of IDC-negative and
IDC-positive DCIS images. Our approach can be especially
valuable for identifying interactions between two cell populations
and their prognostic value. We revealed that interaction of subtly
different nuclear shape subtypes with distinct stromal cell subsets
can contribute very differently to the likelihood of IDC concurrence.
Specifically, we found two features describing nuclear interaction in
DCIS, Features #3 and #4, that are enriched in epithelial nuclei of
very similar shape and size, yet with an opposite likelihood of IDC-
positivity. Our model also predicted that Feature #5, enriched in
elongated nuclei, has a relatively strong predictive power of IDC-
negativity. This finding is consistent with the fact that enrichment of
long-aspect ratio cells characterizes low-grade tumors with a lower
chance of progression.

There are important limitations to this study. First, Seg-SOM
relies on the quality of images and segmentation performance. If
the H&E staining of an analyzed image was significantly different
from the images that the Seg-SOM segmentation model was
trained on, one would expect an increase in segmentation errors.
Certain debris on darker stains can be segmented as nuclei, and
improperly stained nuclei may not be picked up. The quality of
the nuclei segmentation can have a significant impact on
subsequent steps of cell clustering and labeling by Seg-SOM,
especially if the segmentation error is heterogenous amongst
different cell types. Second, Seg-SOM may incorrectly assign
classes to nuclei with changed morphology (due to cell division,
cell death, or technical artifacts). In tumors with high nuclear
pleomorphism like DCIS and IDC, dying tumor nuclei shrink
and start to resemble smaller cells’ nuclei like lymphocytic nuclei.
In our analysis, we report dying tumor cells that are stained with
KER but were assigned by the Seg-SOM pipeline as hierarchical
SOM Lymphocyte class (Figure 2C). The frequency of similar
errors will vary and depend on tissue/disease characteristics. If
the shape and size of the nuclei with changed morphology are
similar to other nuclear classes, immunofluorescent staining is
the only way to verify the nuclear identity. On the other hand,
highly irregular nuclei get assigned to separate SOM grid bins
and can be sorted out by the user. Moreover, SOM identified
hierarchical Lymphocyte class likely includes NK, NKT, and B
cells apart from CD3-positive T cells.

Despite these limitations, Seg-SOM can perform
dimensionality reduction and in silico labeling of complex
tissue images, containing thousands of different cells, within
seconds, while relying on no tunable parameters. Our pipeline
further has the advantage that it is entirely automated, does not
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require human labeling substantial training data or hand-crafted
features sets, and is thus easily scalable, allowing for full
standardization of the technique. The Seg-SOM workflow can
be used unchanged to characterize different nuclear subtypes
distribution in complex tissue environments using images of
H&E-stained tissue. Importantly, the SOM model we present in
this work can be retrained to discover new cellular subtypes in
different tissue types and pathologies. The pipeline can be further
modified to organize the morphology of whole cells if whole cell
segmentation is used.

We anticipate that Seg-SOM will have a variety of uses in the
digital pathology era. In particular, as a dimensionality
reduction, segmentation, and in silico cell-type labeling tool,
Seg-SOM provides the first and necessary step in exploring
cellular heterogeneity and special cell organization in complex
tissue environments, and importantly cell relationships with
disease stage or other clinical correlates. Our approach lends
itself to high levels of interpretability and can facilitate the
discovery of prognostic and predictive markers associated with
cell morphology and cellular interactions. We foresee Seg-SOM
as a valuable discovery tool that opens doors to mine vast amounts
of archival data and publicly available histological images.
METHODS

Used Datasets Description

1. U-Net Training dataset: a publicly available dataset of 21,623
hand-annotated nuclear boundaries from 30 whole slide
images that were H&E stained and captured at 40×
magnification (29). The images were downloaded from The
Cancer Genome Atlas (TCGA) and contained tissue from
seven organs: breast, liver, kidney, prostate, bladder, colon,
and stomach; including normal and tumor regions. Each
whole slide image was cropped to 1,000 × 1000 images
containing regions dense in nuclei and annotated using
Aperio ImageScope software.

2. Immunofluorescence validation was performed on a set of 15
IDC tissue microarray cores of 1 mm in diameter. TMA was
first H&E stained and scanned at 40× magnification. Next, the
same TMA slide was decoversliped and immunofluorescently
(IF) stained with pan-Cytokeratin, CD3, and DAPI. Images of
IF-stained TMA were acquired by scanning each stain
separately at 40× magnification. Therefore, each TMA core
has four corresponding stain images: H&E, pan-Cytokeratin,
CD3, and DAPI.

3. The breast cancer progression dataset used to estimate
lymphocytic infiltration is composed of a 266 images of
TMA cores stained with H&E including 56 normal breast
tissue cores, 62 early neoplasia (EN) tissue cores, 58 cores
with ductal carcinoma in situ (DCIS), and 90 cores with
invasive ductal carcinoma (IDC). Each TMA core is 1 mm in
diameter and was scanned at 40× magnification.

4 .IDC-negative and IDC-concurrent DCIS dataset used for
extraction of SOM-derived classifier features is composed of
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285 images of H&E-stained TMA cores containing 93 images
of DCIS from a patient that was IDC negative and 192 images
of DCIS from patients diagnosed with concurrent DCIS and
IDC at presentation. Each TMA core is 1 mm in diameter and
was scanned at 40× magnification.
H&E Staining
TMA FFPE sections slides were first baked at 60°C for 16 h and
subsequently deparaffinized and rehydrated using sequential
incubation in Xylene, decreasing concentration of EtOH (100,
95, and 70%) and H2O. Next slides were incubated in
hematoxylin for 1 min, washed with H2O, dipped 6× in bluing
solution, washed with H2O, incubated in eosin for 2 min, and
dehydrated using an increasing concentration of EtOH and
Xylene. Slides were coverslipped and imaged at 40×
magnification using a Leica Ariol slide scanner.

Segmentation of Complex Tissue Images
The U-Net deep-neural network was used for nuclei
segmentation from the H&E images. U-net separates the image
into overlapping 256×256-pixel tiles. Each pixel within each tile
is given a probability of belonging to one of three classes, either
background, cell nuclei, or boundary between nuclei and
background. In the final segmented image, each pixel is given
the label of the class with the maximum probability. The U-Net
was trained on a publicly available dataset of 21,623 hand-
annotated nuclear boundaries from H&E images acquired at
40× magnification and taken from seven different organs (29).
The U-Net network architecture is presented in Supplementary
Table 1. Cell nuclei boundaries are weighted according to the
scheme described in the original U-Net publication (30),
teaching the model to focus more of its attention on
discriminating cell boundaries. Without this weighting, we find
that the U-net does not perform as well in segmenting regions of
densely packed cell nuclei. The probabilities of all tiles in the
image are merged, with overlapping portions merged according
to the following formula: (1-d) (p2) + (d) (p1). The final cell
nuclei boundaries can be used to extract the set of all pixel
objects, representing individual nuclei, enclosed by a closed-
looped boundary.

Self-Organization of Segmented Nuclei
For this manuscript we trained SOM separately on two datasets:
(1) breast progression dataset and (2) IDC-negative and IDC-
concurrent DCIS dataset. For each dataset, after segmentation,
each individual nuclei were cropped to an image size of 170×170
pixels (0.20 microns per pixel), with cell nuclei larger than
170×170 pixels excluded from further analysis. All cell nuclei
were then rotated so that their major axes align. This was done by
considering each pixel in the 170×170 crop of each cell as a
separate two-dimensional data point (with coordinates on the x
and y axis) and performing PCA on all pixels in the cropped
image. The entire cropped image was then rotated by the angle of
the resulting 1st principal component axis, and the image is re-
cropped to 170×170 pixels rotated crop. The resulting dataset
consisted of N-cropped nuclei images of size 170×170, which can
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also be considered vectors of length 28,900 (170*170 = 28,900).
PCA was subsequently used again to reduce the dimensionality
of the dataset from vectors of 28,900 to a lower dimension D. We
chose D = 1,000, which captured more than 98% of the variance
in the data and allowed for accurate reconstruction of the
original cell images. Additionally, we noted that the second
PCA step allows faster SOM training. The training set of N
vectors of length D was shuffled before SOM model training.

Before SOM model training, we initialized the SOM as a 7×7
hexagonal grid of random normal vectors w of dimension D =
1,000, where each vector is called a node, with H = 49 nodes in
the resultant SOM grid. Using a larger H value sorts the dataset
into finer-grained bins or SOM nodes. Traditionally, SOMs are
fit to either hexagonal (six nearest neighbors) or rectangular
grids (four nearest neighbors). Previous studies have indicated
that hexagonal structures may be superior for visualization and
fitting of data (31), due to the higher nearest neighbor connectivity.

We trained the SOM model for 100 epochs using MATLAB
2017b’s self-organizing map toolbox. During each timestep, t of each
epoch vector v from the training set are iteratively chosen without
replacement and compared to the vectors w of initiated SOM grid
nodes. Each training vector v is being assigned to the SOM node that
minimizes the Euclidean distancemetric L(w,v) between SOMvector
w and the training vector v. All nodesw of the SOMnext are updated
to become more similar to the training vectors v assigned to them,
but to an extent that depends on a function G(w,v) that depends on
the distance on the SOM grid between vectors w and the training v.
As we are using a hexagonal grid, each node has six closest
neighbors. The update formula is the following:

w(t) = w(t − 1) + G(L(w,v)) * a(t) * (v − w(t))
where a(t) is a monotonically decreasing function that can
depend on both the timestep and the epoch of training. This
way the SOM nodes “self-organize” into learned node vectors
which are representative of the spectrum of cell nuclei shapes and
sizes within the training set. The two dimensions of the SOM
grid reflect nuclear size, along the horizontal axis, and nuclear
aspect ratio, along the vertical axis.

SOM Nodes Clustering
For each dataset, we performed hierarchical clustering of the
trained SOM node vectors. The hierarchical clustering was
performed in Python, using functions linkage and fcluster from
the scipy.cluster.hierarchy module. The linkage function was
cal led on the SOM vectors from each node, with
method=‘ward’. The linkage was subsequently used as input to
the fcluster function with criterion=‘maxcluster’ and six
designated clusters. We tested various numbers of clusters and
empirically found that six clusters identified interpretable groups
of major tissue cell lineages, such as epithelial, lymphocyte, and
fibroblast cells, for each cluster of SOM nodes.

Immunofluorescent Staining
Slides that were stained with IF after H&E staining were first
decoverslipped by incubation in Xylene. Next, antigen retrieval
was performed by cooking slides at 95°C for 5 min in EDTA
solution pH 9 in a pressure cooker. Subsequently, slides were
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washed with PBS, blocked with horse serum, and incubated 1 h
with pan-Cytokeratin ab (1:1800, AE1/AE3, Novus) and CD3 ab
(1:400, A045229-2, Agilent). Slides were washed and incubated
with secondary goat antimouse AlexaFluor647 (1:100, A32728,
Thermo Fisher Scientific) and goat antirabbit AlexaFluor555
(1:100, A32732, Thermo Fisher Scientific) for 30 min. Slides
were washed and mounted in ProLong™ Gold Antifade
Mountant with DAPI (P36931, Thermo Fisher Scientific).
Stained slides were imaged using 40× magnification using
Leica Ariol slide scanner.
Comparison of Seg-SOM With
Immunofluorescent Staining
Quantification of the intensity of immunofluorescence staining
with pan-cytokeratin and CD3 was computed for hierarchical
Seg-SOM classes to validate their predicted membership to
major cell lineages. First, we spatially register the DAPI images
of each core with their corresponding H&E image, by spatial
cross-correlation of the intensities of the H&E and DAPI images.
We then mapped the segmented nuclei to the IF image to
quantify stain intensities. Cytokeratins and CD3 are localized
in the cell cytoplasm; therefore, we considered the region around
each nucleus to quantify the staining intensity. We dilated each
nucleus with a kernel of 3×3 pixels for eight iterations for larger
epithelial cells and five iterations for smaller lymphocyte cells to
create a ring-shaped region that we would consider belongs to a
cytoplasmic region of each cell. We computed stain intensity as
the mean of the fluorescence signal within the ring-shaped region
for every cell. In Figure 3C, the normalized staining intensity is
defined as the final stain intensity for each cell divided by the
average stain intensity for all cells in the image.

Lymphocyte Infiltration Estimation
Based on the nuclear size and shape, hierarchical SOM clusters
were further assigned to four clusters representing epithelial cells,
fibroblasts, lymphocytes, and debris. Next, the Lymphocyte class
cells were counted on every image of a breast progression dataset.
In parallel, lymphocyte infiltration was scored by a surgical
pathologist on a scale from 1 (low or no lymphocytic
infiltration) to 3 (high lymphocytic infiltration) (Figure 3A,
left side). Finally, the ggplot2 R package (32) was used to plot
the log2 transformed count of Seg-SOM-labeled lymphocyte-like
cells against the infiltration score. The Spearman correlation was
computed with cor.test function in base R (33).

Highly Interpretable Feature Extraction
With Seg-SOM for Breast Cancer
The SOM interaction matrix is a summary statistic quantifying
average spatial distances of nuclei from pairs of different classes.
Formally, for a pair of segmented nuclei in an H&E image with
indexes i, j and their respective planar positions in the image vi, vj
∈R2, we define the nuclei distance using a Gaussian kernel with a
standard deviation of 50 mm, as

d(i, j) = exp ( − jjjjvi − vjjjjj=2 · 502) :
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Interaction between classes k and l is then defined as the mean
proximity between all pairs of nuclei in these classes, i.e.,

I(k, l) = Si,j d(i, j)for i ∈ C(k), j ∈ C(l)

where C(k) and C(l) are sets of indices of nuclei in classes k and l
respectively. For 49 classes in our study, the SOM interaction
matrix is a 49×49 matrix with elements I(k,l), where k, l ∈{1, 2,,
… ,49}.

Some of the features in this interaction matrix show strong
correlations between 0.8 and 0.9; hence, the entire interaction
matrix is reduced via non-negative matrix factorization (NMF)
to a smaller feature set of 100 features, where the maximum
correlation between any two features is below 0.2.

To perform NMF, we used a sklearn.decomposition.NMF
function in python with n_components=100. We used NMF (as
opposed to PCA) as it forces all feature coefficients to be positive,
and that aids with the interpretation of the results. As it is easier
to interpret the sum of two features that are present on the
analyzed picture compared to subtraction of two features with
opposite signs.

We used five-fold cross-validation for the classification task
on the IDC-negative and IDC-concurrent DCIS dataset. We
chose a logistic regression model for the classification task due to
the simplicity of the model and the high level of interpretability
of the results, which often comes at the cost of classification
performance. With logistic regression, one can easily obtain both
the strength of a feature, as well as the directional effect of a
particular feature indicating whether the feature is predicted to
increase the probability of the outcome or decrease it. These
qualities are either more challenging to interpret or absent in
feature importance schemes for more powerful models such as
tree-based forest or gradient-boosting models. First, we train a
logistic regression classifier on the 100 features obtained with
NMF with an L1 regularization weight of 0.1, resulting in sparse
model coefficients. We next select the five features with the
largest magnitude of coefficients. Subsequently, we use the five
selected features to train a second logistic regression classifier on
the same training dataset. We finally test the held-out data. The
above procedure is repeated for 5,000 iterations, and we report
the precision, recall, F1, and area-under-the-curve scores.
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Supplementary Figure 1 | Distribution of immunoscore and SOM Lymphocyte
class nuclei counts over different stages of breast cancer progression. (A) TIL
infiltration assessed by a pathologist as an immunoscore (1-low, n = 155; 2-
medium, n = 89; 3-high, n = 22), and (B) the log2 count of hierarchical SOM
Lymphocyte class nuclei predicted by the Seg-SOM on breast progression dataset
stratified by different stages of breast cancer progression: normal breast ducts
(normal, n = 56), ducts with early neoplasia (EN, n = 62), ducts with ductal
carcinoma in situ (DCIS, n = 58), and regions of invasive ductal carcinoma
(IDC, n = 90).

Supplementary Figure 2 | ROC curve with AUC from the logistic classification of
IDC-positive vs. IDC-negative DCIS. The red line shows the receiver operating
characteristic (ROC) curve and the averaged area-under-the-curve (AUC) of 5,000
iterations of the logistic regression model trained with five-fold cross-validation.
TPR, True Positive Rate; FPR, False Positive Rate. The blue dotted shows the ROC
curve for a random classifier, as a reference.

Supplementary Figure 3 | Visualization of the four-dimensional SOM model.
Fourteen Haralick texture features from three color channels were extracted from
each nuclei image, showing an organization in which darker, smoother nuclei are
located in the bottom left of the SOM grid. This can be described as a 4D SOM, in
which each learned cell substate of the original SOM is further divided into a 7×7
space based on color and texture features, resulting in a grid of dimensions
7×7×7×7, where the texture and shape spaces are essentially disentangled. The
gray boxes show the number of cells from the dataset falling within a particular
node, and the yellow boxes are the ID numbers of each node.
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