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Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), resulted in an unprecedented global crisis. Although
primarily a respiratory illness, dysregulated immune responses may lead to multi-organ
dysfunction. Prior data showed that the resident microbial communities of gastrointestinal
and respiratory tracts act as modulators of local and systemic inflammatory activity (the
gut–lung axis). Evolving evidence now signals an alteration in the gut microbiome, brought
upon either by cytokines from the infected respiratory tract or from direct infection of the
gut, or both. Dysbiosis leads to a “leaky gut”. The intestinal permeability then allows
access to bacterial products and toxins into the circulatory system and further
exacerbates the systemic inflammatory response. In this review, we discuss the
available data related to the role of the gut microbiome in the development and
progression of COVID-19. We provide mechanistic insights into early data with a focus
on immunological crosstalk and the microbiome’s potential as a biomarker and
therapeutic target.
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INTRODUCTION

Since it was first recognized, Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), remains a global affliction (1). Although
vaccines offer hope in curbing the pandemic (2), an improved understanding of its pathogenesis and
concurrent efforts to explore preventive and therapeutic strategies remain a priority to consolidate
the success of mass vaccination and herd immunity.

The clinical spectrum of COVID-19 ranges from asymptomatic to severe, life-threatening
disease (3). Current understanding of pathogenesis postulates a rapid and intense hyperactivation of
the immune system, resulting in critical illness and mortality (4). Older age, burden of
comorbidities, obesity, immunocompromised states, malignancy or ongoing cancer treatment,
and being a transplant recipient, have been strongly linked with severe, and sometimes fatal,
outcomes (5–9). Evolving data suggest that a state of chronic inflammation or baseline activation of
the immune system might influence the course of COVID-19 more than direct cytopathic effects of
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the SARS-CoV-2. Furthermore, a subgroup of patients have been
noted to develop auto-inflammatory symptoms (such as
Kawasaki-like disease in children and multi-system
inflammatory syndrome) long after clearance of the SARS-
CoV-2 virus from body, suggesting an immune dysregulation
(8, 10).

In the human body, the gastrointestinal tract (GIT) is the
largest immune organ (11). The pool of resident microorganisms
(bacteria, viruses, and fungi) in the GIT, collectively known as
the gut microbiota, not only supports mucosal immunity but also
modulates the systemic immune response of the host (12).
Current evidence from other respiratory illnesses indicates that
the gut microbiota affects the immunity and inflammation in the
lungs (13, 14). Lately, some studies have examined the
association between gut microbiota and SARS-CoV-2. In this
review, we present the existing data related to the intersection of
gut microbiome and the host’s immune response to SARS-
CoV-2. We further explore the role of gut microbiome
diversity and its compositional differences as diagnostic
biomarkers, and the potential of the gut microbiome as an
interventional target in modifying COVID-19 outcomes.
SIGNIFICANCE OF GUT MICROBIOTA

The human GIT is home to about 104–105 bacteria per
millimeter of content in the small intestine, and 1011 bacteria
per gram of colonic content (15). In a healthy person, the gut
microbiota comprises more than 100 bacterial phyla and the
majority of bacteria belong to Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria, with Firmicutes and
Bacteroidetes phyla constituting over 90% of the entire gut
microbiota (16). The microorganisms and their combined
genetic material make up the gut microbiome, which
outnumber the human genome by about 150 times (17). The
proportion of the various phyla remains quasi-stable and unique
for an individual, although a shift can be observed during a
change in health status. For example, the gut microbiome in the
elderly has been observed to drift away from Firmicutes and
towards Proteobacteria and Alistipes (18).

The gut microbiota exists in a symbiotic relationship with its
host. It facilitates the synthesis of vitamins and fermentation of
carbohydrates and other undigested nutrients and aids in the
delivery of essential nutrients like short-chain fatty acids (SCFAs)
to colonic epithelial cells. In addition, it also regulates mucosal
permeability and provides deterrence against pathogenic
microbes. More importantly, the microbiota plays an
indispensable role in the preservation of intestinal homeostasis
by modulating local and systemic immune responses of the host
(19). The microbiota protects the GIT by (a) acting as a competitor
against binding of pathogenic microbes, (b) neutralizing
pathogens with their anti-microbial metabolites, (c) keeping the
local immune system in a perpetual vigilant state, and (d)
regulating the innate and adaptive immunity.

In a healthy person, the proportion of the various phyla
mostly remains quasi-stable and unique for an individual (18).
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An imbalanced state is described as “gut dysbiosis”, a condition
characterized by an alteration in the abundance or composition
of the microbiota. Gut dysbiosis may occur with aging, dietary
effects, drugs, gastrointestinal infections, and anatomical
alterations of the GIT. A significantly dysbiotic state may
predispose to the diseases of GIT, such as Clostridioides difficile
enterocolitis, which is associated with prolonged and recurrent
broad-spectrum antibiotic usage (20). Since gut microbiota
modulates the fine balance between pro- and anti-
inflammatory systemic responses, a dysbiotic state has also
been associated with non-gastrointestinal systemic illnesses
such as malignancy (12), type 2 diabetes mellitus (21), non-
alcoholic steatohepatitis (22), coronary artery disease (23),
neurodegenerative diseases (24), and depression (25).
THE GUT–LUNG AXIS

The GI and respiratory tracts share a common mucosal immune
system, known as the gut–lung axis (26, 27). From birth, both
tracts receive their quota of microbiota via the oral route (28), and
subsequently establish a differing but internally quasi-stable genre
of microorganisms or microbiota (29). Although the microbiota of
both tracts consists of similar phyla, they differ at the level of
species in composition and density. Understandably, studies on
respiratory microbiota have been complicated by tedious and
invasive methods for collection of uncontaminated lower
respiratory samples, and most data have been derived from mice
models where lung tissue can be aseptically obtained (30).
Consequently, there is growing excitement in understanding this
complex immunological intersection.

Throughout the lifespan of an individual, established
microbiota of both tracts contribute to the gut–lung axis,
modulating both local and systemic immune responses when
faced with a pathogenic threat. The axis is believed to be
bidirectional, affecting the immune response of either tract
when one site is activated (31). Using a germ-free murine
model, Ichinohe et al. demonstrated potentially deleterious
effects on respiratory immune responses after alteration of the
gut microbiota with antibiotics (32). Other studies have also
found that gut microbiota alterations result in abnormal
activation of the immune system, predisposing to respiratory
illnesses such as asthma, lung allergic responses, and chronic
respiratory diseases (27, 33). Conversely, animal studies have
also revealed an alteration in the gut microbiota after respiratory
viral and bacterial infections (34–36). This distant effect is
believed to be communicated by activation of the systemic
immune system, with dysbiosis of either tract feeding into
the other.
ROLE OF GUT MICROBIOTA IN
RESPIRATORY VIRUS INFECTION

While the immune-related interactions between resident gut and
respiratory tract microbiota are yet to be explored, a conceptual
October 2021 | Volume 12 | Article 765965
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understanding of the impact of the gut microbiota in patients with
COVID-19 may be extrapolated by examining the existing evidence
of its role in non-SARS-CoV-2 respiratory virus infections.

Evidence From SARS-CoV-1 Infection
Many respiratory viral illnesses are commonly accompanied by
GI symptoms. Previous studies during the severe acute
respiratory syndrome (SARS) outbreak in 2002 showed that
diarrhea was a common symptom and occurred in 16%–73%
of patients. The Severe Acute Respiratory Syndrome Coronavirus
(SARS-CoV-1) was not only known to infect the lung epithelial
cells but also the immune cells, triggering an intense immune
response with elevation in Th2 cytokines (37). It was postulated
that high levels of circulating pro-inflammatory cytokines altered
the gut microbiota and compromised intestinal integrity. The
resultant “leaky” gut allowed translocation of bacterial products
and antigens into the circulation, further exacerbating the illness
(38). Due to the bidirectional nature of the gut–lung axis, an
alteration in gut microbiota further augments the respiratory
immune responses, conceivably resulting in a vicious
perpetuation of systemic inflammatory response (32).

Evidence From Other Community
Respiratory Viruses
Using a mouse-model, Deriu et al. demonstrated that respiratory
viral infection due to influenza resulted in gut dysbiosis
predisposing to secondary Salmonella infection via circulatory
type I interferons (34). Similarly, Wang et al. demonstrated
indirect intestinal inflammation with influenza infection in a
mouse-model occurring via microbiota-mediated Th17 cell-
dependent inflammation (36). Several studies have reported
gut dysbiosis after respiratory viral infection (39, 40). Groves
et al. showed that gut dysbiosis, in the form of an increase in
Bacteroidetes and a decrease in Firmicutes phyla abundance,
occurred in mice models with respiratory syncytial and
influenza virus infections, but not in those vaccinated with live
attenuated influenza viruses (41). Furthermore, elevated levels of
colonic Muc5ac and fecal lipocalin-2 in the pathogenic infection
group suggest the presence of low-grade gut inflammation
during respiratory virus infection.

Respiratory virus infection may also cause dysbiosis in lung
microbiota, modulating both local immune responses within the
lung parenchyma and systemically. Due to the difficulties in
sampling of lung microbiota, only a few studies have examined
the role of respiratory pathogens in altering lung microbiota.
Molyneaux et al. reported an increased proportion of
Proteobacteria and potentially pathogenic Haemophilus influenzae
in the lower respiratory tract microbiota in rhinovirus-infected
patients with chronic obstructive pulmonary disease (42). Using a
mouse-model inoculated with intranasal H1N1 influenza virus, Gu
et al. demonstrated a bacterial class shift in the lung microbiota,
which persisted even during the recovery period (43).
Notwithstanding the limitations in available studies, a common
theme has emerged showing a link between respiratory virus
Frontiers in Immunology | www.frontiersin.org 3
infection and an alteration in the gut and respiratory tract
microbiota, with the presence of inflammation of the GIT.
ROLE OF GUT MICROBIOTA IN THE
PATHOGENESIS OF COVID-19

Although no specific interaction between any gut microbial
species and SARS-CoV-2 has been identified to date, there is
indirect evidence (44, 45) that gut microbiota may have a role in
the overall pathogenesis of COVID-19, as summarized in
Figure 1. Taking the corollary further from non-SARS-Cov-2
virus-mediated gut dysbiosis, it is conceivable that infection with
SARS-CoV-2 may also be impacted by immunological
interactions with the gut microbiota.

Pathogenesis of GI Symptoms
in COVID-19
About half of patients with COVID-19 develop GI symptoms,
which often precede the respiratory symptoms (45). In the
respiratory tract, the SARS-CoV-2 infects the alveolar cells by
binding to angiotensin-converting enzyme 2 (ACE-2) receptors.
Interestingly, these receptors are also abundantly expressed on
the surface of enterocytes (46), where they play an important role
in maintaining the homeostasis of microbiota and mucosal
inflammation (47). In one patient with COVID-19, Xiao et al.
detected SARS-CoV-2 RNA, viral nucleocapsid protein, and
ACE-2 in the epithelial cells of the esophagus, stomach,
duodenum, and rectum (48). Several authors have also
reported detection of SARS-CoV-2 RNA fragments, but not
the whole virus, in stool samples (49, 50). A study by Lamers
et al. also demonstrated that SARS-CoV-2 was able to infect
enterocyte lineage cells in a human intestinal organoid model
(51). Unfortunately, due to the scarcity of autopsy studies and
pragmatic restrictions on endoscopic examinations of the GIT,
there are only limited data to support this hypothesis in vivo. It
also remains unknown how SARS-CoV-2 may survive the acidic
gastric environment to directly infect enterocytes. Overall, it is
unclear whether the GI symptoms of COVID-19 are a result of
primary infection of the GIT or derived from other indirect
mechanisms mentioned below.

Fecal Shedding of SARS-CoV-2
SARS-CoV-2 is principally transmitted by respiratory droplets,
but evidence is accumulating for fecal-oral transmission. The
hypothesis is supported by the presence of GI symptoms,
detection of SARS-CoV-2 nuclear fingerprints in the GI
mucosa, and detection of viral fragments in fecal samples.
Interestingly, the first COVID-19 patient in the United States
tested positive for SARS-CoV-2 via stool samples (52), and
subsequent studies have consistently documented shedding of
viral RNA in the stool samples in COVID-19 patients (53, 54).
Furthermore, viral shedding in stool samples has been observed
to persist longer than that in respiratory samples (55, 56).
October 2021 | Volume 12 | Article 765965
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Hypercytokinemia and the Leaky Gut
Elevated serum levels of pro-inflammatory markers, such as
interleukin-6 (IL-6) and interleukin-10 (IL-10), are hallmarks
of severe COVID-19 infection (57). These cytokines predispose
to dysbiosis, which consequently alters intestinal permeability, a
state known as the “leaky gut”. This enables further entry of a
multitude of bacterial products and toxins, activating a pro-
inflammatory cascade. In a study in 204 patients with COVID-
19, Pan et al. reported that GI symptoms worsened with
increasing severity of COVID-19 (58). In another study, fecal
calprotectin levels (a marker of GI mucosal inflammation) were
elevated in patients who had diarrhea during COVID-19 illness
(59). A recent study by Prasad et al. measured several markers of
gut permeability in the plasma (60). Levels of FABP2, PGN, and
LPS were significantly higher among COVID-19 patients
compared to healthy subjects, suggesting translocation of pro-
inflammatory antigens from a leaky gut.

Association Between Gut Dysbiosis and
Systemic Inflammation
Gu et al. first presented evidence of an altered gut microbiota in
COVID-19 patients by using high-throughput sequencing of 16S
ribosomal RNA to compare the gut taxa of patients with
COVID-19, H1N1 influenza, and healthy controls (61).
Compared to healthy controls, COVID-19 patients had
Frontiers in Immunology | www.frontiersin.org 4
significantly reduced bacterial diversity, increased abundance
of opportunistic pathogens (such as Streptococcus, Rothia,
Veillonella, and Actinomyces), and significantly less diverse
symbiotic species. Interestingly, the altered microbial signature
in COVID-19 was different from patients with the H1N1 strain.

In another study, Zuo et al. analyzed fecal samples of 15
patients with COVID-19 using shotgun metagenomic
sequencing (62). The study revealed a marked increase in
opportunistic pathogens and depletion of beneficial microbes
as compared to healthy controls, which persisted even after
clearance of SARS-CoV-2. These findings suggest an inverse
correlation between gut dysbiosis and COVID-19 severity and
are congruent with the conclusions of a larger multi-center study
in which Yeoh et al. examined the gut microbiota in 100 patients
using shotgun sequencing. Fecal samples from 27 patients were
analyzed longitudinally over 30 days, showing significant
dysbiosis that persisted despite clearance of SARS-CoV-2.
Correlative blood samples demonstrated an association
between gut dysbiosis, elevation in the inflammatory
mediators, and severity of systemic inflammation (63).

Another study by Newsome et al. compared microbiota
composition from stool samples of 50 COVID-19 patients with
uninfected patients (64). Significant perturbations in the
microbiota composition in the COVID-19 patients were
observed, independent of antibiotic exposure. The gut
FIGURE 1 | SARS-CoV-2 and the lung–gut axis: SARS-CoV-2 virus enters the alveolar cells by binding with ACE2 receptors, which are also abundant on the
surface of enterocytes. The implication of direct infection of enterocytes by SARS-CoV-2 is still being explored. The circulatory cytokines from alveolitis (and/or direct
viral infection of the enterocytes) cause the GI dysbiosis with resultant alterations in GI mucosal barrier. The entry of bacterial products and toxins from the GIT floods
the circulatory system with more pro-inflammatory cytokines. Image was created with Biorender.com.
October 2021 | Volume 12 | Article 765965
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“metabolome”, a biochemical signature derived from bacterial
metabolic activity in the gut, is another method for detecting an
alteration in the gut microbiota composition. In a recent study by
Lv et al., fecal samples of COVID-19 patients had altered
metabolomes, suggesting malnutrition and intestinal
inflammation (65). These results provide new insights into the
pathogenesis of COVID-19.

Gut Dysbiosis as a Biomarker of
Viral Replication
Although it was previously believed that gut dysbiosis in
COVID-19 was mainly driven by inflammatory mediators
from respiratory tract infection, a recent study suggests that
active replication of SARS-CoV-2 in the gut may be driving the
dysbiosis (66). Using in vitro transcriptional analysis in a SARS-
CoV-2-infected cell model (with samples obtained from stools),
the 3’ end of the SARS-CoV-2 genome was detected more than
the 5’ end, suggesting active viral replication. Interestingly,
majority of the patients had no GI symptoms, suggesting a
quiescent GI infection despite active replication of SARS-CoV-
2 in the GIT with dysbiosis. Moreover, on functional analysis of
the gut microbiota, fecal samples with signatures of high SARS-
CoV-2 burden demonstrated high de novo nucleotide and amino
acid biosynthesis, correlating with increased bacterial
proliferation. Although this was a pilot study comprising only
15 patients, further studies on alterations in the functionality of
the gut microbiota may unearth the pathophysiology of COVID-
19 illness.

Overall, currently expanding evidence suggests that patients
with COVID-19 suffer from an alteration in the gut microbiota
during and after the illness. Both systemic inflammation and
replicative potential of SARS-CoV-2 in the gut may contribute
towards dysbiosis.

CLINICAL IMPLICATION OF GUT
MICROBIOTA IN COVID-19

Though limited in number, studies to date have consistently
demonstrated gut dysbiosis in patients with COVID-19 (Table 1).
A more important clinical implication lies in understanding
whether, and how, gut microbiota predisposes to varying degrees
of COVID-19 severity.

Potential Role of Gut Microbiota in
Asymptomatic/Subclinical and
Mild COVID-19
As previously mentioned, clinical spectrum of COVID-19 ranges
from asymptomatic to severe, life-threatening disease (3). A recent
systematic review demonstrated that about one-third of patients
remain clinically asymptomatic after infection with SARS-CoV-2
(68). However, a possibility of subclinical inflammatory process
remains. In a systematic review involving 231 asymptomatic
COVID-19 patients, almost two-thirds (63%) had inflammatory
changes in the lungs on computed tomography (CT) scan (67).
Irrespective of subtle inflammatory changes, a subset of patients
may not mount the intense inflammatory response that portends
severe illness. As this heterogeneity in clinical severity is less likely
Frontiers in Immunology | www.frontiersin.org 5
due to the existence of less virulent strains of SARS-CoV-2, or the
protection from adaptive immunity given the novel nature of the
virus, the immune response of the host remains the most probable
factor in determining disease severity. It is unclear if any specific
pattern of gut microbiota protects individuals from mounting a
severe inflammatory state when infected with SARS-CoV-2. Kumar
et al. highlighted a potential link between the environmental
microbiota of a population and the burden of COVID-19. With
data from 122 diverse countries, lower COVID-19-associated
mortality was observed in countries with a higher percentage of
rural population (alluding to higher gut microbial diversity), higher
proportion of population residing in slums, and a lower water
quality and sanitation score (69). While such observational data can
be prone to confounders, these results offer some insight into the
potential role of gut microbiota on the disease burden of
COVID-19.

Gut Microbiota in Severe COVID-19
There is mounting evidence that being elderly and having a chronic
inflammatory state (from chronic medical conditions) predisposes
to a pro-dysbiotic state (70, 71). It is unlikely a coincidence that the
highest rates of morbidity and mortality from COVID-19 have also
been observed in the elderly, those with underlying chronic medical
conditions, and among immunosuppressed patients with cancers
(5–9). COVID-19 disease severity is likely host dependent and
driven by the inflammatory response. In autopsy samples from a
patient with severe COVID-19, inflammatory cells were observed in
the lungs (72), suggesting an intense inflammatory response (8).
Furthermore, studies have also reported elevated plasma levels of
pro-inflammatory cytokines such as interleukin-1 (IL-1), IL-6, and
tumor necrosis factor alpha (57, 73), in severe COVID-19. In
patients prone to gut dysbiosis, further inflammatory triggers may
tip the balance over to a leaky gut, resulting in a self-perpetuating
inflammatory feedback circle. Notably, two small studies showed a
direct correlation between severe COVID-19 and gut dysbiosis (62,
63) Another two studies have shown that patients with severe
COVID-19 experienced more pronounced GI symptoms, along
with higher levels of stool calprotectin (an indicator of GI
inflammation and disrupted mucosal integrity) (58, 59). This
supports the concept of an immunological crosstalk between the
lungs and gut, presumably moderated by the gut microbiota (12).
There is still a lack of data assessing the role of gut microbiota in a
high-risk cohort (such as elderly or cancer patients) with
COVID-19, although a study on the impact of probiotics on
health and immunity in elderly and diabetic patients, and
response to COVID-19 vaccination, is underway (Table 3).
THERAPEUTIC POTENTIAL OF GUT
MICROBIOME FOR COVID-19

Given the association between gut dysbiosis and COVID-19
severity, the therapeutic potential for modulation of the gut
microbiome to modify disease outcomes holds promise. However,
there is no microbiota-directed therapy that has demonstrated
efficacy in preventing the development or progression of COVID-
19 currently.
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TABLE 1 | Studies exploring the role of gut microbiota in COVID-19.

Authors Study
design

Study population Analyses/methods Salient findings Limitations

Zuo et al.
(62)

Single
center,
prospective

15 COVID-19
patients in Hong
Kong compared
against 6 subjects
with community-
acquired
pneumonia and 15
healthy individuals

Shotgun metagenomic sequencing for
profiling of GI microbiota

Significant alterations in GI microbiota
(dysbiosis) in COVID-19 patients
Persistent dysbiosis despite clearance of
SARS-CoV-2
Positive correlation between dysbiosis and
severity of COVID-19

Small sample size.
Only hospitalized
patients with
moderate to severe
COVID-19.
>50% patients with
COVID-19 had
received antibiotics.

Gu et al.
(61)

Single-
center,
cross-
sectional

30 COVID-19
patients compared
against 24 H1N1
patients and 30
matched healthy
controls

16S ribosomal RNA gene sequencing for
profiling of GI microbiota

Significantly reduced bacterial diversity
(dysbiosis) with COVID-19, a significantly higher
relative abundance of opportunistic pathogens,
and a lower relative abundance of beneficial
symbionts. Patients with H1N1 displayed lower
diversity and different overall microbial
composition compared with COVID-19
patients.

Small sample size.
Healthy controls
matched for age, sex,
and BMI but not for
diet and lifestyle
factors.
H1N1 cohort had
been hospitalized for
severe illness,
compared to COVID-
19 cohort which had
disease severity
classified as “general”
and “severe”.

Yeoh
et al. (63)

Prospective
cohort
study from
two centers

100 COVID-19
compared against
healthy controls

Shotgun sequencing of stool DNA for
profiling of GI microbiota. Assessment of
serum levels of inflammatory markers.

Significant alterations in the GI microbiota
(dysbiosis) in COVID-19 patients.
Dysbiosis persisted even after 30 disease post
illness.
Significant correlation of dysbiosis with severity
of COVID-19 illness and with various serum
pro-inflammatory markers.

Heterogeneous
clinical management
of patients.
30-day changes were
studied in 27 (out of
100) patients

Zuo et al.
(66)

Prospective
cohort
study from
two centers

15 hospitalized
patients with
COVID-19

RNA shotgun metagenomics for profiling of
GI microbiota. Assessment of functionality of
GI microbiota and detection of replicative
activity of SARS-CoV-2 virus in the GI tract.

Detection of alterations in GI microbiota
(dysbiosis) with high markers of bacterial
cellular building.
46.7% patients had stool positivity for SARS-
CoV-2, even in the absence of GI
manifestations.
High replicative activity of SARS-CoV-2 in the
GI tract suggesting.

Small sample size.
Exact role of various
microbiota profiles in
determining severity
of COVID-19 infection
needs further studies

Tsikala
et al. (67)

Cross-
sectional
(A
statement
across 122
countries)

42 low- or low-
middle-income
countries
compared against
80 high- or upper-
middle-income
countries

Statistical analysis comparing deaths per
million secondary to COVID-19 infection,
against population health indicators like
water current score, health efficiency,
percentage rural population, proportion of
diarrhoea cases secondary to inadequate
sanitation and healthy life expectancy (HALE)
at birth.

A statistically significant negative correlation
was observed between COVID-19 mortality
and populations that had a high percentage of
rural residents, and a high proportion of
diarrhea secondary to inadequate sanitation.
As a result, a high microbial exposure to gram-
negative bacteria was proposed to confer
protective effects against COVID 19, possibly
due to increased interferon type I levels.

Cross-sectional data
based on national
population health
indicators.
Inferential hypothesis
based on effect of
environmental
microbiological
prevalence rather than
direct sequencing of
human GI microbiota
samples.
No analysis of
interferon type-I levels
in study populations.

Prasad
et al. (60)

Prospective
cohort
study from
one center

30 hospitalized
patients with
COVID-19 and 16
healthy subjects.

Microbial DNA extraction and 16S rRNA
sequencing in the plasma samples. Levels of
gut permeability markers were also
measured.

In the plasma samples of about 65% patients
with COVID-19, abnormal signatures of gut
microbes were seen. As compared with the
healthy controls, patients with COVID-19 had
significantly elevated plasma levels of gut
permeability markers (such as FABP2, PGN,
and LPS).

Small sample size.
One-time collection of
the plasma.
Absence of
demonstration of gut
dysbiosis in the
stools.

Newsome
et al. (64)

Prospective
cohort

50 hospitalized
COVID-19 patients,
9 recovered

16S rRNA sequencing and qPCR analysis
was performed on fecal DNA/RNA.

The fecal microbial composition was
significantly different in the currently infected
COVID-19 patients. The COVID-19 patients

Small sample size.
Cross-sectional
sampling.

(Continued)
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Potential Role of Prebiotics
Plant-based fibers exert a prebiotic effect by promoting the growth
of beneficial microorganisms in the gut microbiota (e.g.,
Bifidobacterium and Lactobacillus spp.) while decreasing the
proportion of harmful species (e.g., Clostridia) (74). Moreover, the
fermentation of soluble dietary fibers by certain bacterial species
yields several beneficial metabolites, such as SCFAs, which serve to
maintain colonic mucosal integrity and modulate the immune
system (75). By-products of SCFAs are also absorbed into the
circulatory system and have anti-inflammatory effects. In mice
models, a high-fiber diet with elevated SCFA levels was protective
against allergic inflammation in the lungs, while a low-fiber diet
with decreased SCFA levels resulted in increased allergic airway
disease (76). Interestingly, studies from other respiratory diseases
have demonstrated a reduction in mortality with intake of whole
grains (77, 78). Although the beneficial effects of dietary fibers are
intuitive, there is currently no direct evidence that any specific
amount or type of dietary fiber is beneficial in COVID-19 illness.

Potential Role of Probiotics
Oral probiotics are live bacteria of specific species that alter the
composition of gut microbiota after reaching the intestines (74). A
shift to beneficial bacterial species modulates the local and systemic
inflammatory balance, with several studies demonstrating a positive
impact on respiratory infections and other extra-intestinal illnesses.
Using a probiotic bacterium, Lactobacillus gasseri SBT2055 in
mouse models, prevention of infection with respiratory syncytial
virus was demonstrated (79). In another study on 30 elderly
volunteers, Bifidobacterium lactis HN019 ingestion was shown to
enhance the cellular immunity (80). Placebo controlled clinical trials
with probiotics (using Lactobacillus rhamnosus GG, Bacillus subtilis,
and Enterococcus faecalis) have also demonstrated significant
improvement in patients with ventilator-associated pneumonia
(81, 82).

Naturally, if dysbiosis is indeed involved in the pathogenesis of
severe COVID-19, probiotics appear to be among the more
convenient, efficient, and potentially safe strategies. After initial
reports of gut dysbiosis in patients with severe COVID-19, the
National Health Commission (of China) recommended the use of
probiotics to maintain gut microbial homeostasis and prevent
Frontiers in Immunology | www.frontiersin.org 7
secondary bacterial infections (83). Given the dearth of data
pertaining to SARS-CoV-2 and the relative safety of probiotics,
the rapid promulgation in favor of probiotics seems reasonable
while awaiting further evidence. Although there is no direct
evidence yet showing the efficacy of any specific strain of
probiotic against COVID-19, several registered trials are currently
examining the therapeutic potential of various probiotics
formulations in COVID-19 (Table 3).

Potential Role of Fecal Microbiota
Transplantation
FMT is a process of actively transferring colonies of fecal bacteria
from a healthy person into the GIT of another individual. The
process aims to restore the composition of gut microbiota back to a
healthy state. As mentioned earlier, FMT is an effective therapy for
recurrent or refractory C. difficile enterocolitis (84). Given the
proposed role of gut microbiota in the abnormal activation of
immune responses in the COVID-19, FMT can potentially be
explored as a therapeutic strategy. A recent case report (85)
described two patients with rapid resolution of COVID-19 after
FMT was undertaken to treat concomitant C. difficile infection.
However strong may be the hypothesis and surrounding
speculations, FMT should not presently be recommended as a
therapy against COVID-19 due to the scarcity of large-scale studies.
To explore further, a clinical trial (FeMToCOVID) is currently
registered at the clinicaltrials.org (NCT04824222), though it has not
yet started recruiting patients.

UNANSWERED QUESTIONS AND FUTURE
DIRECTIONS

Despite the efficient pace of clinical trials evaluating new and
repurposed agents for COVID-19, success has been modest at
best. Although still in nascent stages, evolving evidence signals a
probable link between gut microbiota and the host’s immune
response to COVID-19. However, the exact mechanism and
extent of the role of gut dysbiosis in disease severity remain to be
elucidated. This is further compounded by the inherent
challenges associated with designing microbiome studies.
Another possible angle would be to define the state of a leaky
TABLE 1 | Continued

Authors Study
design

Study population Analyses/methods Salient findings Limitations

study from
one center

patients and 34
uninfected
subjects.

had increased relative abundance of
Campylobacter and Klebsiella, two genera
associated with GI disease. The microbiota
composition was similar between recovered
and uninfected patients.

Lv et al.
(65)

Prospective
cohort
study from
one center

56 hospitalized
COVID-19 patients
and 47 age- and
sex-matched
healthy subjects.

Stool samples were analyzed for various
microbial biochemical products (or
metabolome) using gas chromatography–
mass spectrometry.

Differences in the metabolomes of COVID-19
patients were observed compared with healthy
controls.

Small sample size.
Absence of
demonstration of gut
dysbiosis in the
stools.
No control for diet
and anti-microbial
agents.
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TABLE 2 | Unanswered questions and potential research methodology.

Category Question Potential methodology

Susceptibility to infection with
SARS-CoV-2

Does gut microbiota play a role in the onset of
infection with SARS-CoV-2?

To characterize the diversity of gut microbiome across separate cohorts of
individuals with varying risk of exposure to SARS-CoV-2.

Onset of symptoms after
infection with SARS-CoV-2

Does gut microbiota influence development of
symptoms in COVID-19?

To study differences of gut microbiome between asymptomatic and
symptomatic individuals.

Development of severe
COVID-19 illness

Does pre-existing gut microbiota predispose to
different levels of severity?

To examine the baseline gut microbiota and correlate with severity of COVID-19
illness.

Alteration in gut microbiota by
the SARS-CoV-2

Does gut microbiota get altered by the SARS-
CoV-2?

To evaluate the temporal trend of gut microbiome in the COVID-19 illness.

Persistence of gut dysbiosis
after SARS-CoV-2

Is SARS-CoV-2-induced gut dysbiosis
temporary?

To examine the long-term trend in the gut dysbiosis and its associated
implications.

Alteration in intestinal
permeability with SARS-COV-
2

Does SARS-CoV-2-led inflammation lead to
alteration in intestinal permeability.

Detection and measurement of gut-derived bacteria and/or their bacterial
products in the circulation or extra-intestinal tissues (such as mesenteric lymph
nodes).

Therapeutic and preventive
roles of prebiotics and
probiotics

Do prebiotics and/or probiotics have potential to
alter course of COVID-19 illness?

Assessing variety of probiotics in terms of prevention and optimization of
COVID-19 illness.

Therapeutic role of FMT in
COVID-19

Can a reset of gut dysbiosis to normal
homeostasis with the FMT mitigate severe
COVID-19 illness?

To assess the potential therapeutic role of the FMT in severe COVID-19 illness.
Frontiers in Immunology | www.fro
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SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2); COVID-19 (Coronavirus disease 2019); GI (gastrointestinal); FMT (fecal microbiota transplantation).
TABLE 3 | Ongoing registered trials studying role of gut microbiota in COVID-19 (updated as of June 19, 2021).

A. Ongoing observational studies

Trial number Title Summary

NCT04669938 Role of the Microbiota in the Evolution of the SARS-CoV-2
Disease, COVID-19, in Hospitalized Patients

Observational study looking at the effect of oropharyngeal and gut microbiota, host
genotype, and immune characteristics and SARS-CoV-2 viral genome sequences on
outcomes of COVID-19 infection.

NCT04598334 Cytokine Storm Among Bangladeshi Patients With COVID-19 Prospective study evaluating the relationship of inflammatory markers and cytokine
levels in addition to gut microbiota on COVID-19 infection severity in Bangladeshi
patients, at various points of illness progression.

NCT04597736 Relationship Between Biological Profiles and Clinical Evolutions
Within the Same Cluster COVID-19 (COVIDCOLLECT)

Cohort study examining the relationship between the biological profiles observed from
analysis of nasopharyngeal, saliva, blood, stool, and urine samples and the clinical
evolutions within the same cluster of COVID-19 cases and their contact subjects.

NCT04581135 Study to Investigate Long-term Pulmonary and
Extrapulmonary Effects of COVID-19

Prospective study investigating long-term pulmonary and extrapulmonary effects of
COVID-19, including changes to gut microbiota.

NCT04552340 Epidemiologic, Clinical and Molecular Characteristics of
Patients With Acute Respiratory Failure Affected by 2019-
NCOV

Observational study examining factors including alveolar and nasal microbiota on
predisposition to SARS-CoV2 viral infection, symptomology, treatment response, and
predisposition to complications.

NCT04497402 Sex-Informed Data in the COVID-19 Pandemic Observational study looking at differences in the biomarkers of different sexes during
SARS-CoV-2 infection, including the gut microbiome.

NCT04475211 Predictors of Mortality at Day 28 of Patients Treated at Lille
University Hospital for COVID-19

Retrospective observational study to evaluate predictive factors of mortality at day 28
in COVID-19 patients treated at a single center.

NCT04451577 Epidemiologic, Clinical, Molecular Characteristics of Hospital
Employees With or Without COVID-19 Infection

Case–control study evaluating biological samples obtained from hospital employees to
characterize SARS-CoV-2 pathogenesis and individual differences in susceptibility to
the disease.

NCT04410263 Microbiota in COVID-19 Patients for Future Therapeutic and
Preventive Approaches

Observational study analyzing biological samples including nasopharyngeal and
alveolar microbiota to elucidate risk factors for the development of severe ARDS in
SARS-CoV-2 infected patients.

NCT04359836 A Study to Explore the Role of Gut Flora in COVID-19 Infection Observational study aiming to sequence and characterize the gut microbiome of
COVID-19 patients during and after treatment.

NCT04359706 Bacterial and Fungal Microbiota of Patients With Severe Viral
Pneumonia With COVID-19

Observational study comparing the respiratory and gut microbiota and inflammatory
markers of critically ill COVID-19 patients with historical critically ill patients without
COVID-19.

NCT04355741 Gut Microbiota, “Spark and Flame” of COVID-19 Disease Observational study analyzing and comparing the gut microbiome of COVID patients
across settings in the intensive care unit, hospital general ward, and self-caring at
home.

NCT04332016 COVID-19 Biological Samples Collection Observational collection and analysis of biological samples including gut microbiota of
patients with COVID-19 infection and their caregivers.
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TABLE 3 | Continued

A. Ongoing observational studies

Trial number Title Summary

NCT04325919 Coronavirus Disease 2019 (COVID-19) Study of Hospitalized
Patients in Hong Kong

Observational study characterizing clinical, virological, microbiological, and
immunological profiles of COVID-19 infection compared against patients hospitalized
for pneumonia.

NCT04708912 Nasopharynx Microbiota Component and in Vitro Cytokines
Production in Coronavirus Disease (COVID-19)

Observational study comparing nasopharynx microbiota composition, RNA
sequences, and in vitro cytokine production in COVID-19 patients with mild-moderate,
severe, convalescent disease and healthy controls.

NCT04768244 Impact of Maternal COVID-19 Disease on Breast Milk and
Infant Health (MilkCorona)

Prospective study assessing the impact of maternal COVID-19 on immune,
microbiological, and metabolic profile of breast milk and infant microbiota, growth, and
development.

NCT04913142 About Oral and Gut Microbiota in Intensive Care Unit: SARS-
CoV-2 (COVID-19) Infection Impact (CO-MIC)

Prospective cohort study to describe the impact of SARS-CoV-2 infection on the oral
and gut microbiota of ICU patients, and to compare against the microbiota of non-
COVID-19 ICU patients.

NCT04813328 A Pilot Study of the Effects of Helminth Infection and SARS-
CoV-2 Seropositivity on Immune Response and the Intestinal
Microbiota in India

Cross-sectional study to characterize the immune response and intestinal microbiota
in people with and without SARS-CoV-2 antibodies and helminth infection.

B. Ongoing studies utilizing microbiota as therapeutic target

Trial number Title Summary

NCT04666116 Changes in Viral Load in COVID-19 After Probiotics Randomized clinical trial evaluating the capacity of a novel nutritional supplement
intervention in decreasing SARS-CoV-2 viral load by nasopharyngeal swab

NCT04621071 Efficacy of Probiotics in Reducing Duration and Symptoms of
COVID-19

Randomized controlled trial to evaluate the efficacy of probiotics in reducing the
duration and symptoms of COVID-19 in a symptomatic population tested positive to
SARS-CoV-2, self-caring at home

NCT04581018 An Evaluation of a Synbiotic Formula for Patients With COVID-
19 Infection

Non-randomized clinical trial examining effect of a synbiotic health supplement on
COVID-19 symptoms

NCT04517422 Efficacy of L. Plantarum and P. acidilactici in Adults With
SARS-CoV-2 and COVID-19

Randomized controlled trial to study ability of a probiotic to reduce progression of mild
COVID-19 infection to moderate/severe disease and other prognostic factors,
including gastrointestinal symptoms and gut microbiome composition

NCT04486482 A Clinical Study to Assess the Physiologic Effects of KB109 in
Patients With COVID-19 on Gut Microbiota Structure and
Function

Randomized trial evaluating effects of a novel glycan on the gut microbiota of
outpatients with COVID-19.

NCT04479202 The Effect of Berberine on Intestinal Function and Inflammatory
Mediators in Severe Patients With COVID-19

Double-blinded randomized trial analyzing the effect of berberine on gut microbiota,
gastrointestinal manifestations, and inflammatory markets in patients with severe
COVID-19.

NCT04420676 Synbiotic Therapy of Gastrointestinal Symptoms During
COVID-19 Infection

Clinical trial comparing a probiotic mixture to placebo in alleviating gastrointestinal
symptoms and altering gut microbiome in COVID-19 infection.

NCT04399252 Effect of Lactobacillus on the Microbiome of Household
Contacts Exposed to COVID-19

Randomized trial assessing the effect of Lactobacillus rhamnosus GG on the
microbiome of household contacts of COVID-19 patients.

NCT04540406 NBT-NM108 as an Early Treatment for Suspected or
Confirmed Symptomatic COVID-19 Patients (COVGUT20)

Open-label, randomized controlled trial assessing the feasibility and effectiveness of a
novel botanical-based fixed-combination drug to modulate the gut microbiota and
treat early-stage suspected or confirmed symptomatic COVID-19 patients.

NCT04390477 Study to Evaluate the Effect of a Probiotic in COVID-19 Prospective case–control pilot study to evaluate the possible effect of a probiotic
mixture in the improvement of symptoms, the reduction in the number of days of
hospitalization and the increase in the percentage of patients with negative PCR after
infection with the coronavirus SARS-CoV-2

NCT04366089 Oxygen-Ozone as Adjuvant Treatment in Early Control of
COVID-19 Progression and Modulation of the Gut Microbial
Flora (PROBIOZOVID)

Randomized trial evaluating the adjuvant use of oxygen ozone therapy plus probiotic
supplementation in addition to standard of care in the early control of disease
progression in patients with COVID-19.

NCT04877704 Symprove (Probiotic) as an add-on to COVID-19 Management Randomized trial studying outcomes in COVID-19 patients treated with adjunctive
probiotics for 3 months. A sub-study, subject to participant consent, will also collect
biological samples for comparative analysis.

NCT04734886 The Effect of Probiotic Supplementation on SARS-CoV-2
Antibody Response After COVID-19

Randomized trial assessing the impact of L. reuteri DSM 17938 on SARS-CoV-2-
specific antibody response upon and after infection in healthy adults, in addition to
inflammatory markers, symptom severity and duration.

NCT04390477 The Intestinal Microbiota as a Therapeutic Target in
Hospitalized Patients With COVID-19 Infection

Pilot study on the effect of a probiotic mixture in the improvement of symptoms, the
reduction in the number of days of hospitalization and the increase in the percentage
of patients with negative PCR after infection with SARS-CoV-2.

NCT04366180 Multicentric Study to Assess the Effect of Consumption of
Lactobacillus Coryniformis K8 on Healthcare Personnel
Exposed to COVID-19

Randomized controlled trial evaluating the effects of Lactobacillus coryniformis K8
consumption on the incidence and severity of COVID-19 in health workers exposed to
the SARS-CoV-2 virus.
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gut more clearly with biomarkers and cutoff criteria, to also
enable clarification on whether patients who have developed an
inflammatory cascade are still amenable to therapeutic gut
microbiota modulation.

Besides exploration of any potential role in the management of
COVID-19, long-term consequences of gut dysbiosis should also be
explored with longitudinal follow-up (Table 2). A search of ongoing
clinical trials at the US National Library of Medicine reveals 24
registered studies assessing microbiota-targeted therapeutic
options (Table 3).
CONCLUSION

The role of resident gut microbiota in other respiratory illnesses
has been well recognized. Furthermore, the brunt of unfavorable
COVID-19 outcomes has been on elderly patients and those with
chronic medical diseases, both scenarios known to have
senescence-driven gut dysbiosis. Increasingly, evidence is
Frontiers in Immunology | www.frontiersin.org 10
mounting for gut dysbiosis as a predisposing factor for severe
COVID-19, through a leaky gut phenomenon and resultant
spillage of bacterial products and toxins. Evidence is emerging
that the degree of dysbiosis correlates with the severity of COVID-
19 illness. This behooves us to explore potentially preventive and
therapeutic targets, such as dietary intervention and probiotics.
Several ongoing trials are evaluating various pathogenic routes and
therapeutic approaches. While efforts for direct anti-viral agents
and vaccines are of prime significance, the gut–lung axis could still
hold therapeutic potential.
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