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Atherosclerosis (AS), one of the most common types of cardiovascular disease, has
initially been attributed to the accumulation of fats and fibrous materials. However, more
and more researchers regarded it as a chronic inflammatory disease nowadays. Infective
disease, such as periodontitis, is related to the risk of atherosclerosis. Porphyromonas
gingivalis (P. gingivalis), one of the most common bacteria in stomatology, is usually
discovered in atherosclerotic plaque in patients. Furthermore, it was reported that P.
gingivalis can promote the progression of atherosclerosis. Elucidating the underlying
mechanisms of P. gingivalis in atherosclerosis attracted attention, which is thought to be
crucial to the therapy of atherosclerosis. Nevertheless, the pathogenesis of
atherosclerosis is much complicated, and many kinds of cells participate in it. By
summarizing existing studies, we find that P. gingivalis can influence the function of
many cells in atherosclerosis. It can induce the dysfunction of endothelium, promote the
formation of foam cells as well as the proliferation and calcification of vascular smooth
muscle cells, and lead to the imbalance of regulatory T cells (Tregs) and T helper (Th) cells,
ultimately promoting the occurrence and development of atherosclerosis. This article
summarizes the specific mechanism of atherosclerosis caused by P. gingivalis. It sorts out
the interaction between P. gingivalis and AS-related cells, which provides a new
perspective for us to prevent or slow down the occurrence and development of AS by
inhibiting periodontal pathogens.
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INTRODUCTION

Cardiovascular disease (CVD) is the most common cause of death worldwide, which leads to about
16.7 million people losing their lives each year (1). Atherosclerosis (AS), a chronic disease that often
occurs in large- and medium-sized arteries, is regarded as the pathogenetic basis of most CVDs (2).
Although traditional risk factors for AS, such as hyperlipidemia, hypertension, and smoking, have
been effectively reduced, the incidence of atherosclerotic diseases remains high (3). In the past few
decades, new evidence that AS is a chronic inflammatory disease emerged (4). A variety of
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pathogens, such as Chlamydia pneumoniae (C. pneumoniae) (5),
P. gingivalis (6), and Helicobacter pylori (7), have been detected
in human AS plaque lesions and promote the progression of AS,
which suggests that pathogen infection may participate in the
formation of AS plaques (8).

Periodontitis, which affects 11.2% of the population worldwide,
is the sixth most common disease and a highly and prevalently
chronic non-communicable disease (9).Many epidemiological and
clinical studies have shown that periodontal disease is related to
carotid AS (10, 11). People suffering from periodontitis have a
higher risk ofAS/CVD, and its risk ratio ranges from1.074 to 1.213,
95% CI (12–15). However, few studies suggested that the link
between these two diseases is not very clear (16). Maybe the
clinical association between periodontal disease and AS was
unsure, but numerous animal experiments have confirmed the
promotion role of periodontal pathogens in the progress of AS (17,
18). Periodontal pathogens, such as P. gingivalis (19),
Aggregatibacter actinomycetemcomitans (20), and Tannerella
forsythia (21), have been detected in human AS plaque lesions.
Among the periodontal bacteria detected, the detection rate of
P. gingivalis is particularly high (22–24), and studies about the
promotion effect ofP. gingivalis onAS are also themost common. It
seems that out of oral or periodontal pathogens,P. gingivalishas the
advantage in AS pathogenicity.

P. gingivalis is the main component of the subgingival plaque
in patients with chronic periodontitis. It is not only involved in
inflammation and tissue destruction during periodontal disease
(25) but also related to the inflammatory pathology of distal body
organs, including AS and Alzheimer’s disease (AD) (26, 27). It can
enter the blood system through ulcers in the epithelium and
lymphatic vessels after treatment intervention (subgingival
scaling, surgical periodontal therapy) or daily activities (brushing,
chewing), and then survive and colonize in other organs (28).
P. gingivalis (6) and its contents, such as fimbriae (29) and DNA
(30),havebeendetected inhumanatheroscleroticplaques. In recent
years, a lot of studies proved that P. gingivalis could accelerate
atherosclerosis (18, 25, 31–35); the underlying mechanisms have
also been discussed. Most studies and reviews focus on endothelial
cells (ECs), but there are many other kinds of cells involved in the
development of AS, like vascular smooth muscle cells (VSMCs),
macrophages, and T cells. P. gingivalis can also affect the functions
of these cells. In order to give a more systematical and
comprehensive understanding of the promoting role of
P. gingivalis on AS, here we summarize the effects and internal
mechanisms of P. gingivalis on all types of cells related to AS.
CHARACTERISTICS OF P. GINGIVALIS

P. gingivalis is an obligate asaccharolytic gram-negative bacteria.
It is the most dominant bacteria in periodontitis and has been
proven as the main pathogenic bacteria in patients with chronic
periodontitis (36, 37). Researchers have clarified that P. gingivalis
can promote the development and aggravation of systemic diseases,
such as cardiovascular diseases, largely because of its ability to
modulate the entire ecosystembychanging the immune responseof
Frontiers in Immunology | www.frontiersin.org 2
the host to survive andpersist inhost tissues (38),which is related to
interacting with various host receptors and changing the
inflammation and complement system signal transduction
pathways as well as cell cycle and apoptosis (39). Gingipains (40)
and outermembrane vesicles (OMVs) (41) secreted byP. gingivalis,
with its lipopolysaccharides (LPS) (42), proteins (43), and fimbriae
(44), make P. gingivalis highly pathogenic and thus persistent in
host tissues and promote the emergence of dysbiosis.

LPS is an importantpart of theouter layer ofP. gingivalis andhas
a strong pathogenic effect (37). It can induce toll-like receptor
(TLR)-specific immune upregulation, in which TLR4 andTLR2 are
the main receptors (33, 45), so as to trigger inflammation and
immune responses between the host through TLRs. P. gingivalis
fimbriae, comprised of FimA andMfa1 subunits, is a crucial factor
in the interaction between bacteria and host tissues, promoting the
adhesion and invasion of bacteria to target sites (46). It also can be
recognized by TLRs on ECs (22), macrophages (47), and immune
cells (48), thereby activating the cells to produce cytokines and
adhesion molecules. Experiments showed that infection with the
fimbriae-deficient mutant DPG3 of P. gingivalis had a minimal
effect on pro-AS (49, 50). The heat shock protein 60 (HSP60) of P.
gingivalis is remarkably immunogenic (51), and existing reports
indicate that the HSP60 IgG antibody titers in patients with AS and
periodontitis are elevated (52). As themain secretory component of
P. gingivalis, gingipains consist of arginine-gingipain (Rgp) and
lysine-gingipain with hemagglutinin (Hag)-adhesin domain, with
85% of extracellular proteolytic ability coming from it (53),
providing P. gingivalis the ability of tissue destruction, and can
modulate the expression of cytokines and immunoglobulins and
thus affect the immune responses of the host cells (54). With
research going on, the OMVs with double-layer, spherical,
membrane-like structures secreted by P. gingivalis have been
proven, with a size of about 50–250 nm (55), to contain LPS,
outer membrane proteins, phospholipids, and DNA inside (56).
The OMVs make a large number of pathogenic factors highly
concentrated and avoid the degradation and destruction of
proteolytic enzymes, thus greatly improving the toxicity from
P. gingivalis (41) (Figure 1).

There are some perspectives from new studies that the
vasculature can be invaded by P. gingivalis via an ulcerative
epithelium (57) and lymphatic vessels (58); then, P. gingivalis
could be internalized in gingival epithelial cells and KB cell lines
with ECs through the “folding” mechanism which caused severe
folds of the host cell membrane at the invasion site and was
internalized in the form of spacious vacuoles (59). In addition,
studies have shown that P. gingivalis can transmit among different
types of cells in vascular tissues (60). All the properties described
above support that P. gingivalis invades distant tissues and colonize
inpartsother than theoral cavity, leading toamore seriousoutcome
of the systemic disease (Figure 1).
PATHOGENESIS OF ATHEROSCLEROSIS

AS is a continuous course of decades, along with the
accumulation of fatty material and plaque formation in the
December 2021 | Volume 12 | Article 766560
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innermost lining of the artery, causing acute coronary syndromes,
myocardial infarction, or stroke (16). The pathological process of
atherosclerosis is related to the physiological activities and
transformation of various cells, including ECs, VSMCs,
macrophages, T cells and, dendritic cells (DCs). At the onset, in
some atherosclerotic lesions, the vascular endothelium will be
abnormally stimulated. As the disease progresses, there will be
shed areas in the endothelium, and platelets stick to exposed areas
(43, 44). Subsequently, circulatingmonocytes are recruited fromthe
blood to the subintima; they internalize and modify lipoproteins
and finally differentiate into foam cells (49). VSMCs proliferate,
migrate, and produce a sizeable extracellular matrix (ECM), which
is themain component of thefibrous cap ofASplaques. In addition,
VSMCs can also internalize lipids and differentiate into foam cells
(50). Last but not least, the immune response caused by T cells and
DCs also plays an indispensable role in the pathological
development of AS (Figure 2).

ECs in AS
The endothelium, as the outermost layer between blood and
arterial intima, is the initial area of atherosclerotic lesions (61). It is a
Frontiers in Immunology | www.frontiersin.org 3
key factor in regulating vascular homeostasis because of the barrier
function of ECs and the ability to regulate the phenotypes of the
vascular wall (62). In the prone areas of atherosclerotic lesions, the
vascular endothelium firstly leaks, activates, andmalfunctions after
being stimulated by dyslipidemia, hypertension, or pro-
inflammatory mediators, which is also called endothelial
dysfunction (63, 64). When the endothelium leaks, the
permeability of the endothelium is destroyed, and more
circulating low-density lipoprotein (LDL) enters (61). Meanwhile,
oxidative stress occurs in the endothelium and produces a lot of
superoxide. LDL accumulates in the vascular intima and is oxidized
by this superoxide, and thenbeing oxidized low-density lipoprotein
(oxLDL), it can induce and bind to cell surface adhesion molecules
to activateECsorbe recognizedbyT cells anddrive anautoimmune
response (65, 66). As the disease progresses, exfoliated areas appear
in the endothelium, and platelets may be adhering to this exposed
subendothelial tissue. Before the morphological changes of AS
occurred, the endothelial function changed (67). It is a complex
pathophysiological event, including endothelial activation,
impaired vascular tone, and other endothelial phenotypic changes
(61). The pro-inflammatory and procoagulant state of ECs is called
FIGURE 1 | Characteristic of P. gingivalis. (1) As the most common periodontal pathogen, P. gingivalis is composed of cell membrane and genetic material. The
outer layer of the cell membrane has a large number of fimbriae, proteins, and channels. (2) The pathogenicity of P. gingivalis mainly comes from its own structural
components (lipopolysaccharide, fimbriae, and heat shock proteins) and secretory components (gingipains and outer membrane vesicles, OMVs). (3) OMVs have a
double-layer spherical membrane and contain a lot of pathogenic factors with high concentration.
December 2021 | Volume 12 | Article 766560
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endothelial activation (68). In this state, ECs express many
chemokines, cytokines, and adhesion molecules, which trigger
leukocytes to homing, adhering, and migrating to target tissues.
The activated ECs first selectively recruit circulating monocytes
from the blood to under the innermembrane, where themonocytes
differentiate into macrophages, modify lipoproteins, internalize a
large number of lipids, and finally differentiate into foam cells (this
is a sign of early fatty streak disease) (69). ECs can also produce
perlecan and heparan sulfate proteoglycans under mechanical
forces, which are intimately involved in the endothelial inhibition
of VSMC proliferation (70). The outer edge of the plaque is rich in
inflammatory cells, which further regulates the pro-inflammatory
phenotype of ECs and ultimately leads to the instability of the
plaque structure (71). ECs can acquire myofibroblast-like
properties through endothelial cell–mesenchymal transition
(EndMT), which is involved in the occurrence of AS (72).

Vascular Smooth Muscle Cells in AS
VSMCs are the main cell types that exist in various stages of
atherosclerotic plaques and can differentiate into various cell
Frontiers in Immunology | www.frontiersin.org 4
phenotypes, including macrophages and foam cells (73). The
response of VSMCs to arterial injury and lipid infiltration is the
main pathological process of atherosclerotic plaque development
(74). VSMCs are the primary source of elastin and interstitial
collagen in the inner membrane and a vital part of the ECM,
which allows the artery to be compliant and elastically retractable
(75, 76). In the pre-AS stage, the proliferation and migration of
VSMCs contribute to its migration to the inner membrane from
mid-arterial (77). VSMCs secrete a large amount of ECM, which
promotes diffuse intimal thickening of the vessel wall (78, 79). In
the early stage of AS, VSMCs proliferate, absorb oxLDL, and
form foam cells, which promotes pathological intimal thickening
(PIT). The arterial intima forms a deep pool of extracellular
lipids, and a large number of VSMCs and ECMs accumulate.
Microcalcifications (0.5–15-mm spots) are often produced in the
lipid pool of PIT, usually near the boundary of the medium,
which may be the result of VSMC apoptosis (80–83). At the same
time, VSMCs are an essential source of macrophages in AS, and
macrophages derived from VSMCs participate in the process
from PIT to fibrotic plaques. Finally, the fibrous cap of the AS
FIGURE 2 | Pathogenesis of atherosclerosis (AS). (1) As the picture shows, AS occurs in the intima, where endothelial cell damage and monocyte migration and
adhesion occur. (2) After the monocytes enter the inner membrane, they differentiate into macrophages and increase the uptake of oxLDL to become foam cells.
(3) Outside the intima, the media contains vascular smooth muscle cells, which proliferate and migrate to the intima and then differentiate into vascular smooth
muscle cell-derived foam cells.
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plaque is formed (84). In the advanced stage of AS, after the
death or apoptosis of VSMCs, the accumulated lipids are released
outside the cell, forming a necrotic core in the plaque and, at the
same time, acting as an antigen to activate T cells to secrete
inflammatory mediators, resulting in unstable plaque
formation (85).

Macrophages in AS
Macrophages are the main immune cells in atherosclerotic
lesions (86). Macrophages are critical and a requisite in every
stage of AS (87), from its initiation and expansion to the rupture
caused by necrosis and clinical manifestations and to the
regression of lesions. The blood monocytes are primarily
derived from focal macrophages (88), and circulating
monocytes enter the arterial hemodynamic stress site by
adhering to the ECs of the susceptible artery lumen (89). The
different phenotypes of macrophages enable them to perform
different functions (90). Circulating monocytes in the blood bind
to adhesion molecules, monocyte chemoattractant protein-1
(MCP-1), and intercellular adhesion molecule-1 (ICAM-1)
expressed in activated ECs (91). Then, they enter the plaque
through three activities: capture, rolling, and migration. Each
step is regulated by multiple molecular factors, sometimes
overlapping (89). Once monocytes enter the inner membrane,
they can differentiate and mature into macrophages and acquire
characteristics associated with repairing or less pro-
inflammatory monocyte/macrophage populations (92). The
formation of foam cells by macrophages is an important
process of pathological changes in AS, and it is also one of the
main sources of foam cells in the lipid pool (87). Macrophages
increase the uptake of oxLDL while reducing cholesterol efflux,
which, in turn, leads to the deposition of intracellular esterified
cholesterol and the production of foam cells derived from
macrophages. Inflammatory macrophages secrete cytokines
and proteases, increasing the expansion of diseased cells,
causing changes in plaque morphology, and leading to plaque
rupture and acute intraluminal thrombosis. In contrast,
dissociated macrophages perform functions related to
stabilizing plaques, including removing dead cells (exocytosis)
to stabilize plaques and secreting collagen to form protective
scars on the lesions (93).
T Cells in AS
The latest research shows that AS is a chronic inflammatory
disease (86). Tregs and effector T cells mainly control the
adaptive immune process of AS (92). For plaques in AS,
various T cell lineages are crucial for their initiation,
progression, and stability (94). T helper cells 1 (TH1) can
accelerate atherosclerosis, and Tregs can inhibit the
progression of atherosclerosis (66). It should be noted that
Tregs can become pro-atherogenic cells. The complexity of
TH1 and Tregs functions is due to activating or inhibiting the
roles of other T cells, promoting the production of high-affinity
resistance and cytotoxicity (95). The roles of other T cell
subgroups like CD8+ T cells and gd T cells and TH cell
subgroups such as TH2 and TH9 are not much understood (66).
Frontiers in Immunology | www.frontiersin.org 5
Dendritic Cells in AS
When monocytes are recruited to enter the subendothelial layer
in the early stage of AS lesions, another type of immune cell,
DCs, also takes the opportunity to invade the subendothelial
intima preferentially, forming a structure like the cutaneous
Langerhans cell network (96). The role of DCs in the pre-AS
stage is a double-edged sword. It can have a protective effect by
reducing effector T cell proliferation and inhibiting IFN-g
production (97). On the other side, DCs under the inner
membrane has a pro-atherosclerotic effect. It can ingest
cholesterol to promote lipid accumulation and foam-like
lesions (98). Treg homeostasis can be regulated by DC-derived
chemokines, which suggests that DCs control T cell responses by
multifarious mechanisms to achieve anti- or pro-inflammatory
effects in AS (99). Last but not least, DCs can infiltrate arterial
walls, which may destabilize atherosclerotic plaques and
contribute to inflammatory development in AS (100) (Figure 2).
THE INFLUENCE OF P. GINGIVALIS
ON ECs

In the past few years, research has proposed that P. gingivalis has
the capability to act and invade ECs, induce endothelial
dysfunction, destroy endothelial integrity, and then promote
the formation and development of atherosclerotic plaques
(101) (Figure 3).

P. gingivalis Activates Endothelial
Oxidative Stress and Promotes
Inflammation Response
Oxidative stress is fundamental to AS. Endothelial oxidative
stress promotes the adhesion of monocytes and the release of
pro-inflammatory cytokines, leading to endothelial dysfunction,
which is a precursor to atherosclerotic lesions (61). Recent
studies have proved that P. gingivalis induces severe
endothelial oxidative stress (102). P. gingivalis can significantly
increase the output of total reactive oxygen species (ROS) and
superoxide free radicals in vitro, destroying endothelial function.
This process is mainly promoted by the TLRs–NF-kB signal axis
(22). TLRs mediate the recognition of P. gingivalis LPS and then
activate the downstream signaling pathway NF-kB and its active
subunit p65, thereby triggering subsequent oxidative stress (22),
and peroxisome proliferator-activated receptor may be also
involved in modulating oxidative stress during this process
(103). Moreover, P. gingivalis activated nucleotide-binding
domain leucine-rich repeat (NLR) and promote the production
of pyrin domain-containing receptor 3 (NLRP3) inflammasomes
in ECs, which depends on ROS and LPS. Then, interleukin-1b
(IL-1b) and IL-18 begin to be secreted, thereby promoting
further inflammatory processes and oxidative stress in the
endothelium (104). It is worth noting that, in the process of
P. gingivalis promoting oxidative stress, there is also the influence
of circadian clock disruption (22), which can provide new
insights on the treatment of P gingivalis-accelerated
atherosclerosis. By the way, nitric oxide plays an important
December 2021 | Volume 12 | Article 766560

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Porphyromonas gingivalis and Atherosclerosis-Related Cells
role in maintaining homeostasis and anti-oxidative stress
through inhibiting the production of ROS (105), and the
action of P. gingivalis eventually leads to nitrifying stress and
impaired endothelial function, which is achieved by upregulating
inducible nitric oxide synthase (iNOS), downregulating
endothelial nitric oxide synthase (eNOS), and regulating the
release of NO in EC (106), with the change of glycogen synthase
kinase-3 (GSK-3b)/tetrahydrobiopterin (BH4)/eNOS/nuclear
factor erythroid-derived 2-like 2 (Nrf2) pathways (107).
Animal experiments have shown that P gingivalis infection
leads to a significant decrease in the bioavailability of BH4,
which may be due to the inhibition of the expression of
dihydrofolatereductase (DHFR) that predominates the
conversion of BH2 to BH4 and the rate-limiting enzyme GCH-
1 (GTP cyclohydrolase 1) responsible for the biosynthesis of BH4
Frontiers in Immunology | www.frontiersin.org 6
(108). NrF2 can protect cells from oxidation by activating
antioxidant enzymes, including GSH synthase (GCSc, GCSm)
and heme oxygenase-1, which is essential for cell protection. In
the vascular tissues of mice infected with P gingivalis, the level of
NrF2 was significantly reduced (107). Interestingly, after the
intervention of HAECs cells with P. gingivalis, the expression of
DHFR was significantly inhibited, but the expression of DHFR
did not change significantly in vivo. This may be due to the latter
being a variety of periodontal pathogen infections
after intervention.

After oxidative stress, P. gingivalis triggers the inflammatory
response in vasculature. IL-1b, IL-6, TNFa, and interferon-
gamma (IFN-g), as pro-inflammatory factors, were increased by
P. gingivalis in ECs (109, 110). It is also reported that P. gingivalis
LPS-, fimbriae-, OMV-, and gingipain-stimulated ECs expressed
FIGURE 3 | Molecular cascades activated by P. gingivalis in endothelial cells (ECs). (1) TLR is believed to mediate the recognition of P. gingivalis. P. gingivalis promotes EC
oxidative stress through the TLRs–NF-kB signal axis and NLRP3 inflammasomes. P. gingivalis leads to nitrifying stress and impaired endothelial function, with upregulating
iNOS, downregulating eNOS, and regulating the release of NO in EC (86), which is associated with the change of the GSK-3b/BH4/eNOS/Nrf2 pathway. (2) P. gingivalis
gingipains induced endothelial cell (EC) apoptosis by activating caspase-3,8,9, and its gingipains can also induce EC apoptosis mainly through inducing the cleavage of
PARP and Topo I. (3) P. gingivalis lipopolysaccharide promoted EndMT through the regulation of p38, Erk1/2, and p65. (4) P. gingivalis enhanced monocyte migration with
an increased expression of MCP-1, ICAM-1, IL-8, P-selectin, and E-selectin in ECs. (5) Gingipain destroyed the endothelial cell–cell junction through inducing the cleavage of
VE-cadherin, N-cadherin, PECAM-1, and integrin b1.
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high levels of MCP-1, ICAM-1, IL-8, P-selectin, and E-selectin, as
well as their receptors C-C chemokine receptor type 2 and
integrin aMb2, of which all of them enhance monocyte
migration and adhesion (50), thereby initiating and promoting
inflammation and promoting the development of AS (111, 112).
Multiple signaling pathways, including p38, c-Jun N-kinase, NF-
kB, and activator protein 1 (AP-1), are involved in this process
(113–116). What is more, the inner-out signal transduction of
P. gingivalis fimbriae is mediated by Ras-related C3 botulinum
toxin substrate 1 (Rac1) and phosphatidylinositol 3-kinase (PI3K)
(117). In addition, with P. gingivalis-LPS stimulation in ECs, it
secreted anti- chemotaxis and anti-adhesion proteins like Growth
arrest-specific 6 (Gas6) and pro-adhesion proteins like ICAM-1
and macrophage migration inhibitory factor (MIF), and these
signs of progress can be regulated by LncRNA GAS6-AS2 (118).
MIF binds with the MHC class II invariant chain, called Ii/CXC
motif chemokine receptor type 4; a matchable receptor complex,
it facilitated monocyte adhesion, too (118).

P. gingivalis Destroys the
Endothelial Barrier
The permeability of the endothelial barrier is also a part of the
inflammatory responses in the development of AS (119), which
has been proven to be promoted by P. gingivalis (120). P. gingivalis
and its gingipains, LPS, and OMVs may contribute to endothelial
barrier destruction at the endothelial cell–cell junction by inducing
the decomposition of adhesion molecules like VE-cadherin and N-
cadherin. During this process, platelet endothelial cell adhesion
molecule-1 (PECAM-1) and integrin beta1 were also cleaved and
destroyed by P. gingivalis in ECs (120–123), thus allowing
leukocyte transmigration in this system. P. gingivalis LPS can
promote the internalization of VE-cadherin in ECs, which play an
essential role in regulating EC permeability (123). Evidence have
indicated that IL-8 directly increased endothelial permeability
(124), and it can be upregulated by LPS of P. gingivalis with the
activation of the NF-kB pathway (123). P. gingivalis also
promoted vascular coagulation and inflammation which were
mainly related to the degradation and inactivation of glycoprotein
thrombomodulin on the surface of ECs (120, 125). The
permeability of the endothelium increases, allowing bacteria to
pass through the endothelium through loose connections. This
may explain why P. gingivalis invading ECs is accompanied by a
mixed infection of other periodontal pathogens.

P. gingivalis was able to induce ECs apoptosis and EndMT as
well as inhibit its proliferation, which decreases the quantity of ECs,
leading to the damage of the vascular endothelial barrier. At this
time, circulating leukocytes and LDL accumulate under a damaged
endothelium, leading to the development of AS (126). After P.
gingivalis infection, pro-apoptotic proteins Bcl−2−associated X
protein and CAS3-CL (127) expressed by ECs increased, while
the anti-apoptotic protein Bcl−2 decreased significantly (128). P.
gingivalis gingipains can also induce EC apoptosis, mainly through
inducing the cleavage of topoisomerase I (Topo I) and Poly (ADP-
ribose) polymerase (PARP), which may regulate the process of cell
death to a certain extent (122). The death of apoptotic ECs usually
occurs through the stimulation of activated caspase (129).
Frontiers in Immunology | www.frontiersin.org 7
P. gingivalis induces EC apoptosis by activating the caspase-8
death receptor and the caspase-9 mitochondrial-dependent
apoptosis pathway as well as activating the DNA fragmentation
induced by caspase-3 (130). P. gingivalis can also induce ER stress
with the expression of several growth arrest- and DNA damage-
inducible gene 153, glucose-regulated protein 78, and caspase-12,
thereby promoting EC apoptosis (130). In addition, several pro-
atherosclerotic factors, such as modified lipoproteins and tumor
necrosis factor-alpha (TNF-a), affect the P. gingivalis-induced
death of ECs, as well as other cells, and promote the compound
of necrotic cores (107, 131). NLRP3 inflammasome-mediated
pyroptosis has been identified as a potential cause of EC death
(132), and the production of ROS in ECs with P. gingivalis infection
may activate the NLRP3 inflammasome. The induction effect of P.
gingivalis and its LPS on EndMT has been noted in recent studies
(111). After the intervention of P. gingivalis, the typical paving
stone-like ECs become polygonal fibroblast-like cells with
enhanced migratory phenotype and an increase happening in
long- and spindle-shaped cells, which were suppressed after the
use of TLRs–NF-kB pathway inhibitors (127). The expression of
EndMT-related proteins have been also changed to cluster of
differentiation 31, as the endothelial-specific markers that were
downregulated with VE-cadherin were reduced, and a-smooth
muscle actin (a-SMA) related with mesenchymal transition was
upregulated, which may be mediated by p38, extracellular signal-
regulated kinase 1/2 (Erk1/2), and p65 (111). The proliferation of
ECs is indispensable in repairing the shedding area of ECs and
maintaining the integrity of the endothelium, but it can be
significantly inhibited by P. gingivalis (127, 130). P. gingivalis and
its OMVs significantly inhibit the proliferation and growth of ECs
(133) and suppressed capillary tube formation by ECs, in which
NF-kB signaling played a critical role.

P. gingivalis Survives in Endothelium
Leading to Constant Stimulation
In the AS initial stage, P. gingivalis can introduce ECs to internalize
it and begin autophagy, which was utilized in transporting bacteria
or/and toxins. In in vitro experiments, P. gingivalis invaded ECs
through ICAM-1-mediated endocytosis (134). After that, EC
autophagy induced by P. gingivalis provides a replicative niche
where bacteria survive and replicate while suppressing apoptosis
(135). The conclusion that the increased endoplasmic reticulum-
associated protein Beclin-1 and microtubule-associated protein
light chain 3-II can draw is that the endoplasmic reticulum stress
induced by P. gingivalis enhances autophagy (130, 136). P.
gingivalis interacts with ECs through a variety of adhesin,
including FimA (137) and hemagglutinin B (HagB) (138), and is
subsequently transformed into phagosomes through the
internalization of lipid rafts (139). After invading ECs, P.
gingivalis is swallowed by phagosomes to form early
autophagosomes. Thereafter, delaying autophagosome–lysosome
fusion or redirecting autophagosomes prevent the formation of
autolysates to avoid being destroyed (140). In general, P. gingivalis
directly forms late autophagosomes from early autophagosomes to
survive and persist in ECs, but the mechanism remains unclear.
Interestingly, scholars have explained that p38 mitogen-activated
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protein (MAP) kinase in monocytes can be activated by P.
gingivalis, but ECs do not obey this law, which was shown by
the fact that P. gingivalis and its LPS have no activation effect on
p38 or ERKMAP kinase (141). On the contrary, the effect of MAP
kinase in ECs is interfered by P. gingivalis LPS in the progress of
modulating host defenses, which may also be helpful for P.
gingivalis survival and replication in ECs and lead to the
development of AS.

In general, after P. gingivalis reaches the endothelium, it is
internalized by ECs and induces autophagy to preserve its
virulence (135). Hereafter, P. gingivalis activates oxidative
stress of ECs, which release a large amount of ROS and
inflammatory factors, amplifying the inflammatory response
through TLRs–NF-kB and NLRP3 pathways (22, 102). Apart
from this, P. gingivalis can also increase the permeability of the
endothelium by destroying the connections between ECs directly
(120). Last but not least, P. gingivalis destroys the completeness
of the endothelium through the promotion of apoptosis and the
inhibition of proliferation in ECs (130). P. gingivalis causes
endothelial dysfunction and damage in many ways, which all
promote the occurrence and development of AS. This also helps
us understand that microbial infection plays a role in the
pathological development of AS so as to find more effective
treatments (Table 1 and Figure 3).
THE INFLUENCE OF P. GINGIVALIS ON
VASCULAR SMOOTH MUSCLE CELLS

P. gingivalis Promotes the Proliferation
and Migration of VSMCs
VSMC proliferation is suggested to contribute to diffuse intimal
thickening in AS (143). VSMCs infected with P. gingivalis have
shown an increasing trend of cell growth and a significant
transition from the contractile phenotype to proliferative
phenotype. P. gingivalis and its gingipains upregulate
osteopontin (OPN), SMemb, and S100A9 expression, which
were contrary to a-SMA and have an important role in
cellular proliferation (144, 145). Gingipains may trigger the
proliferation of VSMCs by cleaving plasma proteins at the
lysine and arginine residues (145). This process may be mainly
regulated by the transforming growth factor-beta (TGF-beta)/
Notch pathway (146). P. gingivalis mediates the upregulation
of connective tissue growth factor [small body size
(a Caenorhabditis elegans) mothers against decapentaplegic
Frontiers in Immunology | www.frontiersin.org 8
(a Drosophila protein family)-3 (SMAD3)], which are signaling
molecules of the TGF family (147). Hairy/enhancer−of−split
related with YRPW motif 1 (HEY1) and Notch1, as two key
genes of the Notch pathway (148), were upregulated in VSMCs
infected with P. gingivalis. Moreover, a multi-center cohort study
in Japan showed that the intima-media thickness was
significantly decreased in patients after control of periodontal
infection by periodontal treatment (149). This implies that
inhibiting P. gingivalis infection can decrease the thickness of
plaques to reduce the risk of rupture, which is related to
inhibition of the proliferation of VSMCs.

The migration of VSMCs from the middle layer to the inner
layer of the blood vessel is a key event of the progression of AS
(150). P. gingivalis gingipains enhanced the migration ability of
VSMCs by upregulating angiopoietins 2 (Angpt2) and ETS
proto-oncogene 1 (ETS1) while inhibiting Angpt1. ETS1 is the
transcription factor of Angpt2, which is critical for P. gingivalis to
induce Angpt2 (151). Angiopoietins (Angpt1, Angpt2, etc.)
regulate vascular maturation, stability, and remodeling by the
Tie2 receptor signaling pathway (152), in which Angpt2,
particularly, enhanced VSMCs to migrate but had no influence
on its proliferation. In addition, after the invasion from P.
gingivalis to VSMCs, its LPS could significantly reduce the
expression and activity of tissue factor inhibitor, thereby
inducing the migration as well as the proliferation of VSMCs
through which atherosclerotic plaques have been promoted
(153). Unexpectedly, for C. pneumoniae, as another Gram-
negative pathogen associated with AS, its infection was found
to promote VSMC migration via c-Fos/IL-17C signaling (154).
Despite the same outcome from both of them, they promote
plaque progression in different pathways.

P. gingivalis Promotes the Calcification
of VSMCs
Vascular calcification, described as excessive deposition of
calcium-containing phosphate, is one of the signs of AS (83),
which might ultimately lead to the hardening of blood vessels
and reduction in elasticity (155). P. gingivalis can induce the
calcification of VSMCs and promote vascular calcification, which
is also induced by LPS and OMVs. The OMVs of P. gingivalis
promoted the calcification of VSMCs, along with the
involvement of the ERK1/2- Runt-related transcription factor 2
(RUNX2) pathway (156), in a concentration-dependent manner
and regulate the process of VSMC osteogenic differentiation and
mineralization (157). The key regulator of this progress is Runx2,
regulated by the ERK signaling pathway and involved in
TABLE 1 | The effect of P. gingivalis on endothelial cells.

Stimulus component Signal pathway Target Outcome References

LPS TLRs–NF-kB p65 Oxidative stress (22)
Unknown GSK-3b/BH4/eNOS/Nrf2 DHFR, GCH-1, NrF2 Oxidative stress (107, 108)
Gingipains Caspase pathway Caspase-3,8,9,12 Apoptosis (130, 142)
Lipopolysaccharide (LPS) TLRs–NF-kB p38, Erk1/2, p65 EndMT (111, 127)
Unknown TLRs–NF-kB Unknown Proliferation (127)
Rab5, MPR Unknown Unknown Autophagy (140)
FimA, LPS, gingipains, OMVs NF-kB MCP-1, Rac1, PI3K Adhesion (114–116)
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osteogenic transcription (158). Bone morphogenetic protein 4
was upregulated and mediated by TLR4 and ERK1/2-p38
pathway, and ultimately it promoted vascular calcification in
VSMC from one suffering from P. gingivalis infection (159).
During vascular calcification, VSMCs change to an osteoblast-
like phenotype, which is an important step in mediating vascular
media calcification (160), and P. gingivalis LPS significantly
promoted the upregulation of osteogenic genes [such as
alkaline phosphatase (ALP), core-binding factor, alpha 1, bone
sialoprotein, and OPN] (161). Moreover, apoptosis of VSMCs,
accompanied by considerable matrix vesicles with the bound
calcifying membrane released (162), was increased by P.
gingivalis in inorganic phosphate-induced VSMCs, in which
the Gas6/Axl/Akt survival pathway was inhibited (163). In
addition, TNF-a and IL-1b, as pro-inflammatory cytokines,
can upregulate ALP and RUNX2 in VSMCs, contributing to
vascular calcification (164). Therefore, P. gingivalismay promote
vascular calcification through its structure or secreted substances
and, alternatively, through the secretions of VSMCs after
infection. Matrix-gla protein (MGP), an effective inhibitor of
vascular calcification, and lack of MGP will increase the risk of
AS (165, 166). However, the relationship between MGP and P.
gingivalis is still unclear, which also suggests our next research
direction, that is, whether MGP can be used to alleviate vascular
calcification caused by P. gingivalis.

P. gingivalis Promotes VSMCs to Engulf
Lipids to Form Foam Cells
As the most indispensable cell in AS lesions, VSMCs contribute
to the proportion of more than half of the foam cells in the lesion
area (167). In the process of that, the aggregation of LDL and its
oxidative modification product oxLDL as well as the immune
complexes they induce, such as b2glycoprotein I (b2GPI), anti-
b2GPI, plays a key role in promoting the formation of foam cells
(168). Recent studies have shown that the lipid uptake pathways
of VSMCs include SR-AI/II (class A), CD36 (class B), LOX-1
(class E), and SR-PSOX/CXCL16 (class G) (169). In addition, the
presence of macrophages also promotes the transformation of
SMCs into foam cells (170). At present, the research on the effect
of P. gingivalis on VSMCs is not sufficient and in depth. VSMCs
may serve as deposits of lipids from the insudating lipoproteins
and become foam cells easily with P. gingivalis, but the in vivo
mechanisms remain incompletely understood (85). According to
our research, P. gingivalis promotes the accumulation and
oxidation of lipids under the endothelium, and P. gingivalis
promotes the chemotaxis of macrophages. Therefore, we
Frontiers in Immunology | www.frontiersin.org 9
speculate that P. gingivalis can promote the uptake of lipids by
VSMCs and form foam cells through these pathways (Table 2).
THE INFLUENCE OF P. GINGIVALIS ON
MACROPHAGES

P. gingivalis Achieves Immune Evasion
Through Macrophages
P. gingivalis achieves immune evasion through internalization by
macrophages, which may result in the preservation of P.
gingivalis virulence and chronic infection during AS. The
uptake of P. gingivalis by macrophages hinges on complement
receptor type 3 [CR3 (CD11b/CD18)] and TLR2 (171). CR3 is a
b2 integrin, which can recognize sort of structurally and
morphologically unrelated molecules from a pathogen or a
host, such as intercellular adhesion molecules, fibrinogen, and
so on (172). P. gingivalis selected the TLR2 pre-pathway to bind
CR3 and entered the cell (173). The intracellular P. gingivalis
stimulates TLR2 through its surface fimbriae and activates the
signal pathway from the inside out to induce a distinct
conformation of CR3 with high affinity. This pathway can be
mediated by Rac1/PI3K, and it requires fimbriae to bind CD14 to
promote fimbria–TLR2 interaction (117, 174). What is more,
CR3 is utilized as a relatively safe portal of entry by P. gingivalis,
and its fimbriae additionally inhibited the production of IL-12
(p70) with biological activity by interacting with CR3 on the
surface of macrophages (171, 174, 175), which support that P.
gingivalis achieves evasion immune clearance.

P. gingivalis Promotes the Inflammatory
Response of Macrophages
Overwhelming experimental and clinical evidence suggest that
AS is a chronic inflammatory disease (176). P. gingivalis triggers
the inflammatory response of macrophages, thereby promoting
different stages of AS. P. gingivalis fimbriae and OMVs
stimulated monocytes and macrophages to secret pro-
inflammatory cytokines—for instance, IL-1b, IL-18, TNF-a,
and NLRP3 inflammasome activation (49, 177). Under the
action of TNF-a and IL-6, the activation and antigen
presentation ability of macrophages are embellished, and
immunity is also modulated by different mechanisms (178).
Furthermore, the TNF-a released by macrophages can
promote EndMT in ECs (111), which can be promoted by P.
gingivalis. Therefore, it is possible for P. gingivalis to induce
TABLE 2 | The effect of P. gingivalis on vascular smooth muscle cells.

Stimulus component Signal pathway Target Outcome References

Unknown TGF-beta/Notch SMAD3, GO categories, bHLH (HEY1, etc.) Proliferation (146)
Unknown Notch1 signaling cascade HES1, HEY1 Proliferation (146)
Gingipains Unknown S100A9 Proliferation and

transformation
(145)

Gingipains Unknown Angpt2, ETS1, Angpt1 Migration (151)
OMVs ERK1/2-RUNX2 Runx2 Calcification (156)
LPS Unknown ALP, Cbfa1, BSP, OPN Calcification (161)
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EndMT of ECs by promoting the secretion of TNF-a from
macrophages (111). P. gingivalis can easily interact with activated
CR3, activating the outside-in signaling pathway, and lessen IL-
12 due to ERK1/2, thereby inhibiting the production of
biologically active (p70) IL-12 (174, 179), which mediates
immune clearance (180). We can understand from studies that
P. gingivalis LPS and gingipains activated the macrophage
NLRP3 inflammasomes and then produced powerful
inflammatory cell factor IL-1b with the activation of NF-kB
signaling (181), which makes M1-Mf secrete TNF-a and M2-
Mf secrete IL-10, along with chemotactic chemokines like
knuckle cracking (regulated upon activation, normal T cell
expressed and secreted)/CC chemokine ligand 5, eotaxin, and
IL-10 from polarized macrophages (182). In particular, P.
gingivalis OMVs were also suggested to minimize anti-
inflammatory IL-10 secretion (183), and NLRP12 is
upregulated, which downregulated TNF-a production and
iNOS expression in macrophages infected with P. gingivalis
(184). Moreover, P. gingivalis gingipains reduced the
expression of CD14 in macrophage to reduce macrophage
interactions with apoptotic cells, which could curb TNF-a-
induced expression by P. gingivalis LPS (185).

P. gingivalis Promotes Macrophages to
Form Foam Cells
Foam cells are critically important to the development and
progression of AS, and P. gingivalis promotes macrophages to
form foam cells. With LDL, low-concentration P. gingivalisOMVs
also induce foam cell formation, which is in a dose-dependent
manner (186). Firstly, P. gingivalis and OMVs can provoke LDL
modification (187), which is vital in AS by acting on multiple cells
(188), and can be easily transported to macrophages to form foam
cells. P. gingivalis OMVs stimulated the macrophages to produce
matrix metalloproteinases (MMP), and a few types of them were
able to cut apolipoprotein B-100 (apoB-100) from LDL particles
and then lead to the aggregation and modification of LDL (189,
190). P. gingivalis induced the conversion of macrophage
metabolism from oxidative phosphorylation to glycolysis, which
enhances the release of lactic acid, reduces mitochondrial oxygen
consumption, and increases ROS (191), so that modification of
LDL may be increased by ROS in macrophages with P. gingivalis.
Secondly, P. gingivalis fimbriae significantly promotes the uptake
of LDL bymacrophages to form foam cells (187), with P. gingivalis
LPS enhancing lipid accumulation in macrophages and reducing
cholesterol efflux (192). The clearance receptors of macrophages,
such as the class A clearance receptor (SR-A) and CD36, mediate
the internalization of oxLDL, thereby promoting the accumulation
of intracellular cholesterol (193). In contrast, reverse cholesterol
transporters including scavenger receptor class B type I (SR-BI)
and adenosine-binding cassette transporters A1 and G1 (ABCA1/
ABCG1) are responsible for cholesterol efflux (194). P. gingivalis
LPS reduced ABCA1 inmacrophages but increased CD36 through
the c-Jun-AP-1 pathway, while it did not affect SR-A, SR-BI, and
ABCG1 (195). These outcomes are partially associated with the
activation of protein kinase C and c-Jun N-terminal kinase 1/2
phosphorylation, which promotes NF-kB to activate (110). At the
Frontiers in Immunology | www.frontiersin.org 10
same time, P. gingivalis LPS reduces the stability of ABCA1
protein by increasing calpain activity (195). Moreover, the TLR
signal transduction in macrophages is mainly composed of
MyD88 and Toll/IL-1R domain-containing adaptor-inducing
IFN-b, and it exercises function in foam cells caused by P.
gingivalis (196) (Figure 4).

Hence, chronic inflammation caused by P. gingivalis might
gradually worsen in this way. In addition, macrophages can
generate inducible proteases under the action of P. gingivalis,
such as MMP, which can crack cytokine precursors, growth
factors, cytokine receptors, and cell adhesion molecules (122). In
summary, P. gingivalis has a considerable immunomodulatory
impact and can act on monocytes and macrophages, producing
various inflammatory mediators and enzymes through these
pathways to promote inflammation and tissue damage in the
process of AS (Figure 4).
THE INFLUENCE OF P. GINGIVALIS
ON T CELLS

P. gingivalis Causes Th17/Treg Imbalance
The immune balance between Th cells and Tregs has an
important regulatory role in AS (71). With the development of
AS, the number and response of Th17 will increase accordingly
with P. gingivalis infection, reducing the number and inhibiting
the regulatory function of Tregs and causing Th17/Treg
imbalance, which may lead to plaque instability (197, 198). P.
gingivalis and its LPS and gingipains can activate monocytes,
promote a Th17/IL-17 response, and then make TNF-a, IL-1b,
IL-6, and IL-17 increase, mediating by TLR2/TLR4 signaling and
inducing atherosclerotic plaque formation through an
inflammatory response (199, 200). The Th17-related genes like
IL-6, retinoid-related orphan receptor-gammat (RORgt), and
STAT3 were elevated, with TGF- b and IL-10 decreasing in P.
gingivalis-challenged mice (201). P. gingivalis used gingipain to
highly specifically induce Th17 cells, by which IL-6 signaling was
blocked (202). Furthermore, P. gingivalis infection promotes IL-6
to secret in DCs, and increased IL-6 may be good for Th17 cell
proliferation and may inhibit the production and effect of Tregs
(203). In general, pro-inflammatory Th17 cell responses were
strengthened by P. gingivalis, thereby accelerating AS. Tregs can
inhibit effector T cell proliferation and the production of
cytokine (mainly Th1 and Th17 lymphocytes) and are vital in
maintaining the homeostasis of the immune-inflammatory
response of the host (204). P. gingivalis infection reduces the
number and inhibits the regulatory function of Tregs. Compared
with people in healthy conditions, AS patients with P. gingivalis
have fewer Tregs (198). Tregs themselves can come into contact
with other effector cells and can also secrete anti-inflammatory
IL-10 and TGF-b1, thereby directly or indirectly inhibiting
inflammation (197, 205). TGF-b1 has contributed much to the
development of Tregs (206). IL-10 is a cytokine that contributed
a lot to anti-inflammatory effects (207). Experiments have shown
that P. gingivalis infection reduces IL-10. TLR2/1 signaling is the
main mechanism of IL-10 production. Thirdly, the reaction
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caused by the main surface protein of P. gingivalis FimA is also
involved among them (48), and the concentration of Treg-
related factors like TGF-b1 and FoxP3 was reduced in P.
gingivalis-positive patients (198). According to reports, there is
Th17/Treg imbalance in AS patients, and immune answer
induced by T cell is principal in plaque instability (208, 209).
As a result, P. gingivalis ultimately induces an increasing
inflammation reaction in AS plaque and plaque instability by
promoting Th17/Treg unevenness (Figure 5).

P. gingivalis Inhibits T Cell Answer
P. gingivalis can inhibit T cell answer through the suppression of
differentiation and activation caused by chemokines,
proliferation, and communication in T cells. Firstly, the T cell
Frontiers in Immunology | www.frontiersin.org 11
chemokine interferon-inducible protein 10 or CXC motif
chemokine 10, which comes from neutrophils and monocytes,
were not influenced by P. gingivalis, which makes a T cell
respond weakly and achieve local immune evasion (210).
Secondly, the CD4 and CD8 proteins on human T cells can be
destroyed by P. gingivalis, thereby inhibiting the activation of T
cells. It is also through this mechanism that P. gingivalis can
protect itself from the immune system. The establishment and
proliferation of the bacteria in the host is achieved (211). P.
gingivalis HSP60 can have different effects on T cell polarization
by different mechanisms and then make atherosclerotic occur or
not (212). Last but not least, P. gingivalis inhibits the expression
of IL-2 that promotes the proliferation and communication of T
cells (101). The activity of NF-kB and AP-1 is downregulated by
FIGURE 4 | Molecular cascades activated by P. gingivalis in macrophages. (1) P. gingivalis recognizes TLR2, binds to CR3, and enters macrophages. The
intracellular P. gingivalis stimulates TLR2 through its surface fimbriae, thereby inducing the high-affinity conformation of CR3, which is conducive to the uptake of
more P. gingivalis by macrophages. (2) SR-A and CD36, as the clearance receptors of macrophages, mediate the internalization of oxLDL, thereby promoting the
accumulation of intracellular cholesterol. In contrast, SR-BI and ABCA1/ABCG1 are responsible for cholesterol efflux. P. gingivalis lipopolysaccharide increased the
expression of CD36 through the c-Jun-AP-1 pathway and promoted cholesterol accumulation in macrophages. (3) P. gingivalis outer membrane vesicles stimulated
the macrophages to produce matrix metalloproteinases capable of cleaving the apoB-100 of low-density lipoprotein (LDL) particles to increase the modification of
LDL. (4) P. gingivalis promoted the production of pro-inflammatory cytokines, like IL-1, IL-18, IL-6, and TNF-a in macrophages, with the activation of NLRP3
inflammasomes.
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P. gingivalis and its Rgp protease, so IL-2 cannot be transcribed
and expressed (213), and then IL-2 cannot stably accumulate in
T cells, which resulted in T cells without energy (214). This
weakens the inflammatory response, which is connected with T-
and B-cell activation, and subsequently IFN-g from T cells (101).
We have a clearer understanding of how P. gingivalis can prevent
itself from being cleared by the immune system by inhibiting T
cell response and thus surviving and persisting in AS lesions to
promote AS development (Figure 5).
THE INFLUENCEOF P. GINGIVALISONDCs

DCs can promote lipid accumulation, promote inflammation, and
destroy plaque stability during various stages of AS (99, 215). It is
worth noting that there are many connections between DCs and P.
gingivalis. DCs can be used as carriers to transport pathogenic
Frontiers in Immunology | www.frontiersin.org 12
bacteria such as P. gingivalis from the oral cavity with serologic
exposure through the bloodstream to reach the arteries in the pre-
AS lesions (216–218). Theminor fimbria of P. gingivalis binds with
a cell adhesionmolecule onDCs calledCD209 to enable it to escape
immune surveillance (219). P. gingivalis promotes both its own
survival and the survival of its host DCs through manipulating
dendritic cell signaling to perturb both autophagy and apoptosis, in
which activation of the Akt/mTOR axis was linked. There was also
the induction of the anti-apoptotic protein Bcl2 and decrease of
caspase-3 cleavage and pro-apoptotic proteins Bax and Bim in this
progress (220).
CONCLUSION

In recent years, the promotion of P. gingivalis in the pathological
process of AS has received more attention. P. gingivalis has the
FIGURE 5 | P. gingivalis infection cause Th17/Treg imbalance. (1) In the process of atherosclerosis, P. gingivalis infection increased the number and response of
Th17, inhibited Tregs with regulatory effects, and cause Th17/Treg imbalance. (2) P. gingivalis reduced the number and inhibited the regulatory function of Tregs with
the downregulation of IL-10 and TGF-b1. P. gingivalis promoted a Th17/IL-17 response resulting in increased TNF-a, IL-1b, IL-6, and IL-17 production by T cells,
which may be mediated by TLR2/TLR4 signaling.
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capability of leading to arterial endothelial dysfunction, inducing
foam cell formation, and making vascular smooth muscle cells
proliferate and calcify, causing T helper cells and Tregs
imbalance. Accompanied with the progression of endothelial
activation, lipid accumulation, plaque formation, and rupture, P.
gingivalis eventually aggravates the process of AS. Here we
summarized and provided several of the latest research
findings on the effects of P. gingivalis on AS-related cells as
well as the underlying mechanisms, which may help to provide
new insights on the targets for the effective treatment and
prevention of AS.
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GLOSSARY

ABCA1/
ABCG1

adenosine-binding cassette transporters A1 and G1

ALP alkaline phosphatase
Angpt2 angiopoietins 2
AP-1 activator protein 1
a-SMA a-smooth muscle actin
apoB-100 apolipoprotein B-100
AS atherosclerosis
Axl a TAM (TYRO3
AXL and MERTK) family receptor tyrosine kinase
b2GPI b2glycoprotein I
BAX BCL2-related X
BH4 tetrahydrobiopterin
C.pneumoniae Chlamydia pneumoniae
CR3 complement receptor type 3
CVD cardiovascular disease
DCs dendritic cells
DHFR dihydrofolatereductase
ECM extracellular matrix
ECs endothelial cells
EndMT endothelial cell–mesenchymal transition
eNOS endothelial nitric oxide synthase
ERK extracellular signal-regulated kinase
Erk1/2 extracellular signal-regulated kinase 1/2
ETS1 ETS proto-oncogene 1
FoxP3 lineage-defining transcription factor of CD4+ CD25+ regulatory T

cells
GAS6 growth arrest-specific 6
GCH-1 GTP cyclohydrolase 1
GSK-3 glycogen synthase kinase-3
Hag hemagglutinin
HagB hemagglutinin B
HEY1 hairy/enhancer−of−split related with YRPW motif 1
HSP heat-shock proteins
ICAM-1 intercellular adhesion molecule-1
IFN-g interferon-gamma
IL interleukin

(Continued)
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iNOS inducible nitric oxide synthase
LDL low-density lipoprotein
LPS lipopolysaccharides
MAP mitogen-activated protein
MCP-1 monocyte chemoattractant protein-1
MGP matrix-gla protein
I myocardial infarction
MIF migration inhibitory factor
MMP matrix metalloproteinases
NLRP3 nucleotide-binding domain leucine-rich repeat (NLR) and pyrin

domain containing receptor 3
Nrf2 nuclear factor erythroid-derived 2-like 2
OMVs outer membrane vesicles
OPN osteopontin
oxLDL oxidized low-density lipoprotein
PARP poly(ADP-ribose) polymerase
PECAM-1 platelet endothelial cell adhesion molecule-1
P. gingivalis Porphyromonas gingivalis
PI3K phosphatidylinositol 3-kinase
PIT pathological intimal thickening
Rac1 Ras-related C3 botulinum toxin substrate 1
Rgp arginine–gingipain
RORgt retinoid-related orphan receptor-gammat
ROS reactive oxygen species
Runx2 Runt-related transcription factor 2
SMAD3 [small body size (a C. elegans protein) mothers against

decapentaplegic (a Drosophila protein family)]-3
SMemb nonmuscle myosin heavy chain B
SR-A class A clearance receptor
SR-BI scavenger receptor class B type I
STAT3 transcription 3
TGF-b transforming growth factor-beta
TH1 T helper cells 1
TLRs Toll-like receptors
TNF-a tumor necrosis factor alpha
Topo I topoisomerase I
Tregs regulatory T cells
VSMCs vascular smooth muscle cells
a-SMA a-smooth muscle actin
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