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The human SFTPA1 and SFTPA2 genes encode the surfactant protein A1 (SP-A1) and
SP-A2, respectively, and they have been identified with significant genetic and epigenetic
variability including sequence, deletion/insertions, and splice variants. The surfactant
proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in
several processes of innate immunity as well in surfactant-related functions as reviewed
elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under
baseline conditions and in response to various agents or disease states. Moreover, a
number of agents have been shown to differentially regulate SFTPA1 and SFTPA2
transcripts. The focus in this review is on the differential regulation of SFTPA1 and
SFTPA2 with primary focus on the role of 5′ and 3′ untranslated regions (UTRs) and
flanking sequences on this differential regulation as well molecules that may mediate the
differential regulation.

Keywords: transcription regulation, variants, posttranscriptional regulation, promoter, surfactant protein A (SP-A)
1 INTRODUCTION

As a way of background, pulmonary surfactant, a lipoprotein complex, is essential for life. It prevents
alveolar lung collapse by lowering the surface tension at the air-liquid interface of the lung alveolus. Lung
alveoli are the distal airspaces in the lung, lined by epithelial Type I and Type II cells. Under normal
conditions macrophages are the only immune cells present in the alveolar space. The alveolus is covered
by a thin liquid layer, called hypophase. Surfactant is found at the surface of the hypophase, i.e., at the air-
liquid interface, as well as in the hypophase as a surfactant reservoir. Through its ability to maintain lung
alveolar stability, surfactant enables the lung to carry out its key function of O2/CO2 exchange. Deficiency
of surfactant in prematurely born infants and dysfunction of surfactant in adults can potentially lead to
serious breathing problems including death.

Pulmonary surfactant is composed of about 90% of lipids, primarily phospholipids and four non-
serum proteins, the surfactant protein A (SP-A), SP-B, SP-C, and SP-D. SP-B and SP-C are hydrophobic
proteins and are involved in activities that primarily affect the surfactant function. For example,
surfactant is found in the form of a monomolecular surface film at the air-liquid interface of the alveolus,
which is responsible for the reduction of surface tension and thus prevention of lung collapse, and it is
also found as surfactant reservoir in the hypophase. The two surfactant compartments are
org November 2021 | Volume 12 | Article 7667191
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interconnected. During a breath there is reorganization of surfactant
layers and the hydrophobic proteins are key for surfactant
multilayer connection and bringing lipids from the hypophase to
the air-liquid interface (1, 2). SP-A and SP-D are hydrophilic
proteins and both belong to the collectin family of proteins. These
are primarily involved in innate immunity, regulation of
inflammatory processes and may serve as a link to adaptive
immunity. In addition, SP-A contributes to various aspects of
surfactant structure such as in the formation of tubular myelin
(an extracellular structural form of surfactant), and the
reorganization of surfactant in the hypophase. SP-D may play a
role in surfactant homeostasis (1).

SP-A was the only known surfactant protein at the early times of
clinical surfactant replacement trials (3, 4). The success of a human
clinical study in 1980 (5), where pulmonary surfactant derived from
cow lung (a natural source) was used successfully to treat
prematurely born babies at risk for respiratory problems, and the
failure of previous studies where off the shelf lipids were used (6),
raised interest in the study of SP-A and led to the discovery of the
other surfactant proteins (7–15). Although the surfactant proteins in
the early years were known by various names, a nomenclature, used
today, was agreed upon soon after their discovery (16). SP-A, the
focus in this review, in addition to its surfactant-related functions,
plays a role in the lung innate immune response and regulation of
inflammatory processes (1).

Unlike rodents that have a single gene, humans (17, 18) and
primates (19) have two genes, the result of gene duplication about
26.5 million years ago (19). The human SFTPA locus has been
mapped at q22-q23 of chromosome 10 (20–22). This locus consists
of two functional genes, SFTPA1 and SFTPA2, in opposite
transcriptional orientation with a pseudogene, SFTPA3P (23), in
reverse orientation relative to SFTPA1 at about 15kb away from the
5′ region of SFTPA1 (21). The two genes are in linkage
disequilibrium (24). The SFTPA locus also includes another
pseudogene, the MBL3P (mannose binding lectin family member
A3 pseudogene) (Figure 1A) (25). Although one study found the
SFTPA locus close to theMBP locus (26), another study found that
the MBP locus is located at a large distance, at about 25,000-
35,000kb, from the SFTPA locus (21). Radiation hybrid mapping
has placed SFTPA2 and SFTPD (another surfactant protein gene)
on the 5′region of SFTPA1 at about 40 and 120 kb, respectively.
Their orientation relative to the centromere is SFTPD-SFTPA2-
SFTPA3P-SFTPA1-telomere. Although the evolutionary advantage
of the SFTPA gene duplication has not been studied, one can only
speculate. The SP-A protein is shown to be relatively conserved
through the major vertebrate groups and it has been proposed that
the surfactant system is an evolutionary prerequisite for air-
breathing species (27). We postulate that the original role of SP-A
was surfactant-related and at some time in evolution was “co-opted”
to serve in host defense. Perhaps with the dual role, the SFTPA gene
was subject to evolutionary selection that led to gene duplication.
The available literature, as discussed elsewhere (1) indicates that for
the most part both gene products carry similar functions but one
seems to do a better job in host defense activities and the other in
surfactant-related activities. Nonetheless, the functional
complementation of the two protein products may mean that the
Frontiers in Immunology | www.frontiersin.org 2
gene duplication in the primate lineage was followed by
subfunctionalization via selective pressure that keeps both genes
functional (28). This is in contrast with another host defense gene,
the mannose binding lectin (MBL), which underwent
pseudogenization and lost its second functional gene in humans
(29). At present, this hypothesis is simply speculative.

The SFTPA1 and SFTPA2 genes encode proteins that contain
both collagenous and carbohydrate regions (22, 30) that places them
in the family collagenous C-type lectins or collectins. SP-D, another
surfactant protein encoded by the SFTPD gene, also contains both
collagenous and carbohydrate regions and it is placed in the same
family of proteins (31), along with the mannose binding protein
(22). Collectins are soluble pattern recognition receptors and are
part of the innate immune system (32–35). They bind various
molecules on the surface of microorganisms, such as carbohydrate
containing structures and lipids and may eliminate microorganisms
employing various mechanisms. Collectins may also modulate
regulation of inflammatory or allergic processes and the adaptive
immune system. In addition, they play a role in the clearance of
apoptotic cells (36).

The human surfactant protein A genes have been identified with
extensive genetic and epigenetic variability in coding and non-
coding regions and this variability has been associated with many
pulmonary diseases (37–43). The impact of the coding genetic
variability on function has been reviewed elsewhere (1). Briefly, the
most frequently observed coding variants in the general population
for each SFTPA gene are six (1A, 1A0, 1A1, 1A2, 1A3, 1A5) for SP-A2
and four (6A, 6A2, 6A3, 6A4) for SP-A1 (30, 44). However, the focus
in the present review is primarily on the role of untranslated and
flanking regions on the regulation of human SFTPA genes.

The 5′ flanking regions of the SFTPA1 and SFTPA2 genes share
some conserved cis-acting regulatory elements with differing
degrees of sequence conservation. Such elements have been
shown to play a role in the differential regulation of the two
genes, via certain transcription factors, such as NKX2.1/TTF-1
and NF-kB, or transcription coactivators such as the CBP/p300
factors. These may explain the differential regulation under different
stimuli, such as in the presence of dexamethasone or cAMP analogs
(45–47). In addition, epigenetic regulation can partially explain the
differential regulation of the two genes. DNAmethylation sites have
been identified upstream of the transcription start site (TSS) of both
SFTPA1 and SFTPA2 (48, 49), while histone modifications have
been implicated in the regulation under certain stimuli (50).

The human surfactant protein is extensively co- and post
translationally modified resulting in a large number of isoforms as
shown by two-dimensional gel electrophoresis. Following the use of
metabolic inhibitors and enzymes, this complex group of isoforms is
reduced to a small number of isoforms that coincide with the
isoforms of primary translation products of human lung RNA (51–
53). The cloning of the genomic SFTPA1 and SFTPA2 sequences
(17, 18) and of their cDNAs (52), enabled comparison of the two
groups of sequences and this comparison revealed 5′-untranslated
region (UTR) splice variability and 3′-UTR sequence variability in
the SFTPA1 and SFTPA2 transcripts, as discussed below, as well as
sequence variability within the coding region, but this has been
reviewed elsewhere (1).
November 2021 | Volume 12 | Article 766719
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In humans, multiple transcripts have been identified that are
due to 5′-UTR splice variability (54). Although in other species
a single transcript (55) or more than one transcript (19, 27)
have been identified, it is not known whether these are due to
differences in splicing or polyadenylation. Karinch et al. (54),
employing primer extension in an attempt to map the
transcription start site of each human SFTPA gene and 5′
RACE (rapid amplification of cDNA ends) to fully
characterize their transcripts, using RNA from two unrelated
individuals, discovered an extensive 5′-UTR splice variability as
shown in Figure 1B (upper panel). Exon C′, not shown in
Figure 1, and a similar 5′-UTR splice variability was also
described by McCormick et al. with a different terminology
(56). In this review, we use the Karinch terminology because
this has been largely used in subsequent publications. SFTPA1
transcripts appear to use A, A′ and A′′ transcription start sites
of “exon A” with equal frequency but the SFTPA2 transcripts
Frontiers in Immunology | www.frontiersin.org 3
use only the A site of “exon A”. The significance of this (if any)
has not been addressed further (54).

The major 5′-UTR variants for SFTPA2, ABD and ABD′, are
distinguished from the major SFTPA1 5′-UTR variant by the
inclusion of exon B (eB). The difference between D and D′ is 3
nucleotides with the D′ having the additional 3 nucleotides, the
result of a splice site favorability between D and D′ due a single
nucleotide change (57). Two minor 5′-UTR splice variants were
observed for SFTPA1 (ACD′ and AB′D′) plus some rare (not shown
in Figure 1B) variants (54). The transcripts from each gene carrying
a different major or minor 5′-UTR splice variant are translated both
in vitro (except for the AB′D′) (54) and in vivo as shown by
polysome bound RNA (58). However, differences in both relative
translatability and relative levels of the splice variants were observed
among individuals (58).

Extensive sequence variability including small deletions/
insertions was also observed in 3′-UTR (54, 56, 59, 60). This
A

B

C

FIGURE 1 | Human SFTPA1 and SFTPA2 genes and 5′-UTR and 3′-UTR variability. (A) The human SFTPA1 and SFTPA2 genes, encoding SP-A1 and SP-A2,
respectively, are in opposite transcriptional orientation. The SFTPA3P is an SP-A pseudogene, and the MBL3P is the mannose-binding lectin pseudogene. The
orientation shown is from the centromere (left) to telomere (right). (B) SFTPA1 and SFTPA2 5′ UTR variability. The 5′-UTR consists of a number of untranslated
regions as shown in blue boxes. These regions splice to form a number of transcripts with different 5′-UTR. The most common splice variants for SFTPA1 and
SFTPA2 are shown and their relative presence in the general population is shown in parentheses. Regions A, C, and D can exhibit different start sites and region B
exhibits different stop sites. For example, “A” is found in transcripts with a start site at A, A′, or A′′. The size of A is 44nt, of A′ is 40nt and of A′′ is 35nt. The C is
60nt long and the C’ is 63nt long. Region “B” on the other hand is found in transcripts, having the same start site but different end region. So B is 30nt long and B′
70nt. The nucleotide size of each region is noted. In-frame start codons are indicated by a green vertical line. Adapted from (54). (C) The 3′-UTR has been identified
with sequence variability as well as small insertions/deletions (indel). The 11-nt indel of the 3′-UTR is shown along with the seed regions for miR-449-b-5p, miR-612,
and miR-183-5p, which have been shown to play a role in miRNA-mediated regulation. The figure was prepared from the UCSC Browser (hg38) and the alignment
was performed by ClustalW.
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variability included an 11-nucleotide (11-nt) insertion/deletion
(Figure 1C) that was initially described for an SP-A1 variant
named 6A1 (59). This 6A1 variant was identical to the most
frequently found SFTPA1 variant, 6A2, except at a single
nucleotide (54). However, since the 6A1 variation was not present
in subsequent sequencing data, it was presumed that this was a
sequencing error and the 6A1 is referred to as 6A2 thereafter. This
11nt sequence provides potential binding sites for miRNA (61),
shown to regulate expression (62). In addition to the 11-nt, other
elements have been identified, by sequence comparison, in the 3′-
UTR of SFTPA1 and SFTPA2. These include theminimumAU-rich
element motif UUAUUUAUU shown elsewhere to mediate mRNA
degradation (63). This is present in SFTPA2 variants at position
926-935 but not in the SFTPA1 variants (61).

2 REGULATION OF SFTPA

Under baseline conditions, SFTPA mRNA levels vary
significantly among individuals (64) with a sixfold difference
between high and low expression among individuals (57). The
lack of correlation between total SFTPA mRNA levels and the
SFTPA1/SFTPA2 transcript ratio indicated that the levels in an
individual may vary as a function of the SFTPA genotype, where
the level of transcription and/or stability of mRNA may differ
among variants (57). A variability in SP-A protein levels in
bronchoalveolar lavage is observed among individuals (65–68)
and during development (69). Together these indicate that there
may be mechanisms that differentially affect the expression of the
SP-A variants. In fact, in response to a variety of stimulatory or
inhibitory regimens in fetal lung explants or in the human
adenocarcinoma H441 cell line, the levels of human SP-A
protein and/or mRNA change significantly (70–73). Also, SP-A
levels may change in certain disease states (65–67, 74–76).
Furthermore, inhibitory or stimulatory substances were shown
to differentially affect the regulation of SFTPA1 and SFTPA2
mRNA in fetal lung explants or cell lines (46, 77–79). Although
differences in protein and mRNA levels in health and in various
disease states have been observed, to the best of our knowledge
no comprehensive study has been done to correlate mRNA levels
of each human SFTPA gene/variant and protein levels in samples
from patients or healthy individuals or experimental systems
where each transcript in its entirety is studied. We speculate that
given the opportunity for complex regulation, as discussed in this
review, it is probably unrealistic to think that a direct correlation
of the overall mRNA and protein levels could exist without
providing additional specific information. Such information may
include reference to the specific genetic variant, the splice
variant, the specific conditions, i.e., exposure to various insults
including environmental stressors, and other. Experimental
models of 5′-UTR or 3′-UTR regions of the SFTPA1/A2
variants are shown to exhibit differences in response to various
insults and thus the mRNA/protein levels of the two genes and/
or of their variants may differ. It would probably require
additional reagents and approaches, such as gene- and variant-
specific antibodies, and direct RNA sequencing to make such a
correlation meaningful.
Frontiers in Immunology | www.frontiersin.org 4
3 THE ROLE OF 5′ AND 3′
UNTRANSLATED REGIONS AND
FLANKING SEQUENCES IN THE
DIFFERENTIAL REGULATION OF SFTPA1
AND SFTPA2 TRANSCRIPTS

3.1 Impact of 5′-UTR Splice Variants
in the Differential Regulation of
SFTPA1 and SFTPA2
These variants have been shown to regulate several steps/processes
in SP-A regulation (80). They differentially affect translation and
mRNA stability as assessed by in vitro transient expression of
reporter gene constructs containing different 5′-UTR (A′D′,
ABD, AB′D′ and A′CD′) splice variants. All variants compared to
control vectors had a positive effect on gene expression as shown by
increases in reporter gene activity and mRNA levels, with the ABD
performing significantly better than the rest. In terms of the
translation efficiency index (reporter activity/mRNA) a
differential effect was observed by the splice variants. Compared
to the control, both ABD and ABD′ exhibited higher translation
efficiency whereas the other two splice variants, A′D′ and A′CD′,
exhibited a lower efficiency. Algorithms predicting the secondary
structure stability of the 5′-UTRs revealed that, compared to others
(A′D′, AB′D′, A′CD′), the ABD structure was the most
energetically favored one. Furthermore, the ABD was shown to
exhibit a lower rate ofmRNAdecayupon inhibitionof transcription
with actinomycinD.Collectively, these indicate that theABD splice
variant has a better secondary structure stability and a lower rate of
mRNA decay (80).

Splice variants (ABD, A′D′, A′B′D with the exception of A′
CD′) were shown to differentially mediate internal ribosome
entry site (IRES) activity i.e., cap-independent translation with
the ABD exhibiting the highest IRES activity and A′D′ the next
highest whereas the AB′D′ and A′CD′ exhibited low or no IRES
(81). Secondary structure stability and especially the presence of
a double loop structure in ABD and A′D′ (but absent in AB′D′
and A′CD′) as well as cis acting elements (in ABD) and perhaps
other factors may all differentially contribute to the cap-
independent translation. The ABD IRES activity was
responsive to specific environmental stressors (i.e., to diesel
PM but not to ozone exposure). Furthermore, the double-loop
structure, which is important in cap-independent translation,
didn’t seem to be necessary for cap-dependent translation
activity, as shown with the A′D′ splice variant (81).

One major difference between the major SFTPA1 and
SFTPA2 5′-UTR splice variants is the presence or absence of
exon B (eB). The eB presence in the UTR, as discussed above,
results in a better outcome, whether mRNA stability, rate of
mRNA decay, secondary structure and perhaps other, indicating
that eB may be an important regulatory element. In a series of
reporter gene constructs or in vitro translation experiments, eB
was found to be an enhancer of transcription, if placed upstream
of heterologous 5′-UTR or in its natural 5′-UTR, as it increased
mRNA content regardless of position or orientation (82). eB also
increased translation of mRNA reporter transcripts in the
November 2021 | Volume 12 | Article 766719
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presence or absence of poly-A, when placed within its natural
sequence environment but in heterologous 5′-UTR increased
translation only in the presence of poly-A (82).

The 14-3-3 proteins form homo- or heterodimers and by
binding a variety of ligands including kinases, phosphatases,
transmembrane receptors, etc., regulate a variety of functions,
including cell cycle control, translation, apoptotic cell death,
other (83–85). eB interacts either alone or within the context of
the surrounding 5′-UTR sequences with 14-3-3 proteins. RNA
pulldown assays, RNA affinity chromatography and surface
plasmon resonance analyses showed that eB binds directly
most of the 14-3-3 protein isoforms (b, g, ϵ, h, s, t/q) except
isoform zeta (z). The latter isoform may bind eB indirectly
because isoform zeta was identified by mass spectroscopy of
shift and pull-down assays to be part of the eB-protein complex.
Regardless of its presence in the eB-protein complex isoform zeta
does not affect SP-A2 levels upon inhibition by shRNA knocked
down (86). However, inhibition of the other 14-3-3 eB binding
isoforms resulted (except isoform s) in a downregulation of SP-
A2 without any change in SP-A1 levels. Isoform s did not show
any gene-specific downregulation, as the levels of both SP-A1
and SP-A2 were negatively affected. Furthermore, differences in
the stability of eB/14-3-3 isoform complexes have been observed
(86). Deletion and mutation mapping analyses revealed two
regulatory motifs in eB, GUCGCUGAU (next to exon A) and
GGAGCCUGAA (near exon D) that are important for protein
binding as assessed by shift assays (87). The eB RNA/protein
Frontiers in Immunology | www.frontiersin.org 5
complexes, one major and one minor contain in addition to the
14-3-3 proteins a number of other proteins that include, among
others, ribosomal, cytoskeletal and translation factor proteins
(87). Competition experiments with excess AD or ABD RNA of
the eB-mediated shifts did not disrupt the eB shifts entirely (as
the eB RNA competitor did) but resulted in altered mobility
shifts with a lower size. The collective observations of the eB
shifts competed with AD or ABD excess RNAs along with the
mass spectroscopy data of the identity of the proteins in the eB-
shifts before and after competition are summarized in a
schematic representation of Figure 2 [adapted from (87)]. The
14-3-3 proteins surprisingly were not competed with the ABD
RNA but these were indeed competed with the AD RNA
competitor. The reasons for this are not clear. The 14-3-3
proteins were present in shifts with either the eB or ABD
probe but not with the AD. It was postulated that since in
silico analysis showed that 6nt at the 3′end of exon A were part of
an eB regulatory element, one possibility is that the ABD but not
the AD provided some kind of stability at the junction of A-B
resulting in a partial displacement.

The ACD′ 5′ UTR splice variant has been described as a
minor splice variant of SP-A1 transcripts and is found only in
SP-A1 transcripts (54, 56). The exon C of this splice variant is 60
nucleotides long and contains two upstream AUG (uAUG) sites
in addition to the primary (p) AUG (Figure 3). The AUG closer
to the TATA box is in frame with the pAUG whereas the other
one is not. The in-frame uAUG results in an N-terminally
FIGURE 2 | Schematic representation of the proteins present in the eB-mediated shifts before and after competition with excess of ABD or AD RNAs [adapted from
Noutsios et al. (87)]. The identity of the proteins present in the shifts before and after competition were identified with mass spectroscopy, as described in detail
elsewhere (86, 87).
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extended isoform, but the additional residues do not seem to
alter the site of cleavage by the signal peptidase (88). The out-of-
frame uAUG introduces an ORF that overlaps with the primary
ORF (the stop codon is within the coding region of SFTPA1,
corresponding to residues 72-73 of the protein product of the
main ORF). The production of any peptide from the overlapping
ORF and its effects (cis or trans) on SP-A1 protein production
have yet to be evaluated. An uAUG has also been described for
exon B′ (Figure 3). However, this uAUG, although in frame with
the pAUG, is followed with an in-frame stop codon, eight
nucleotides downstream. Using a variety of approaches,
Tsotakos and colleagues (88) showed that the uAUGs in the
ACD′ splice variant decrease SP-A1 expression without affecting
the size of the mature protein. The ACD′ transcripts appear to be
present in the majority of individuals and their expression can be
affected by mechanical injury. Their contribution to the SP-A1
transcript pool may be regulated by different stimuli including
LPS and dexamethasone. Moreover, the SP-A1 AD′ (major) 5′
splice variant and the SP-A1 ACD′ (minor) 5′-UTR variant may
be differentially regulated (88). Interestingly, the presence of
exons C or B′ in the ACD′ and AB′D′ splice variants of the
SFTPA1 transcript, respectively, may introduce G-guadruplex
structures in the 5′-UTR, which may affect translation initiation
(89, 90). Such structures are absent from all SFTPA2 splice
variants, as analyzed by the online QGRS Mapper tool (91).

There are five polymorphisms in the 5′-UTR of SFTPA1 that
are categorized as possibly loss of function (pLoF) by the
Genome Aggregation Database (gnomAD, v.3.1.1) (92), out of
a total of 271. Specifically, rs1317624468 and rs1020324172 may
affect splicing of the 5′-UTR exons, but the frequency of either
variant is very low. This means that there is low confidence in
these variants. Similarly, in the 5′-UTR of SFTPA2, there are 12
pLoF out of a total of 290 polymorphisms. As is the case with
variants in SFTPA1, the identified short nucleotide variants
(SNVs) seem to be associated with splice donor/acceptor sites,
but the confidence on the effect these variants have is low, given
their low frequencies. The SNVs were identified with the use of
the UCSC Genome Browser (93).
Frontiers in Immunology | www.frontiersin.org 6
3.2 3′-UTR-Mediated Regulation
of Human SFTPAs
A number of SFTPA1 and SFTPA2 transcripts have been
identified. These encode different protein variants i.e., with
differences in their coding region, and these protein variants are
discussed elsewhere (1). The 3′-UTRs of the transcripts of these
protein variants, in transient transfection experiments compared
to control vector, have been shown to differentially reduce mRNA
and protein levels, as assessed by the activity of the reporter gene at
baseline and in response to dexamethasone treatment (94). The
inhibition in response to dexamethasone is glucocorticoid specific
as both dexamethasone and hydrocortisone decreased reporter
gene activity (95). Dihydrocortisone and phorbol ester 12-O-
tetradecanoylphorbol-13-acetate on the other hand did not have
any effect on reporter gene activity. The former was shown
previously not to regulate SP-A (47) and the latter to affect SP-
A regulation at the transcription level (96).

The 3′-UTRs of the SFTPA1 transcripts encoding protein
variants, 6A2, 6A3, 6A4, exhibit a differential effect on translation
with no significant difference found between the 3′-UTRs of the
two studied SFTPA2 protein variants, 1A0 and 1A3 (61). An 11-
nt element, described in the introduction (59), is located at
position 405. This element that is present in the 3′-UTR of all
the SFTPA2 3′-UTR sequences investigated to date and in the
SFTPA1 transcript encoding the 6A2 protein variant but absent
in other SFTPA1 transcripts studied, had a negative impact on
translation. Upon its removal, translation increased, and the
stability of the predicted secondary structure was changed. In
silico analysis of the 11-nt element revealed seven potential
miRNA binding sites (61). miRNAs are small noncoding
RNAs that regulate gene expression at the posttranscriptional
level via interactions with untranslated mRNA sequences.

Three miRNAs (miRNA-183, miRNA-4495 and miRNA-
612) with potential binding sites within or near the 11-nt
sequence (Figure 1C), via the use of miRNA mimics and/or
antagomirs, were shown to inhibit gene expression of all 3′-UTR-
constructs that included the 11-nt element (i.e., all SFTPA2
transcripts and the SFTPA1 transcript of the 6A2 protein
FIGURE 3 | Translation start sites at the 5′-UTR. The primary translation start site (pAUG) is marked with a black arrow. Other upstream translation start sites
(uAUG) in frame with the pAUG are marked with a red arrow. X denotes a stop codon in frame with the immediately uAUG.
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variant (62). One miRNA (miRNA-4507) negatively affected the
reporter gene activity of SFTPA1 transcripts that lacked the 11-nt
sequence, and another (miRNA-767) inhibited expression of
both SFTPA1 and SFTPA2 transcripts. Collectively, these data
indicate that miRNA regulatory pathways are involved in the
SP-A regulation. This has been further validated with the
knockdown of Drosha, an important effector of miRNA
maturation. Inhibition of Drosha in primary human alveolar
type II cells via siRNA, resulted in an increase in the levels of
SP-A (97).

In summary, both 5′-UTR and 3′-UTR are important in the
regulation of the human SFTPAs. Transient transfection
experiments of reporter genes showed that 5′-UTR and 3′-
UTR have an additive effect on translation. In addition, the
poly-A tail also contributes to SFTPA regulation (61).
Transcripts of constructs containing SFTPA2 5′-UTR variants
in the presence or absence of poly-A, displayed a higher level of
in vitro translation products than SFTPA1 5′-UTR (AD′).
Moreover, the presence of the poly-A tail, even in the absence
of 3′-UTR, increased translation (61).

3.3 SP-A Flanking Sequences in the
Regulation of SP-A1 and SP-A2
The 5′-flanking regions of the SFTPA genes have been studied in
multiple species. Sequence comparisons between rat and human
SFTPA genes identified one proximal (up to 225bp upstream of
TSS) and one distal (-1115bp in rats/-938bp in humans)
conserved element in the 5′-flanking regions (98). This
conservation led to further exploration of the flanking regions
for regulatory elements. Sequencing analysis of these regions in
rat, rabbit, baboon and human (19, 21, 98, 99) led, as described
below, to the identification of several cis elements. These
elements act as binding sites for transcription factors during
both basal expression and in response to cellular signals.

3.3.1 Promoter Analysis in Animal Species
Developmental studies using rabbit and baboon as model
identified a DNAse I-hypersensitivity site -180 to -80 bp of the
TSS after gestational day 21 in rabbits and day 140-160 in
baboons, indicating potential changes in the proximal
promoter region around the developmental timing of gene
activation (100). Primer extension analysis of the upstream
sequence in rabbits revealed an octamer that is one nucleotide
different from the consensus cAMP response element (CRE) at
-261bp (100). Interestingly, this CRESP-A fails to bind the CREB
transcription factor or a basic leucine zipper polypeptide,
indicating that a different transcription factor may be
responsible for binding to this specific site (101). Similar
studies followed the characterization of the two SFTPA genes
in baboons (19). Regulation patterns in the presence of dibutyryl-
cAMP and dexamethasone in the baboon were similar to the
ones observed in the rabbit model (102) prompting further study
of the flanking sequences.

Analysis of the rat sequences and CAT reporter assays
identified a silencing element between base pairs -195 and
-163, which was bound by members of the C/EBP family of
Frontiers in Immunology | www.frontiersin.org 7
transcription factors (103, 104). Further analysis of the rabbit SP-
A promoter by fusion of different promoter sites with the human
growth hormone (hGH) structural gene, used as reporter,
revealed potential binding sites for several transcription factors,
such as Sp1 at -190bp and AP-1 at -416 and -255bp. Four
elements homologous to glucocorticoid response element (GRE)
were also identified (99). In addition, two E-box sequences, one
proximal and one distal, were identified. These seem to be bound
by homo- and heterodimers of the Upstream Stimulatory Factors
1 and 2 (USF1 and USF2), playing a role in basal and hormonal
regulation of the rabbit SFTPA gene (105, 106). An E-box motif
was also identified in positions -8 to -3 of the murine SP-A gene
promoter, but it was considered to not play a lung-specific
regulatory role as assessed by transfection of MLE-15 cells, a
cell line derived from lung tumors produced in transgenic mice
expressing SV40 large T antigen driven by the lung-specific
human SP-C promoter (107). Furthermore, DNAse I
fingerprinting assays and EMSA with bacterially expressed
TTF-1/Nkx2.1 revealed three binding sites that comprise a
TTF1-binding element (TBE) for each baboon gene (108). A
similar element with four binding sites was discovered in the
murine SFTPA promoter (107). In the rat SFTPA gene promoter,
there is an insertion in positions -316 to -211 that is considered
to have occurred after the divergence of the mouse and rat
lineages. Within the conserved sequences, there are five potential
TTF-1 binding sites, of which at least four were present in
protected regions by DNAse I fingerprinting analysis (55, 109).
The glucocorticoid inhibition of SP-A expression was found to
be mediated by TTF-1 (110). The activity of TTF-1 is dependent
on phosphorylation by Protein Kinase A (PKA), a cAMP-
induced kinase (111). During development, TTF-1 expression
depends on the presence of certain microRNAs (112) and the
Hepatocyte Nuclear Factor 3b (HNF3-b). The latter belongs to
the winged family of transcription factors and targets other genes
critical for the differentiation of respiratory epithelial cells (113).
PKA activated by cAMP increases TTF-1 phosphorylation and
binding to the TBE (111) but also enhances the interaction of
TTF-1 with the CREB-interacting protein (CBP) and the steroid
receptor coactivator 1 (SRC-1, a different member of the nuclear
receptor coactivator family) (114). The TBE also contains a
reverse-oriented NF-kB binding site (115). Interleukin-1
treatment, along with TTF-1, increases NF-kB binding to the
TBE (115). Dexamethasone increases expression of the NF-kB
inhibitor, IkB-a, thus blocking its transcriptional activity (110),
while increasing recruitment of histone deacetylases 1 and 2 near
the TBE (Figure 4A, highlighted by the blue ribbon), as shown
by chromatin immunoprecipitation (116). NF-kB seems to be the
common mediator of the developmental timing of expression of
genes that are involved in lung innate immunity and surfactant
homeostasis, as indicated by time-dependent transcriptome
profiling in two strains of mice (117). Two more factors co-
regulate SP-A expression along with TTF-1, at least in mice;
GATA-6, which binds to a GATA-binding site at positions -69 to
-64 of the murine gene promoter (118) and B-Myb, which binds
to an element in positions -380 to -371 (119). High throughput
ChIP-seq analysis of TTF-1/Nkx2.1 confirmed its binding to
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genes critical for lung function and health (120, 121). Although a
TBE containing three TTF-1 binding sites was also identified in
the hSFTPA2 as a cAMP-responsive cis element in studies using
transgenic mice, only one of the binding sites (the middle one) is
identical between the baboon and human SFTPA2 (122).

3.3.2 SFTPA1 and SFTPA2
Hormonal regulation studies by transfection of lung cell lines of
human origin with WT and CRE-mutated constructs verified the
responsiveness of the CRE to the cAMP analogue dibutyryl-
cAMP (Bt2cAMP) (99). Dexamethasone inhibits the cAMP-
induced expression of the reporter gene despite stimulating
transcription of SFTPA in the absence of cAMP in the same
system, indicating an interaction between the CRE and a
glucocorticoid response element. Critically, the two human
genes are differentially regulated by a number of signaling
molecules, such as cAMP, glucocorticoids, and insulin (46, 77,
79), a fact that highlights the importance of the promoters as
elements that mediate differential expression of the two genes.
Such studies are further complicated by the fact that the
dexamethasone effect in SP-A gene expression is biphasic and
dose-dependent (47, 70, 123).

Subsequent studies focused mostly on regulatory elements of
hSFTPA2, as it was found to be more responsive to stimulatory
effects by cAMP than hSFTPA1 (79). Studies using transfected
type II cells identified a CRE element in the hSFTPA2 gene (124),
although similar studies have not been performed for the
SFTPA1 gene. The CRE element is bound by the Estrogen-
Related Receptors, ERRa and ERRg, but only the ERRa
receptor increased hSFTPA transcription, while the ERRg had
no effect (125). A mechanistic study confirmed that the action of
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ERRa is mediated by PKA and revealed SRC-2 (steroid receptor
coactivator 2) as a cofactor of the cAMP-induced transcriptional
activation of SP-A (126). SRC-2 is downregulated by the
glucocorticoid receptor (127), thus partially explaining the
dexamethasone-induced mitigation of cAMP-dependent
SFTPA2 transcription. Moreover, the CRE (or ERRE, Estrogen-
Related Receptor Element, Figure 4A) works cooperatively with
a GT box (128) to mediate basal and cAMP-induced changes in
SP-A2 expression. Based on supershift experiments, the GT box
is bound by at least five protein complexes, two of which contain
Sp1, a ubiquitously expressed transcription factor (128).

With regards to inhibitory stimuli, hSFTPA1 was found to be
more responsive to dexamethasone treatment than hSFTPA2 in
H441 cells (78, 79) and in fetal lung explants treated with 100nM
dexamethasone, the expression of SFTPA1 mRNA was inhibited
to a greater degree than SFTPA2 (77). Study of the mechanistic
aspects of this inhibition identified the -32/+63 region (relative to
the TSS) as the dexamethasone response element, indicated by a
yellow band in Figure 4A (45). Removal of the region -227/-31,
encompassing the CRE/ERRE, GT box, and TBE (111, 124, 128),
did not affect the dexamethasone response, but it significantly
attenuated the basal transcriptional hSFTPA1 promoter activity,
indicating that these elements are not involved with this
dexamethasone-mediated regulatory pathway (45). Another
inhibitory agent for both human genes is phorbol ester (96).
Deletion analysis to identify promoter elements that are
responsible for this effect identified a region downstream of the
TTS (+309/+329 in hSFTPA1). A member of the Jun, but not of
the Fos family of proteins, was identified by supershift assays as a
binding transcription factor to this site (129). Furthermore,
the +318/+324 region contains a sequence (TGACTGA)
A

B C

FIGURE 4 | (A) A map of the promoter region of the human SP-A genes (-300 to +340) drawn to scale. Elements in a yellow box are studied in hSFTPA1 and the
ones in blue boxes in hSFTPA2. Grey boxes indicate regulatory elements found in both genes. The differences in sequences are demarcated by lowercase letters.
The dexamethasone response elements are based on the transfection studies by Hoover et al. with hSFTPA1 promoter constructs in H441 cells (45) and by Alcorn
et al. with hSFTPA2 constructs in A549 cells (110). (B) The relative positions of the methylation island identified in an enhancer region of hSFTPA2 is shown (49).
(C) The relative positions of CpG sites upstream of the hSFTPA1 gene is according to Lin et al. (48).
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similar to the AP-1 consensus binding site (shown as “AP-1
binding site” in Figure 4A), thus implicating AP-1 complexes in
the transcription of the SFTPA genes.

A functional study employing CRISPRi, a method using a
fusion of deactivated Cas9 and the repressor KRAB, thereby
inhibiting genes without deleting them, was performed on
identified targets of TTF-1/Nkx2.1, including SFTPA1 and
SFTPA2 (130). Prior ChIP-seq analysis had indicated that
TTF-1 binds to a proximal upstream region of SFTPA1 and a
distal upstream region of both SFTPA1 and SFTPA2 (131, 132).
Targeting either of these sites with CRISPRi in A549 and H441
cells suppressed the expression of SFTPA1 significantly, but
SFTPA2 was suppressed only by the sgRNA targeting the distal
region (130). Deletion of the distal region, which is about 20kbp
away from either gene’s TSS and is located close to the SFTPA3P
pseudogene, by the CRISPR/Cas9 approach in A549 repressed
the expression of both SFTPA1 and SFTPA2 (130), which may
indicate a regulatory role of the pseudogene.

The presence of two surfactant protein genes with high degree
of similarity in the flanking regions makes it technically
challenging to discern mechanisms of differential regulation. The
combination of models, such as cell lines and animal models has
led however to the identification of several transcription factor
binding sites (Figure 4). At the very least, ERRa, USF1/2
heterodimers, Sp1, TTF-1/Nkx2.1 and AP-1 complexes have
been shown to regulate SP-A transcription, but any differential
effects have yet to be shown unequivocally. Advances in gene
editing techniques may elucidate this topic in the future.
4 EPIGENETIC REGULATION

Alterations of SFTPA in lung cancer have been observed in various
experimental settings (133–139). In a few cases, SFTPA was shown
to be useful as a marker of differential diagnosis of metastatic lung
cancer and mesotheliomas (138, 140–143). A high-throughput
approach identified aberrant methylation of CpG sites of several
genes to associate with lung cancer (144) indicating that this may
be a contributing process in lung cancer. A subsequent DNA CpG
methylation profiling of the SFTPA1 gene promoter identified two
CpG SFTPA1 sites (SFTPA1_370 and SFTPA1_1080, Figure 4C)
to be hypomethylated in lung cancer (adenocarcinoma and
squamous cell carcinoma). In normal lung tissue the level of
methylation of another SFTPA1_1468 CpG site (not shown to
significantly differ in its methylation content in cancer lung tissue)
was associated with the level of SFTPA1 transcripts. This CpG is
located 160 nucleotides upstream of the TATAA box. The high
level of unmethylated CpG_1468 was correlated with a high level
of SFTPA1 transcripts indicating that the methylation status of this
site may play a role in SP-A1 expression. This site is absent from
SFTPA2. Of relevance, rare SFTPA1 transcripts, including a more
frequently found SFTPA1 transcript coding for the 6A4 protein
variant, were shown to associate with risk for lung cancer (145). A
CpG DNA site methylation difference was also observed between
normal and cancer lung tissue for the SFTPA2 gene promoter (49).
This CpG site is located -2215 upstream of the transcription start
site (Figure 4B) and exhibited a higher level of methylation in lung
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cancer especially in adenocarcinoma. Moreover, the level of
SFTPA2 mRNA and protein were reduced in lung cancer
whereas the mRNA level of DNA methyltransferases (DNMT1
and DNMT2) was increased. An in-silico analysis revealed a
number of potential binding sites of transcription factors around
this CpG methylation site indicating that apart from its potential
as a marker, this CpG site modification may interfere with the
binding of regulatory factors affecting SFTPA2 expression.

DNA methylation, which is affected by environmental factors,
air pollution, smoking, diet among others (146–150), may be a
regulatory mechanism for SFTPA gene expression. The differential
regulation of the methylation status of specific CpGs in SFTPA1 and
SFTPA2 maybe one of the epigenetic processes that does not only
apply to lung cancer but also to other health states (151).
Furthermore, epigenetic phenomena that modulate changes in
gene function without changing the nucleotide sequence include
several processes, such as DNA methylation, histone modifications,
miRNAs, and splice variants. The role of miRNAs, splice variants
and DNA methylation has been discussed above. Histone
acetylation and methylation have been shown to affect SFTPA
expression in the lung during development and hypoxia (50, 116,
152). The developmental timing of SFTPA1 expression is associated
with enhanced acetylation and decreased methylation of histone H3
at the SFTPA promoter. Histone methyltransferases Suv39H1 and
Suv39H2 are bound to the TBE prior to induction of SFTPA by
cAMP (152). Their transcript levels are inversely correlated with the
developmental pattern of SP-A expression (152). Increased O2

tension facilitates the induction of histone H3 acetylation on
lysines 9 and 14 at the TBE, while hypoxia induces dimethylation
of lysine 9 of H3 (50) and recruitment of Suv39H1 and Suv39H3 to
the TBE (152). Dexamethasone treatment increased nuclear levels of
the histone deacetylases HDAC-1 and HDAC-2, but not the total
levels of histone H3, in human fetal type II cells (116). ChIP analysis
indicated that dexamethasone also increases the occupancy of the
TBE specifically by HDAC-1 and HDAC-2. The cAMP analogue
Bt2cAMP increased the levels of acetylated and phosphorylated
histone H3; this effect was antagonized by dexamethasone, which
promoted demethylation of H3K9 globally and locally, in the TBE
region of the SFTPA promoter (116).

Although differential allele expression has not been studied
for the human SFTPA genes either in the lung or extrapulmonary
tissues, it is worth noting that this mechanism may be operative
under certain conditions, as it is shown for the rat SFTPA under
unperturbed conditions (153). SFTPA was shown under these
conditions to exhibit a balanced biallelic expression in the lung
but in colon was both balanced and imbalanced and family
studies indicated that inheritable factor(s) may contribute to the
regulation of differential allele expression (153).
5 CONCLUSION/DISCUSSION

Understanding differences between human SFTPA1 and SFTPA2
genes and their corresponding variants is both useful and important
as such information could be implemented in personalized
regimens. For example, in a pilot study where precision cut lung
slices from human donor lungs were treated with varying
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concentrations of methylprednisolone, a pharmacologic
relationship was observed between treatment and SFTPA
genotype (154). As lung donors and recipients are treated with
immunosuppressive regimens, one may in future pharmacogenetic
studies of lung transplants further investigate as well as consider
immunosuppressive regimes tailored according to the donor’s
genetic background. Recent developments in sequencing
technologies, particularly the advent of long-read sequencing,
could contribute to our understanding of variant frequencies and
their potential regulation. Furthermore, identification of key
regulators, either cis or trans, can be useful in modulating specific
SFTPA1 or SFTPA2 gene expression as it may be appropriate i.e., in
the case of the prematurely born infants where levels of SP-A are
low and/or in the course of infection. Of interest, the SFTPA2
transcript coding for the 1A0 protein variant has been shown to
exhibit a protective effect in terms of survival in both animal models
after infection and/or other insults (155, 156) and in lung transplant
patients (39). Thus, in such cases it could be advantageous to
modulate expression of SP-A1 and/or SP-A2 proteins.
6 OUTSTANDING ISSUES AND
FUTURE STUDIES

The work presented in this review indicates that the human
SFTPA genes are under extensive and complex regulatory control
that merits further experimentation. Our current knowledge on
this topic is based for the most part on studies where different
regions of a given gene was studied i.e., flanking region, 5′-UTR,
3′-UTR. So at the present time it is difficult to know exactly how
Frontiers in Immunology | www.frontiersin.org 10
a given variant will respond to a stimulus or under a certain
environmental condition in its entirety. For example, regulatory
mechanisms of one region (i.e., 5′-UTR)may attenuate or enhance
i.e., an up or down regulation imparted by mechanisms operative
in another region (i.e., 3′-UTR, flanking region) or even nullify
effects. A major advance to our understanding could be achieved if
the entire SFTPA locus is studied as a unit in order to better assess
the commonalities and differences between the two genes as well
as the potential role of the SFTPA3P on the regulation of the
functional genes, as pseudogenes may contribute to the regulation
of their functional counterpart (157–159). It is currently unknown
whether SFTPA3P is expressed or not, and if so, under what
conditions and at what developmental stage. If it is expressed, it
could act as a lincRNA, thus regulating the neighboring parental
genes in a number of possible ways (160). Given that the two
functional genes are in opposite transcriptional orientation and
may share regulatory cis elements that may or may not work in a
coordinated regulation, examining the entire locus as a whole
would be a sensible approach, albeit one with substantial
challenges. Identifying an appropriate study system would be a
start. Given the size of the locus, generation of humanized mice
would be technically challenging, so studies in non-human
primates might be more appropriate.
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