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The shape and spatial organization -the anatomy- of a tissue profoundly influences its
function. Knowledge of the anatomical relationships between parent and daughter cells is
necessary to understand differentiation and how the crosstalk between the different cells
in the tissue leads to physiological maintenance and pathological perturbations. Blood cell
production takes place in the bone marrow through the progressive differentiation of stem
cells and progenitors. These are maintained and regulated by a heterogeneous
microenvironment composed of stromal and hematopoietic cells. While hematopoiesis
has been studied in extraordinary detail through functional and multiomics approaches,
much less is known about the spatial organization of blood production and how local cues
from the microenvironment influence this anatomy. Here, we discuss some of the studies
that revealed a complex anatomy of hematopoiesis where discrete local
microenvironments spatially organize and regulate specific subsets of hematopoietic
stem cells and/or progenitors. We focus on the open questions in the field and discuss
how new tools and technological advances are poised to transform our understanding of
the anatomy of hematopoiesis.

Keywords: anatomy of the bone marrow, spatial organization of hematopoiesis, microenvironment, niches,
dynamics of hematopoiesis
INTRODUCTION

The bone marrow tissue provides a unique microenvironment -composed of both hematopoietic
and non-hematopoietic cells and extracellular matrix- that cooperate to accomplish several
functions: promote stem cell and multipotent progenitor self-renewal, regulate the differentiation
of each lineage, and provide structural support and spatial organization to the tissue. The
microenvironment is defined by three large structures: the bone tissue that encloses the marrow;
a vascular network, composed of arterioles that penetrate through the bone and give rise to a large
sinusoidal network that drains through a central vein; and a network of reticular stromal cells that
wraps around the different vessels. These structures cooperate with and regulate each other to
maintain the tissue (1).

Many other cell types regulate -directly or indirectly- hematopoiesis and are thus considered part of
the microenvironment. Non-hematopoietic cells include osteoblastic precursors, osteoblasts, osteocytes,
adipocytes, Schwann cells, sympathetic and sensory nerves, and fibroblasts. Hematopoietic components
org November 2021 | Volume 12 | Article 7684391
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include macrophages, megakaryocytes, myeloid cells, and dendritic
cells. In-depth discussions on how these cells were recognized as
components of the microenvironment and their precise role on
hematopoiesis are available elsewhere (1–3). The components of
the microenvironment are not evenly distributed through the bone
marrow. As a result the microenvironment is spatially
heterogeneous. Different regions of the bone marrow contain
specialized microenvironments that organize hematopoiesis and
regulate unique progenitors, cell types, and blood lineages. The next
section discusses the evidence demonstrating that local
microenvironments dictate the anatomy of hematopoiesis.
THE ANATOMY OF HEMATOPOIESIS IS
SPATIALLY ORGANIZED BY LOCAL
MICROENVIRONMENTS

Spatial Organization of Hematopoietic
Stem Cells and Their Niches
The discovery of the SLAM markers allowed imaging of HSC
(defined as Lin-CD48-CD41-CD150+ cells) for the first time. This
first study showed that most HSC were in perivascular location
-in contrast to the established paradigm that stated that HSC
were enriched in endosteal regions (4). It also paved the way for
many other studies that used imaging to identify proximity
between candidate niche cells and HSC and then a functional
role for the niche cell was confirmed by genetic loss of function
experiments (5–10). The composition, spatial organization, and
function of HSC niches has been reviewed in detail elsewhere
(1–3). Due to the sheer abundance of sinusoids and perivascular
cells in the bone marrow virtually all (99%) hematopoietic cells –
including HSC– localize within 30mm sinusoids or perivascular
stromal cells (8, 11, 12). Both cell types are key regulators of HSC
function (1, 3). Additionally, small subsets of HSC also localize
near arterioles and/or the endosteum. Myeloid-biased HSC
(detected using von Willebrand factor reporter mice)
selectively localized near megakaryocytes -a key niche
component that promotes HSC quiescence (9, 13, 14)- in the
sinusoids. In contrast, lymphoid-biased HSC selectively localized
near arterioles (15). Depletion of megakaryocytes led to
expansion of myeloid biased HSC through loss of quiescence
while lymphoid-biased HSC were unaffected. Similarly, depletion
of Ng2+ periarteriolar stromal cells led to loss of the lymphoid-
biased HSC (15). Other studies showed that the fraction of HSC
with lowest levels of reactive oxygen species was enriched near
arterioles (16); that increases in arteriole numbers also cause
increases in HSC frequency (17); and that Ng2+ periarteriolar
cells support HSC function (6). Together these results support
the concept that sinusoids and megakaryocytes provide a niche
for myeloid-biased LT-HSC whereas arterioles provide a niche
for lymphoid-biased HSC. There is also evidence supporting the
existence of an endosteal HSC niche that promotes regeneration.
Imaging of fluorescently labeled HSC shortly after
transplantation showed that the donor HSC are selectively
enriched near the endosteal surface (18–20). Studies from the
Li lab propose that CD49b- cells represent a small subset of HSC
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that selectively amplifies in the endosteum -supported by N-
cadherin+ stromal cells- in response to chemotherapy (21). In
agreement, live imaging analyses showed that a rare HSC subset
(MFG HSC) localized and amplified near the endosteum after
chemotherapy treatment (22).

It is important to note that although most studies agree with
the overall distribution described above there are ongoing
controversies regarding whether some HSC selectively localize
– and are maintained- by arteriolar and endosteal niches (8, 23);
whether HSC localization to different niche components is
selective or random [and thus controlled by the relative
abundance of each niche component (12)]; and about the
motility of HSC in live imaging analyses (22, 24). These are
likely because each group has used different cell surface markers,
transgenic reporters, and statistical approaches to identify HSC
and niche cells and to test for spatial relationships between
these cells.

Spatial Organization of Hematopoietic
Progenitors Downstream of HSC:
Role of the Microenvironment
HSC give rise to several types of multipotent (MPP) and
oligopotent progenitors (25–27). The localization of these cells
in the microenvironment and whether they map near HSC and
their niches is controversial. Early studies relied on short-term
tracking of fluorescently-labeled MPP and HSC adoptively
transplanted into non-myeloablated recipients. These revealed
that the transplanted HSC and MPP did not overlap and that
MPP localized further away from the endosteum than HSC (19).
Much more recently, the Camargo lab generated Mds1GFP+ and
Mds1GFP+Flt3-cre mice to differentially image subsets of
multipotent progenitors and HSC. In the Mds1GFP+ mice GFP
labels almost all HSC and subsets of MPP. In the Mds1GFP+Flt3-
cre mice constitutive cre-mediated deletion of the floxed
gfp allele restricts GFP expression to a small subset of HSC.
They found that GFP+ cells in Mds1GFP+ mice were closer to
transition zone vessels and farther away from the endosteum
when compared to GFP+ cells in the Mds1GFP+Flt3-cre mice.
This suggests that MPP and HSC reside in different
microenvironments (22). The Pereira lab defined multipotent
progenitors as Lin-CD41-CD48-cKIT-CD150-FLT3+ [which
corresponds to the MPP4 subset (25)] and found a similar
spatial distribution and interaction with perivascular stromal
cells as HSC suggesting that they occupy the same niches (28).
The differences between these studies are likely due to the
different mouse reporters and methods used to image the
multipotent progenitors.

It is likely that multipotent progenitors and lineage-
committed progenitors do not overlap. In vivo imaging of
adoptively transferred multipotent (Lineage-Sca1+c-kit+) or
lineage-committed (Lineage-Sca1-c-kit+) progenitors into non-
myeloablated recipients showed that both cells did not cluster
and remained largely immobile while contacting the surrounding
microenvironment (29). This suggested the existence of discrete
niches for multipotent and lineage-committed progenitors. The
existence of a distinct niche for erythropoiesis comes from
classical electron microscopy studies that showed that rare
November 2021 | Volume 12 | Article 768439
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macrophages, adjacent to sinusoids, provide a niche for islands of
erythroblast maturation (30), and these have been the focus of
many studies in the field (31). More recently, Comazzetto et al.,
demonstrated imaging of unipotent erythroid progenitors and
showed that they selectively localize next to perivascular stromal
cells that maintain them via SCF production (32). These indicate
that erythropoiesis takes place in the sinusoids.

Herault et al., imaged Lineage-Sca1-CD150-c-kit+FcgR+

committed myeloid progenitors (33). These are a mixed
population, containing granulocyte monocyte progenitors, and
unipotent monocyte or neutrophil progenitors (34, 35). These
myeloid progenitors were found as single cells evenly distributed
through the bone marrow. In response to inflammation they
formed large clusters that required signals provided by
megakaryocytes to emerge (33). We recently developed
strategies to image granulocyte progenitors, monocyte
progenitors, monocyte dendritic cell progenitors (MDP) and
most steps of terminal myeloid cell production (36). We found
that myeloid progenitors do not colocalize with each other or
HSC. Instead, they spatially segregate and attach to different
sinusoids –away from arterioles and the endosteum– where they
cluster with differentiated cells: granulocyte progenitors give rise
and cluster with preneutrophils, monocyte progenitors cluster
with Ly6Chi monocytes, and MDP cluster with dendritic cells
and Ly6Clo non-classical monocytes. CSF1 is a key cytokine
required for monocyte and dendritic cell production (37). When
searching for microenvironmental signals that regulate this
distribution we noticed that dendritic cells -which cluster with
MDP- selectively localized to a rare subset of CSF1+ sinusoids
(8% of all vessels). Conditional Csf1 deletion in the vasculature
led to loss of MDP, dendritic cells, and non-classical monocytes.
The surviving MDP no longer attached to sinusoids nor formed
clusters with dendritic cell or monocytes. These demonstrated
that myelopoiesis is spatially organized by signals produced by
discrete sinusoids and that CSF1+ sinusoids provide a unique
microenvironment for dendritic cell production (36).

Several studies indicate that B cell differentiation is spatially
organized and regulated by the microenvironment [for a recent
review see (38)]. Common lymphoid progenitors distribute
between the endosteum and arterioles and are maintained by
CXCL12 produced by osteoblastic cells (targeted using Col2.3-cre
or Osx-cre mice) and stem cell factor produced by osteolectin+

periarteriolar stromal cells (39–41). Cordeiro-Gomes found that
Ly6D+ common lymphoid progenitors were also in contact with
-and maintained by- a subset of IL7-producing perivascular
stromal cells but it is not clear whether these stromal cells are
evenly distributed through the bone marrow or enriched in
specific locations (28). Interestingly, subsets of stromal cells
predicted to support lymphopoiesis selectively localize near the
growth plate and trabecular regions (42). The Nagasawa lab
showed that most Pre-pro-B cells are in contact with CXCL12-
producing stromal reticular stromal cells but did not localize
near IL7-producing reticular cells. In contrast most Pro-B cells
did not contact CXCL12 producing cells but localized near IL7
producing cells (43). Mandal et al., showed that Pre-B cells and
Immature B cells selectively localize near IL-7-CXCL12+ reticular
cells and that CXCR4 (the ligand for CXCL12) was necessary for
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Pre-B cell differentiation (44). Yu et al., demonstrated that
deletion of IFG1 in Osterix+ progenitors using Osx-cre mice
did not affect common lymphoid progenitors but led to arrest of
B-cell development at the Pro-B stage (45). Fistonich et al., found
that approximately 50% of ProB cells were in contact with
IL7+CXCL12+ reticular cells that simultaneously contacted
with a PreB cell. This suggested an overlapping niche for these
two populations (46). Interestingly, live imaging showed that
while ProB cells are largely static and remain attached to the
CXCL12+ reticular cells whereas PreB cells migrate between
different reticular cells (46). Together these studies strongly
suggest that -as B cell progenitors differentiate- they migrate
between subsets of stromal cells producing different amounts of
IL7, CXCL12, or IGF1. In contrast, the Mancini lab found that
most reticular cells coexpress IL7, CXCL12 and LepR, that ProB
cells localize near LepR+, and that ~15% of HSC colocalize with
Pro-B cells –much higher than predicted from random
distributions. They also identified Nidogen-1 as niche derived
factor regulating lymphopoiesis (47). Since HSC map near IL7
producing cells (28) these suggest that HSC and B cell
lymphopoiesis share overlapping niches.
OPEN QUESTIONS AND FUTURE
DEVELOPMENTS

The studies above demonstrate that the bone marrow is a
complex organ with a unique spatial architecture where
specific lineages are supported by discrete regions of the bone
marrow (Figure 1). The studies also lead to new questions and
reveal major gaps in our understanding of how spatial
relationships regulate hematopoiesis.

What Is the Anatomy of Stepwise
Hematopoiesis in the Steady-State?
Hematopoiesis occurs via stepwise differentiation of progenitors.
However, it has not been possible to map the location of many
progenitor populations – including different subsets of
multipotent progenitors, common myeloid progenitors, and
megakaryocyte erythroid progenitors. Additionally, for most
progenitors, it has not been possible to simultaneously image
multiple types of progenitors. Therefore, it is not known whether
different types of progenitors share the same niche (and are likely
regulated by the same cells and structures) or different niches
(which will suggest differential regulation). The main reasons
limiting studies to answer these questions are technological. For
example, progenitor populations can be routinely defined using
complex multicolor flow cytometry panels (25–27). However,
most confocal microscopes can only resolve a much more limited
number of fluorescent channels. Additionally, scRNAseq studies
demonstrated that many of the different flow gates used to
prospectively isolate the different progenitors contain
heterogeneous populations [e.g., heterogeneity of myeloid
progenitors (34)]. Precise mapping of the different steps of
blood maturation will require developing approaches to define
each type of progenitor by using fewer fluorescence channels as
November 2021 | Volume 12 | Article 768439

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Anatomy of Hematopoiesis
done recently for stepwise mapping of myelopoiesis (36).
Alternatively, it might be possible to adapt iterative imaging
methods. In these, the samples are stained and imaged with a set
of fluorescent probes followed by removal of the fluorescence
and staining and imaging with new fluorescent probes. Two of
these methods, CODEX and IBEX, are able to resolve dozens of
parameters using confocal microscopy (48, 49).

Precise mapping of differentiation will also require clonal
fate-mapping to determine developmental relationships between
progenitors and adjacent cells. Different studies have used
confetti mice [in which cre recombination leads to expression
of one out of four fluorescent proteins (50) to examine clonal
relationships between cells of interest in the marrow (22, 51)].
However, the confetti model only allows simultaneous detection
of a very limited number of fluorescent tags in discrete
progenitor populations. A possible way of overcoming this
limitation is single-cell spatial transcriptomics, which is
developing at a breakneck pace. It might soon be possible to
obtain transcriptomic data, track thousands of barcodes for
clonal analyses, and obtain spatial information for single cells
in the bone marrow (52).

What Are the Cells and Extracellular
Matrix Structures Forming These
Specialized Microenvironments and How
Do They Function?
Answering these might require microdissection of the region of
interest followed by transcriptomics analyses to interrogate the
identity of the local cells. This technology is already available as
Frontiers in Immunology | www.frontiersin.org 4
shown by a study from the Van Galen lab demonstrating
heterogeneity of growth factor production in different regions
of the bone marrow (53).

After identification of the components of each local
microenvironment the next step will be defining how they
function in regulating the proximal progenitors. This has been
accomplished by conditional Cre-mediated deletion of one
cytokine or growth factor in the candidate cells. However,
scRNAseq revealed extraordinary complexity of stromal cell
types (53–55) whereas common Cre drivers available to the field
target broad, heterogeneous, populations of stromal cells (55, 56).
Development of new CreERT2 mouse models, specific for cells in
local microenvironments -as done recently with Oln-creERT mice
to target the periarteriolar stromal cells that maintain common
lymphoid progenitors (41)- will greatly facilitate answering
these questions.

If Local Microenvironments Regulate
Unique Stem/Progenitors What Regulates
Progenitor Localization to These
Structures?
One possibility is that the specialized microenvironment
produces one or more chemotactic cues that selectively attract
the desired progenitor. Alternatively, this process might be
stochastic with progenitors migrating through the bone
marrow transiently interacting with stromal components. This
type of transient interactions was shown recently for HSC (24).
Eventually, one of these interactions will be of sufficient strength
and specificity to retain the progenitor in a specific
FIGURE 1 | The Figure shows the overall architecture of the microenvironment in the bone marrow as well and the localization of the indicated progenitors with
specific microenvironment. Note that because of the abundance of sinusoids and CXCL12- and SCF-producing perivascular cells virtually all cells are proximal to
both of these structures. Also note that most types of stem cells and progenitors have been imaged with a limited number of partner cells. Therefore, it is likely that
some of the structures depicted overlap (e.g. both erythroid progenitors and HSC have been shown to localize to SCF-producing perivascular cells). The precise
location of most multi and oligopotent progenitors remains unknown.
November 2021 | Volume 12 | Article 768439
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microenvironment. In this case the relative abundance of each
local microenvironment will profoundly influence the likelihood
of successful interactions. A third possibility is that the stem/
progenitors themselves remodel local cells into a supportive
microenvironment. This type of remodeling has been shown to
occur in the zebrafish HSC niche (57). Distinguishing between
these possibilities will require live imaging of specific subsets of
progenitors. The major technical constrain will likely be the
development of fluorescent reporter strains to allow visualization
of unique progenitor subsets. Live bone marrow imaging has
been done in the mouse calvarium [where the bone is thin
enough to allow imaging with sufficient resolution (19, 22)] or by
carving a “window” in leg bones to image the marrow within (24,
29, 58). Importantly, recent studies have shown differences in the
frequencies of erythroid and lymphoid progenitors across
different bones (42, 59). These would have to be considered
when deciding which bones to study via live imaging.

What Is the Anatomy of Hematopoiesis
and Local Microenvironment in Response
to Insults?
Hematopoiesis is highly plastic and capable of sensing different
insults and respond by quickly adjusting blood cell production to
demand. Examples of this plasticity include hemorrhage which
triggers emergency red blood cell production and infection which
-depending on the infectious agent- can trigger emergency
neutrophil, monocyte, and/or dendritic cell production. The
bone marrow microenvironment plays critical roles in both
sensing and orchestrating the progenitor response to infection
[reviewed in (60)]. Importantly, inflammation and infection also
profoundly remodel the sinusoidal network and perivascular
stromal cells that maintain hematopoiesis and perturb stem cell
localization within the marrow (60). Key open questions are
a) whether hematopoietic stress responses use the same
anatomical structures as normal hematopoiesis or instead
depend on stress-specific anatomical cues and b) to what extend
remodeling of sinusoids perturbs the anatomical structures that
maintain the different progenitors. The most dramatic example of
acute insult to the bone marrow is myeloablation. This eliminates
not only hematopoietic cells but also the sinusoids and associated
perivascular cells whereas endosteal regions and arterioles are
more protected (6, 21, 61, 62). In this case the key open questions
are: a) how are the local microenvironments restored? and b) what
Frontiers in Immunology | www.frontiersin.org 5
are the anatomical structures that support regenerative
hematopoiesis? Identification of these will likely lead to novel
therapies to promote restoration of blood cell production
after myeloablation.

Chronic insults also lead to progressive remodeling of the
microenvironment diminishing its capacity to support normal
progenitors and -in some cases- hijacking it to promote
pathogenesis. Examples of this pathogenic remodeling occur
during physiological aging, leukemia, and other proliferative
diseases (63, 64). Most studies have focused on determining
how this remodeling perturbs HSC function. Little is known
about how the different pathologies affect the structures that
support more mature cells and whether protecting these
structures can maintain normal hematopoiesis during disease.
CONCLUSION

Hematopoiesis in the bone marrow is spatially and regionally
organized by specialized local microenvironments that support
different types of stem cells and progenitors. The challenges in
imaging the bone marrow tissue have limited progress (65).
However, the future is bright. Adapting technological advances
validated in other tissues -including live imaging, multiparameter
microscopy, new reporter strains, and spatial transcriptomics- will
allow systematic examination of blood production in situ to define
how local cues from the microenvironment control normal and
pathological hematopoiesis.
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