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The oral cavity is a complex environment constantly exposed to antigens from food and
the oral microbiota. Innate immune cells play an essential role in maintaining health and
homeostasis in the oral environment. However, these cells also play a significant role in
disease progression. This review will focus on two innate phagocytes in the oral cavity:
macrophages and neutrophils, and examine their roles during homeostasis and disease
development, with a focus on periodontal disease and cancer. Macrophages have a well-
known ability to polarize and be activated towards a variety of phenotypes. Several studies
have found that macrophages’ polarization changes can play an essential role in
maintaining health in the oral cavity and contribute to disease. Recent data also finds
that neutrophils display phenotypic heterogeneity in the oral cavity. In both cases, we
focus on what is known about how these cellular changes alter these immune cells’
interactions with the oral microbiota, including how such changes can lead to worsening,
rather than improving, disease states.
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INTRODUCTION

The oral cavity is the main gateway into the human body, leading to the respiratory and
gastrointestinal tracts. It has a wide variety of microbial niches, and has the second most
abundant microbiota after the gastrointestinal tract, consisting of ~800 bacterial species
categorized into six major phyla (1). In this context, similarly to other mucosal barriers, the local
oral immune system needs to find a balance of coexisting with the commensal microbiota while
responding appropriately to pathogens (2). The crosstalk between microbiota and the innate immune
system is essential to maintaining this host-microbe homeostasis, with the commensal microbiota
itself playing a crucial role in regulating immune homeostasis (2–4). Indeed, the oral cavity is a
unique mucosal environment where immune cells must be able to recognize and eliminate pathogens
while maintaining tolerance to food antigens and the resident microbiota. Oral immunity is
composed of a diverse and dynamic network of interactions with both innate and adaptive
immunity components contributing to the maintenance, integrity, and host protection of oral
tissues. However, as innate immunity is the first line of defense, it plays a pivotal role in both
protecting the host and maintaining homeostasis (5, 6). While the saliva and gingival crevicular fluid
(GCF) contain host immune molecules that can respond rapidly to protect the periodontium and the
oral hard tissues against pathogens such as antimicrobial peptides, complement, and secretory
org January 2022 | Volume 12 | Article 7684791
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IgA (7), these defense mechanisms only provide short-term
protection and have a limited specificity (8). The oral mucosa
resident and transmigrating immunologically active innate
immune cells, including macrophages and neutrophils, also play
important roles in maintaining effective immune surveillance.

The importance of innate professional phagocytes in
maintaining a healthy and mature immune system is revealed
upon a change in ‘ideal’ functional inflammatory immune cell
infiltrate: such changes lead to degradation in the health of the
periodontal tissues (4). For example, a lack of neutrophil
infiltration into the oral cavity (neutropenia) leads to an
increase in periodontal disease (9) while an overabundance
and dysregulation of neutrophils during periodontal disease
causes host tissue damage (10). Similarly, a reduction in
macrophage numbers during aging contributes to an increase
in periodontal disease (11), while macrophages themselves also
contribute to the alveolar bone resorption seen during P.
gingivalis induced periodontal disease (12). Recent data
suggests part of this finely tuned balance of phagocytes is likely
due to phenotypic variance within these cell types. Macrophages
are responsible for not only host defense, but also have important
tissue repair and homeostatic roles (13) and possess a spectrum
of phenotypes with different responses during host and microbial
interactions (14); (15). Neutrophil phenotypes during infection,
inflammation and cancer are also being recognized (16–19),
including in response to periodontal disease (20–23). This
review will examine the current knowledge of the role
polarization, or phenotypic changes, in macrophages and
neutrophils is thought to play in the oral environment,
especially during the development of periodontal disease.
MACROPHAGE FUNCTIONS IN THE
ORAL ENVIRONMENT

Macrophages are located in the lamina propria below the
epithelium and are among the first innate cells to interact with
microorganisms and microbial products, and so are an important
cell type under both homeostatic and disease conditions in the oral
cavity. Under physiological conditions macrophages are
important for cell turnover and maintenance of the extracellular
milieu (24), while also being required to recognize, internalize and
kill microbes in order to clear infections (25). The recognition of
microbes by macrophages also results in production of
proinflammatory cytokines, which contribute to inflammation
initiation (26). Moreover, macrophages can act as antigen-
presenting cells (APCs), collaborating with the early
development of acquired immunity (27).

Under homeostatic conditions bone marrow derived
monocytes enter tissue and differentiate into tissue specialized
macrophages, including Langerhans cells (LCs), in the
extracellular matrix of the mucosa (5, 28). Resident oral
mucosal macrophages exhibit an array of diverse functions
depending on different factors they encounter in their
environment, including tissue architecture and microbiota (4, 29).
A small portion of oral Langerhans cells that originate from
Frontiers in Immunology | www.frontiersin.org 2
monocytes are a more specialized subset of tissue resident
macrophages (30, 31). Even within the same organ, macrophages
can occupy different niches and have different specialized functions
(28). Interestingly, recent research suggests that during tissue injury
caused by myocardial infarction, stroke, and sepsis local
proliferation of macrophages dominate over macrophage
recruitment (32).

Oral macrophages are important for bridging the innate and
adaptive immune response. Macrophages and oral Langerhans
cells express high levels of MHCII and CD80/CD86, ingest
particulate antigen and can present it to T cells (29, 31, 33, 34).
Interestingly, oral LCs, unlike other tissue macrophages and
similarly to dendritic cells, can migrate to lymph nodes to
present antigen to T cells (30). Oral macrophages are also able
to prime systemic immunity, as has been shown through systemic
protection after sublingual vaccine administration and systemic
antibody response to periodontal pathogens (4). In addition,
when macrophages are depleted and mice infected intraorally
with the periodontal pathogen Porphomonas gingivalis, specific
antibody and cytokine responses are decreased, indicating the
importance of macrophages in the adaptive immune response to
oral bacteria (12).
MACROPHAGE POLARIZATION IN THE
ORAL ENVIRONMENT

Macrophages can polarize to a variety of phenotypes ranging
from alternatively polarized M2 macrophages to classically
polarized M1 macrophagesin vitro, which is well described in
the literature (6, 28, 35, 36). In general, the M1 phenotype
promotes a Th1 response and vigorous microbicidal and
tumoricidal activity. In contrast, an M2 phenotype helps
parasite clearance, dampens inflammation, promotes tissue
remodeling, tumor progression, and possesses immune-
regulatory functions (37). In reality, in vivo macrophages do
not exist on dipoles as a population, but in a continuation of
activation. The macrophage phenotype is plastic and in disease
and in health there can be wide variety of multiple phenotypes
present spanning from strict M1 to strict M2 and anywhere in
between (38–40). Throughout this review in vivo macrophages
will be referred to as M1-like or M2-like for this reason.

In the oral cavity, as with elsewhere in the body, predominate
M1-like activation is generally associated with inflammatory
diseases and predominate M2-like activation is associated with
cancer (Figure 1) (6, 36). Indeed, dysregulation of the M1/M2
balance can lead to the progression of the inflammatory response
and malignant oral diseases such as oral lichen planus and oral
squamous cell carcinoma (SCC). M1-like macrophages can aid
the progression of oral lichen planus and potentially induce
malignant transformation. Conversely, M2-like macrophages
[often termed tumor associated macrophages (TAMs)] aid
SCC progression and favors an immunosuppressive tumor
microenvironment (41). This is a general and well-known
phenomenon of macrophages in many tumors, not just those
in the oral cavity, with recent thorough reviews and so won’t be
January 2022 | Volume 12 | Article 768479
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discussed further here (40, 42). Macrophage polarization can be
driven by different bacterial species, microbial components, and
host immune mediators (38, 43). For example, in murine
macrophages a differential M1 or M2 profile occurs in
response to representative Gram-negative or Gram-positive
gastrointestinal bacteria, including probiotic strains, pathogens,
commensals, and strains of food origin (44). In the oral
environment, endotoxin and other bacterial products present
in sterilized saliva polarize macrophages to an M1-like
phenotype, with increased production of pro-inflammatory
cytokines (45). Specific oral strains can also elicit unique
responses, with data showing oral commensals generally elicit
an M2-like phenotype while oral pathogens elicit a more M1-like
phenotype (46). Furthermore, a switch from an predominantly
M2-like phenotype to a predominantly M1-like phenotype is a
potential mechanism for the advancement of periodontal disease
(42). Studies using germ-free and specific pathogen free mice
have also shed light on the ability of the oral microbiota to
differentially modify phagocytes and their responses in vivo. For
example, there is a significant decrease in IL-1b, an inflammatory
cytokine mainly produced by macrophages, in germ free (GF)
mice compare to specific pathogen free (SPF) mice (47), and oral
Langerhans cells are significantly reduced in GF mice compared
Frontiers in Immunology | www.frontiersin.org 3
to SPF mice, but after microbial recolonization their numbers
were restored (34).
MACROPHAGES IN PERIODONTAL
DISEASE

Periodontal disease is a progressive inflammatory disease that
results from dysbiosis in the microbiota and an overreactive
immune response (48, 49). It is a complex disease, resulting from
a myriad of different factors including genetics, environment,
and microbes, with the microbial load from health to disease
increasing from 102 bacteria in health to 108 bacteria in
periodontitis (47). The importance of macrophages in the
development and progression of periodontal disease has been
shown through depletion of macrophages in a mouse model of
periodontal disease, resulting in reduced P. gingivalis induced
bone resorption (12). Although depletion of macrophages
prevents bone resorption, it can also impairs bone regeneration
(50). Data suggests aberrant expression of macrophage genes
may affect their activation state and expression of signaling
molecules, thereby contributing to disease progression (51).
FIGURE 1 | Macrophages in the oral cavity. Macrophages can polarize in response to oral microbiota and in disease. Inflammatory (M1) macrophages promote
inflammation, alveolar bone loss, disease progression, microbiota dysbiosis, and prevent tumor development. Alternatively activated (M2) macrophages contribute to
cancer progression and resolution of inflammatory diseases. Macrophages in the oral cavity are linked to systemic diseases, including those in the heart and brain.
Inflammatory macrophages release pro-inflammatory cytokines (IL-1b, IL-1a, IL-6, TNFa, IL-11) and matrix metalloproteases (MMPs) that contribute to inflammation
and alveolar bone loss. Under homeostatic and disease conditions oral macrophages work to bridge the innate and adaptive immune response by expressing
antigens to B and T lymphocytes.
January 2022 | Volume 12 | Article 768479
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Indeed, many factors released by macrophages can be involved in
periodontitis-associated alveolar bone loss. For example,
inflammatory cytokines produced in high levels by
macrophages including IL-1b, IL-1a, TNFa and IL-6 can
activate osteoclasts making it likely that they play an important
role in disease-induced bone resorption (26), and IL-1b is known
to increase in human groups in association with an increased
ratio of inflammatory macrophages over alternatively activated
macrophages (52). In addition to cytokines, macrophages release
a number of matrix metalloproteinases that are involved in
degradation of the extracellular matrix and are important
proteases involved in the progression of periodontal disease
(53). Macrophage cytokines TNFa, IL-1, and IL-6 stimulate
MMPs, all of which are expressed at higher levels in diseased
periodontal tissue (54–56), with again some MMPs being linked
to an increased M1/M2 ratio during disease (52). Together this
shows the important role that macrophages and the myriad of
factors they express can play in the destructive properties of
periodontal disease.

As described above, macrophages can polarize to a broad range
of phenotypes. On one end of this spectrum laysM1macrophages,
which generally have more inflammatory and microbicidal
characteristics. Macrophages can polarize to an M1 phenotype
through stimulation with IFNg and TLR ligand interaction, as well
as in response to periodontopathic bacteria. Macrophages
stimulated with P. gingivalis or P. gingivalis LPS generally
polarize to an M1-like inflammatory phenotype as shown by
increased levels of pro-inflammatory cytokines and M1 specific
surface markers (46, 57, 58). Mice infected with P. gingivalis also
show increased levels of M1-like macrophages compared to M2-
like macrophages (12). Aggregetibacter actinomycetecometans,
another pathogen highly associated with periodontal disease, has
also been shown to polarize macrophages to anM1-like phenotype
(46, 59).

Periodontal disease is an inflammatory disease, so logically
inflammatory macrophages (i.e., M1 macrophages) would
infiltrate the periodontal tissue during disease: in recent years
many studies have shown that this is indeed the case. A human
experimental gingivitis study from Topoll and co-workers in
1989 was one of the first to show a decrease in anti-inflammatory
macrophages and an increase in inflammatory macrophages
(60). Now there have been multiple human studies showing
increases of inflammatory M1-like macrophages in periodontal
disease in comparison to healthy controls (42, 52, 61). These
M1-like macrophages contribute to the inflammatory
environment, promoting dysbiosis of the microbial community
and periodontal disease progression (10). Macrophage
interactions with normally commensal oral bacteria can also
change, as seen with the increased, rather than decreased,
survival of Streptococcus gordonii within IFNg/LPS stimulated
macrophages (62). Animal studies have also found that if the
inflammatory response, especially by macrophages, is treated
then progression of periodontal disease can be inhibited. One
promising treatment is with the anti-inflammatory agent
Resolvin-E1, which can resolve inflammation and regenerate
bone and soft tissue to a healthy state (63). Such studies with
Frontiers in Immunology | www.frontiersin.org 4
anti-inflammatories have further illuminated periodontal disease
as an inflammatory disease. Importantly, if alternatively
activated, M2, macrophages are stimulated in vivo or injected
into animal models of periodontal disease they promote healing
and dampen osteoclast activity, thereby reducing bone
resorption (50, 64, 65). On the other hand, P. gingivalis may
promote the activation of macrophages into M2-like TAMs
when combined with an OSCC microenvironment that can
induce and promote OSCC growth (66).
SYSTEMIC EFFECTS OF
ORAL MACROPHAGES

There has been a recent increase in research focusing on the
systemic implications of periodontal disease (48, 67–70). It is
known that oral microbes can be found in extraoral locations
after gaining access to the circulation, and periodontal disease-
associated microbes have been found in multiple extra-oral sites
including atherosclerotic plaques (71, 72) and the brain, showing
they also can cross the blood-brain barrier (73, 74). Moreover,
P. gingivalis appears capable of invading and converting
myeloid-derived dendritic cells (mDCs) to an atherogenic
phenotype in humans with chronic periodontitis (75). Along
this line, the uptake of low-density lipoprotein (LDL) by
transmigrated macrophages is enhanced in the presence of
bacteria leading to accelerated foam cell formation and
atherogenesis (48).

In addition to extra-oral bacteria affecting macrophages and
systemic disease, the elevated systemic inflammation associated
with periodontitis may have multiple systemic complications.
For example, periodontal bacteria increase systemic IL-6 levels,
driving the expansion of osteoclast precursors (OCPs) which can
traffic to sites of bone resorption and differentiate into mature
osteoclasts (76), suggesting that changes in the bone marrowmay
link periodontitis to other bone loss disorders, such as
rheumatoid arthritis (77). Additionally, as individuals age there
is increased inflammation in a nominally resting state and linked
to this there is an increase in primarily M1 macrophage
activation with age in nonhuman primates (78). Aging can
enrich the gingival environment in anaerobic species leading to
a dysregulated and persistent immunoinflammatory response
(79). In this context, increases in prevalence and severity of
periodontal disease have long been associated with aging (79).
Recent evidence finds this long-associated age-related increase in
periodontal disease is dependent, at least in part, on these age-
related changes in macrophage activation towards an M1-like
phenotype (11).
NEUTROPHIL PHYSIOLOGY

Neutrophils are the most abundant circulating leukocyte, which
are among the first cells to respond to bacterial infections and
pro-inflammatory signals. Neutrophils are produced in the bone
marrow with 1 to 2×1011 neutrophils normally generated per day
January 2022 | Volume 12 | Article 768479
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in an adult human (80). Mature neutrophils can be found in the
bone marrow as the bone marrow reserve, circulating through
the blood, or in tissues as resident neutrophils (81).

After production, mature neutrophils will remain in the bone
marrow for about 5 days, forming the bone marrow reserve from
which neutrophils can be rapidly mobilized in case of infection
(82, 83). Once neutrophils cross the bone marrow sinusoidal
endothelium (about 109 neutrophils/kg body weight exit the
bone marrow daily in humans) they enter the sinusoids and
eventually migrate out into the general circulation (84, 85). Some
of these neutrophils migrate into tissues, including through
mucosal membranes and areas requiring constant immune
surveillance, such as the oral cavity.

In human blood, neutrophils are generally believed to have a
short half-life of about 8 hours, according to experiments in which
neutrophils were labelled ex vivo and then evaluated in vivo (86).
However, a study that labeled cells in vivo via deuterium-labelled
water reported a surprising lifespan for circulatory neutrophils in
humans of up to 5.4 days (87). Yet this paper’s methods received
some criticism as orally administrated deuterium-labelled water
would likely label bone marrow neutrophils as well as circulating
neutrophils, therefore skewing their supposed longevity in blood
(88). Another group proposes that the slow kinetics of labeled cells
reported in Pillay 2010 may be due to the slow production of
neutrophils in the bone marrow, rather than a long half-life in the
blood (18, 89, 90).

These dynamic cells perform a wide range of protective
functions, including chemotaxis toward stimuli, extravasation
from vasculature and antimicrobial actions through phagocytosis,
granule release, reactive oxygen species (ROS) production, and
NETosis (91, 92). While neutrophils have traditionally been
thought of as stable differentiated cells, evidence now
demonstrates they are dynamic cells able to change their
characteristics and behavior throughout their lifespan or in
differing environments. Their potential responses can vary widely
and change according to local signals released during acute or
chronic inflammatory conditions, injury, infection, cancer, and
autoimmunity. This plasticity has led to increasing interest in
understanding their functional phenotypic heterogeneity, similar
to other immune cell lineages (93).
NEUTROPHILS IN THE
ORAL ENVIRONMENT

In the oral cavity, neutrophils have been identified in periodontal
tissues, gingival crevicular fluid, and within dental biofilms (94–
96). Neutrophils transmigrate through oral mucosa and
comprise the majority of innate immune cells recruited to the
gingival crevice, composing greater than 90% of the crevicular
cells (97–101). Phenotypic differences between oral neutrophils
in health and with location-specific differences are becoming
better understood. Compared with circulating neutrophils, oral
neutrophils present site-specific gene expression profiles in
healthy individuals (102). Human studies have found that
generally, oral tissue-resident neutrophils are in a later stage of
Frontiers in Immunology | www.frontiersin.org 5
their life cycle when compared to circulatory neutrophils and
present a higher state of activation when compared to circulatory
neutrophils, showing higher expression of activation markers
CD11b, CD63 and CD66b, as well as higher constitutive ROS
levels (103). In periodontal health a spectrum of neutrophil
populations have been reported in humans, as characterized by
two distinct subtypes of oral neutrophils; a ‘parainflammatory 1’
population which is similar to naïve blood neutrophils and a
‘parainflammatory 2’ population which is the more activated
phenotype, possibly being in a primed state and may be crucial
for response with the symbiotic biofilm of health (22). Another
subset of oral neutrophils has also been identified that present
with a significant increase in T cell receptor (TCR) expression
compared with circulating neutrophils, and these cells show
markedly increased recruitment to sites of inflammation.
While the exact role of TCR expression in oral neutrophils is
unknown, this supports a role for oral neutrophils in crosstalk
between the innate and adaptive immune system in the oral
cavity (Figure 2) (102).
NEUTROPHILS IN ORAL CANCER

Myeloid cells can promote tumor progression directly via immune
suppression or indirectly via production of angiogenic factors,
matrix-degrading enzymes, or growth factors. The most well
characterized of these cells are TAMs that have properties of
alternatively activated macrophages, or M2-like macrophages as
described above (104). In recent years there has been increasing
evidence showing phenotypic and functional plasticity in
neutrophils, particularly in oral cancers (105). Like TAMs, these
tumor-associated neutrophils (TANs) have differential states of
activation/differentiation (104) TANs can polarize to anti-
tumorigenic (N1) or pro-tumorigenic (N2) phenotypes. It is
important to note that in vivo neutrophils, like macrophages, exist
on a spectrumof activation and so in reality ‘N1’ and ‘N2’ are better
understood as ends of a spectrum rather than discrete categories. In
vivo animal studies show this change is largely directed by TGF−b,
which skews differentiation toward the N2 phenotype. In vitro
studies on human blood and tumor samples have found that N1
TANs express higher levels of immune activating cytokines and
chemokines, lower levels of arginase, and have a heightened ability
to kill tumor cells in vitro. N1 TANs express higher level of CCL3,
ICAM-1, and TRAIL. N2 TANs support tumor growth by
producing angiogenic factors and matrix-degrading enzymes and
suppress the antitumor immune response. They are characterized
by increased expression of genemarkers, such asMMP9, VEGF-A,
andBV8, aswell as the decreased expression ofCCL3, ICAM-1, and
TRAIL (106, 107). Knowledge of TAN and circulating neutrophils
in the context of head and neck cancer (HNC) of the oral cavity is
somewhat limited, andeven less is knownabout theoral neutrophils
which populate the environment closely associated with evolving
HNC. These oral neutrophils represent a unique population with
functional and phenotypic proprieties distinct from other
compartments such as the tumor or mucosal tissue (108).
Localization of the oral neutrophils and neutrophil-derived
products along with the tumor-derived microenvironment rich is
January 2022 | Volume 12 | Article 768479
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growth factors and cytokines may influence tumor development
and differential neutrophil plasticity. For example, oral neutrophils
from patients with untreated oral cancer demonstrate distinct
functional properties with lower chemotactic ability, superoxide
production and reduced killing of microbes (109). Understanding
phenotypic differences and properties of oral neutrophils in oral
cancer provides a relevant measure of local response in the tumor
environment with high prognostic value.

Neutrophil granule changes have also been demonstrated to
reflect differential phenotypes as during some inflammatory states
or other disease conditions, there exists a subset population of
neutrophilswhich co-sedimentwithperipheral bloodmononuclear
cells (PBMCs) due to their unique granularity compared to normal
mature neutrophils known as low-density neutrophils (LDNs)
(110). LDN numbers correlate with pathological conditions such
as rheumatoid arthritis, lupus and cancers including potentially in
the early phase of oral squamous cell carcinomadevelopment (111–
113). Their overall function is dependent on inflammatory stimuli.
For example, a proinflammatory LDN phenotype has been
described in vivo animal studies for LDNs in autoimmunity and
infection while in cancer LDNs primarily have a T cell suppressive
function and are often referred to as myeloid-derived suppressor
cells (111, 114).
Frontiers in Immunology | www.frontiersin.org 6
NEUTROPHILS IN PERIODONTAL
DISEASE AND INFLAMMATION

The association between periodontal disease and neutrophil
presence is well established. The human oral cavity has a constant
bacterial presence that is kept under control by equally constant
immune surveillance. Neutrophils comprise the majority of innate
immune cells recruited to the gingival crevice and tissue tomaintain
physiological health, while documented increases in the number of
oral neutrophils during periodontal disease which correlates with
clinical severity in response to the dysbiotic biofilm and
inflammatory changes (98, 101, 102, 115). A lack of neutrophil
infiltration into the oral cavity or defects of neutrophil function lead
to an increase in periodontal disease (9). Congenital defects in
neutrophil development or egress from the bone marrow resulting
in significant neutropenia are linked to severe periodontal disease
(116). Likewise, defective extravasation of neutrophils into tissue
and impaired immune response are also linked to increased
periodontal disease. For example, Leukocyte adhesion deficiency
are a group of congenital disorders in which neutrophils have
defective expression or function of adhesion molecules involved in
attachment and migration through the vascular endothelium,
resulting in neutrophilia with few neutrophils in peripheral
FIGURE 2 | Neutrophils in the oral cavity. Neutrophils can polarize in response to oral microbiota and in disease, advancing or inhibiting disease progression. In
oral cancers, N1 tumor-associated neutrophils (TANs) demonstrate anti-tumorigenic behaviors while N2 TANs are pro-tumorigenic, producing angiogenic factors and
suppressing the antitumor immune response. Differentiation to the N1 or N2 phenotype is largely driven by TGF−b, which skews differentiation toward the N2
phenotype. Low-density neutrophils (LDNs) correlate with disease progression. They preferentially propagate in cancer and have a T-cell suppressive function, while
proinflammatory LDNs are found in cases of autoimmunity. In addition, there is a subset of oral neutrophils that present with a significant increase in T cell receptor
(TCR) expression and are recruited at high rates to sites of inflammation; however, their exact function is unknown. Increased neutrophil recruitment can contribute to
the inflammation and alveolar bone loss characteristic of periodontal disease via production of ROS, pro-inflammatory cytokines, and degranulation. Furthermore,
individuals with defective neutrophil recruitment or function due to genetic abnormalities are more susceptible to severe periodontal disease.
January 2022 | Volume 12 | Article 768479
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tissues leading to subsequent recurrent infections including severe
periodontal disease (117). On the other hand, increased neutrophil
recruitment in attempt to control the dysbiotic biofilm
characteristic of periodontal disease or dysregulation of
appropriate trafficking and resolution of the neutrophil response
contributes to much of the tissue damage in periodontal disease
(10). Many of the oral microbes abundant in the dysbiotic
community of periodontal disease are able to disarm or impair
local neutrophil responses, also rendering these cells ineffective in
the gingival tissues (118, 119).

A variety of studies have suggested that neutrophils during
periodontal disease are heterogenous populations which likely
respond to local microenvironment and microbe cues. Classical
studies have revealed that circulating neutrophils from patients
with periodontal disease have impaired chemotactic ability,
responsiveness and directionality along with changes in surface
expression of CD11b or CD16 (120–122), which suggest potential
of functional neutrophil subsets. Recent detailed comparative
analysis of oral neutrophil surface markers has further revealed
distinct upregulation of specific markers during periodontitis
characterized by a pro-inflammatory signature along with a
functionally activated phenotype with elevated degranulation,
phagocytosis, ROS production and NET formation (22, 103,
123). Studies on blood and oral rinses from healthy and chronic
periodontitis patients have revealed differential expression of
neutrophil surface markers in different biological compartments
(124) and during transmigration (125), however ongoing studies
are required to identify definitively if observed molecular changes
and phenotypic features in oral neutrophils during disease
represent active subset switching in response to stimuli or a true
differentiated population.

Despite appropriate clinical therapy, a subset of periodontitis
patients do not respond effectively and present with continuing
disease progression and clinical attachment loss that does not
correlate with plaque levels, microbiology assessments, and
treatment compliance. Such patients are diagnosed with
refractory periodontitis (RP) (126). A unique hyperactive oral
neutrophil phenotype characterized by increased potential for
ROS production has been identified in these RP patients. These
cells were found to produce ROS at a level approaching the
maximal capability of the cells (127). While appropriate ROS
production is crucial for effective bacterial killing, excessive ROS
can contribute to periodontal attachment loss by damaging the
extracellular connective tissue (128).

While characteristic neutrophil surface marker signatures have
been demonstrated, a distinct neutrophil-specific marker has been
reported to be associated with periodontal disease. CD177, also
calledneutrophil antigenB1 (NB1) orhumanneutrophil antigen 2a
(HNA-2a), is a glycosylphosphatidylinositol (GPI)-linked
glycoprotein expressed on the plasma membrane and in granule
membranes of neutrophils (129). A high proportion of CD177-
expressing neutrophils have also been found in the gingival
crevicular fluid (GCF) of periodontitis patients. The proportion of
CD177-expressing neutrophils in circulation varies between
individuals with a relatively stable bimodal, or occasionally
trimodal, expression pattern (130, 131). In humans, the
proportion of CD177-expressing neutrophils ranges from 0% and
Frontiers in Immunology | www.frontiersin.org 7
100% of circulating neutrophils. CD177 can interact with PECAM-
1 (expressed on endothelial cells, platelets, monocytes, and
granulocytes), which is a key player in neutrophil migration from
bloodstream to tissue (132). The proportions of CD177+

neutrophils is higher in GCF from periodontitis patients, as
compared to blood from the same donor and this accumulation
ofCD177+neutrophils in inflammatory exudatewasnot seen in two
different models of aseptic inflammation, suggesting that this is a
periodontitis specific phenotype. Furthermore, the CD177+

neutrophil subtype does not accumulate in the GCF of healthy
subjects (133).

As periodontal disease is considered an inflammatory condition
with systemic associations, neutrophil phenotypes related to
inflammation are likely relevant to health in the oral cavity as well
as systemically at distant sites. Recent work has demonstrated that
oral inflammation occurring during human experimental gingivitis
or ligature induced models of murine periodontitis has systemic
effects to produce an exacerbated immune response at a secondary
site during a secondary insult (134). This supports a larger role of
oral inflammation and particularly neutrophil-derived changes
broadly throughout the body.

SUMMARY

There is an abundance of work highlighting the importance of
phagocytic cells, including macrophages and neutrophils, under
conditions of health and disease in the oral environment. Both of
these cell types play specialized roles in part by polarizing to a
variety of phenotypes to alter their phenotypic responses in
health and disease. As described in this review, a key role for
such polarization in the context of oral diseases, including
periodontal disease and oral cancer is well documented.
However, while there is increased understanding of the roles
for innate immune cell polarization in the oral environment in
recent years, their remains a lack of insight into molecular
mechanisms fueling the responses of these phagocytes. Future
characterization of the plasticity of innate immune cells will
provide important information to decipher their detailed roles in
driving pathogenic conditions in the oral cavity.
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