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Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor characterized by rapid
progression, early metastasis, high recurrence, and limited responsiveness to
conventional therapies. The 5-year survival rate of PDAC is extremely low (<8%), which
lacks effective prognostic evaluation indicators. In this study, we used xCell to analyze
infiltrating immune cells in a tumor and through the univariate and multivariate Cox
analyses screened out two prognosis-related immune cells, CD4+TN and common
lymphoid progenitor (CLP), which were used to construct a Cox model and figure out
the risk-score. It was found that the constructed model could greatly improve the
sensitivity of prognostic evaluation, that the higher the risk-score, the worse the
prognosis. In addition, the risk-score could also identify molecular subtypes with poor
prognosis and immunotherapy sensitivity. Through transcriptome and whole-exome
sequencing analysis of PDAC dataset from The Cancer Genome Atlas (TCGA), it was
found that copy number deletion and low expression of CCL19 might be crucial factors to
affect the risk-score. Lastly, validation of the above findings was confirmed not only in
Gene Expression Omnibus (GEO) datasets but also in our PDAC patient samples,
Peking2020 cohort.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
fatal malignancies, characterized by rapid progression, early
metastasis, high recurrence, limited responsiveness to
conventional therapies, and a low 5-year overall survival (OS)
rate (<8%) (1). As with other cancers, PDAC is considered as a
complex genetic disease. The prognostic evaluation of PDAC is
based on the characteristics of the tumor itself, such as TP53
deletion and KRAS mutation (2, 3). Thus, only a handful have
finally entered clinical applications. There is a growing
realization that tumor microenvironment (TME) plays an
important role in tumorigenesis and development, where
infiltrating immune cells are indispensable factors affecting
treatment and prognosis (4). Compared with tumor cells,
immune cells as normal somatic cells in the tumor immune
microenvironment have less mutation burden, have less
heterogeneity within the tumor and among patients, and are
easier to serve as a reliable and stable prognostic evaluation scale.
For example, the prognosis of triple-negative (TN) breast cancer
can be assessed by measuring the amount of lymphocytic
infiltration, and the greatest survival benefit from each 10%
increase in lymphocytic infiltrate can be derived (5), while high
immune cell infiltration is negatively correlated with the
prognosis of brain lower-grade glioma, glioblastoma
multiforme, and uveal melanoma (6). These all imply that
immune cell infiltration has different effects on the prognosis
in different tumor backgrounds. For the prognosis of PDAC,
there is no consensus on the impact of immune cell infiltration.

PDAC has always been considered as a “cold” tumor with
extensive myeloid-derived suppressor cells (MDSCs; for
example, tumor-associated macrophage and myeloid-derived
suppressor cells) (7, 8) and dense stromal tissue, which further
hinders the flow of immune cells and makes it less sensitive to
immunotherapy. On the other hand, this natural barrier may be
more conducive to the homeostasis of local unique immune
microenvironment in PDAC, making the infiltrated immune
cells not prone to large fluctuations in a short time, which
increases possibility and stability to assess the prognosis of
PDAC by the infiltration of immune cells. In support of these
inspiring discoveries, there are quite a few researchers predicting
the prognosis of PDAC by analyzing immune-related genes,
lncRNA and miRNA. Nevertheless, it is infiltrating immune
cells that perform the final function. The prognosis assessment
method based on immune-related genes [such as 4-chemokine
(9) and 15-gene immune, stromal, and proliferation gene
signature strategies(10)] all rely on whether chemokines or
their related receptors happen to be expressed on the surface
of infiltrated immune cells or not. This indirect evaluation
method limits the accuracy of its evaluation to a certain extent.
Similarly, lncRNA (11) and miRNA (12) often have multi-target
characteristics downstream that may perform different functions
under different inflammation backgrounds and lack sufficient
predictive stability. Recently, there has been a rise in the
molecular subtype study of PDAC combining TME and
transcriptome analysis, for example, basal-like and activated
stromal subtype proposed by Moffitt et al. (13) and pure basal-
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like and stromal activated subtypes identified by Puleo’s group
(14), which all suggest that the prognosis of patients is bad. On
the other hand, the panel of genes applied for molecular subtype
has not yet reached a consensus. All data are based on the
transcriptome, which increases the cost of prediction strategy,
and complex algorithms hinder its clinical application.
Therefore, we urgently need to find a more innovative,
simpler, and more economical evaluation model to measure
the prognosis of PDAC based on infiltrating immune
cells directly.

With the promotion and popularization of second-generation
sequencing technology, we can obtain sequencing data from
multiple omics and multiple database centers, and we have a
more integrated and accurate understanding of the PDAC
immune microenvironment landscape. xCell is a very popular
R package, launched in 2017 by Aran’s group, to infer the
proportion of cell types in bulk RNA samples (15, 16). In our
study, we use the xCell algorithm to predict 64 types of non-
tumor cell in PDAC. Among them, there are 36 kinds of immune
cells, of which only two are related to prognosis, CD4+ naïve T cell
(CD4+TN) and common lymphoid progenitor (CLP), where
CD4+TN was positively correlated with prognosis, while CLP was
contrasting. Then we combined them to construct Cox model,
which can significantly improve the sensitivity of prognostic
evaluation. The risk-score obtained by the model is negatively
correlated with the prognosis. The feasibility has also been further
confirmed in the Gene Expression Omnibus (GEO) database and
our clinical PDAC patients, Peking2020 cohort. Lastly, by
combining transcriptome and whole-exome sequencing analysis
of PDAC dataset from The Cancer Genome Atlas (TCGA), it is
found that CCL19 may be a crucial factor affecting the model.
MATERIALS AND METHODS

Datasets and Clinical Information
PDAC level 3 expression profiles of RNA sequencing data
[fragments per kilobase of transcript per million mapped reads
(FPKM)], somatic mutation, copy number variation (CNV) data,
and the corresponding clinical information of 143 PDAC patients
were downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga/).
The patients who lack survival time or who had survival time of less
than 30 days were removed, and only 136 PDACs were finally
enrolled. Validation cohort, i.e., GSE71729, GSE102238, and
GSE57495, was extracted from GEO datasets (https://www.ncbi.
nlm.nih.gov/gds/). The gene expression information of normal
pancreatic tissue (FPKM) was derived from Genotype-Tissue
Expression (GTEx) via University of California, Santa Cruz,
Xena (https://xenabrowser.net/datapages/?cohort=GTEX). All
RNA sequencing data were normalized and transformed into
log2(FPKM + 1); then unexpressed or extremely low-expressed
genes inmost of the samples (average log2(FPKM+ 1) < 0.01) were
filtered out. Matched clinical validation cohort, namely,
Peking2020 Cohort, with 40 cases in total, originated from
Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, wherein written informed consent was
obtained from all patients (Table 1).
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Estimation of Tumor-Infiltrating
Immune Cells
The xCell online tool (https://xcell.ucsf.edu/) was used to
perform enrichment analysis of tumor-infiltrating immune
cell (TIIC) level, Immune Score, Stroma Score, and Micro
environment score based on gene expression data. The
data analysis results of TCGA database were downloaded
directly from the xCell portal website, while the GEO data
needed to use the “sva” package in the R software 4.0.0 to
remove the batch differences, and then we uploaded the
standardized data to the xCell website for analysis. According
to the median of the level of TIIC, 136 cases of PDAC patients in
TCGA were divided into the high and low TIIC groups. Survival
analysis in R software 4.0.0 was used to determine the cell types
with prognostic value, and then the GEO datasets and
Peking2020 Cohort were used for verification. Immunotherapy
sensitivity was predicted through the ImmuneCellAI online
perform (http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/) based
on gene expression data.

Development of a Risk-Score
The risk-score of each patient was calculated based on the
survival-related level of TIIC multiplied by the multivariate
Cox regression coefficient (see the following formula for
details), and the patients were divided into the high risk-score
group and low risk-score group based on the median value of
risk-score. The Kaplan–Meier (KM) survival analysis was
performed on the two groups using log-rank test; receiver
operating characteristic (ROC) curves of 1-year, 2-year, and 3-
Frontiers in Immunology | www.frontiersin.org 3
year survival prediction were drawn; then the area under the
ROC curve (AUC) value was calculated.

risk − score = Sbi ∗TIICi

where bi was the coefficient of the ith the survival-related TIIC,
i.e., b(CD4+TN) = −0.16, b(CLP) = 0.63. TIICi represents the
level of the ith survival-related TIIC.

Analysis of Differentially Expressed Genes
Differentially expressed genes (DEGs) of the high risk-score
group and low risk-score group were analyzed by R software
4.0.0 “edgeR” package. The screening threshold was set to log2
(fold change) >1 and false discovery rate (FDR) <0.05, and then
we used “pheatmap” package and “plot” package in R software
4.0.0 to draw heatmaps and volcano maps, respectively.

Differentially Expressed Gene Function
Enrichment Analysis
“Clusterprofiler” package in the R software 4.0.0 was used to
perform functional enrichment analysis on DEGs, including
Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis,
where GO analysis included molecular function (MF),
biological process (BP), and cellular component (CC) analyses.

Protein–Protein Interaction Network
Through Search Tool for the Retrieval of Interacting proteins
(STRING, https://string-db.org) database, the protein–protein
interaction (PPI) network of DEGs, namely, PPI, was established.
TABLE 1 | Demographic characteristics of TCGA-PDAC and Peking2020 cohort.

Demographic characteristics TCGA-PDAC Peking 2020 cohort

Total case 136 40
Age 64.36 ± 10.95 60.93 ± 11.72
Gender Male 71 26

Female 65 14
Anatomic site of pancreas Head 103 15

Body 10 3
Tail 8 14
Other 15 8

Neoplasm histologic grade High differentiation 16 2
Medium differentiation 80 11
Low differentiation 39 23
Other 1 4

Pathologic_N N0 35 14
N1 100 19
Other 1 7

Pathologic_T T1 4 0
T2 13 6
T3 115 20
T4 3 7
Other 1 7

Tumor stage I 11 4
II 118 20
III 3 12
IV 3 1

　 Other 1 3
October 2021 | Volum
“Other” represents unknown or missing information.
TCGA, The Cancer Genome Atlas; PDAC, pancreatic ductal adenocarcinoma.
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The comprehensive score>0.4 was used as the criterion for the
existence of interaction. Then Cytoscape software was used to
rebuild the PPI network, and the Cytoscape MCODE plug-in was
used to find core clusters that located densely connected areas
and calculated the connectivity of network nodes.

Tumor Mutation Burden Analysis
Tumormutation burden (TMB)was defined as the total number of
somatic mutations (including single-nucleotide variants (SNVs),
missense mutation, and insertion–deletion (INDELs) per million
bases in the coding region of exons). Somatic mutation data were
analyzed using VarScan2, and then TMBwas calculated as the total
number of somaticmutations/all bases, and the unitwasmutations/
Mb. In this study, the “Maftools” package in R software 4.0.0 was
used to calculate the TMB of each sample.

Copy Number Variation Analysis
The copy number information of PDAC from TCGA was
annotated according to the position information of grch38
genome; set the normal copy change as 0, then single copy
amplification as 1, double copy even multiple copy amplification
as 2, single copy deletion as −1, and double copy or multiple copy
deletion as −2. Then, the chi-square test was used to select the
differential copy number between the two groups in the high-risk
group and low-risk groups (p < 0.05); the Kruskal test was used
to determine the copy number differential genes related to gene
expression; and the Gene Set Enrichment Analysis (GSEA) was
used for functional analysis.

Multiplex Immunofluorescence Staining
Multiplex immunofluorescence staining was performed according
to a sequential multiplexed immunofluorescence protocol (17).
Briefly, co-stain CD3 (Cat #ab16669, RIDD: AB_443425, Abcam),
CD4 (Cat #ab133616, RIDD: AB_2750883, Abcam) and CD45RA
(Cat #ab755, RIDD: AB_305970, Abcam), or CD127 (Cat
#DF6362, RIDD: AB_2838326, Affinity), CD135 (Cat #DF8546,
RIDD: AB_2841750, Affinity), and CCL19 (Cat #13397-1-AP,
RIDD: AB_2071529, ProteinTech). Then, corresponding
secondary antibodies used were fluorescein isothiocyanate–
Tyramide Signal Amplification (FITC-TSA) (PPD520, Panovue)
for CD3 or CCL19 detection, CY3-TSA (PPD570, Panovue) for
CD4 or CD127 detection, and CY5-TSA (PPD620, Panovue) for
CD45RA or CD135 detection. Nuclei were highlighted using DAPI
(D9542, Sigma-Aldrich). Finally, using Phenochart software
(Version 1.08, PerkinElmer) and inForm image analysis software
(Version 2.4, PerkinElmer), we estimated the number of co-located
cells of CD3, CD4, and CD45RA per ×100 magnification field as
CD4+TN level (randomly select three fields at least). Similarly, the
number of co-located cells of CD127 and CD135 was calculated as
CLP level. For the scoring of CCL19, we first evaluated the staining
intensity of whole tumor tissue at low magnification. Samples with
no staining were scored 0, weakly stained samples scored 1, mildly
stained samples scored 2, and strongly stained samples scored 3.
We also calculated the number of positive cells from at least three
high magnification fields chosen at random as well as their mean
intensities. As described above, samples with <25% positive
expression were scored 1, samples within the expression range
Frontiers in Immunology | www.frontiersin.org 4
of 25%–50% scored 2, samples within the expression range of
50%–75% scored 3, and samples with expression ≥75% scored 4.
The final CCL19 expression was determined by multiplying the
intensity score with the positive expression value.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8.0 and
R software 4.0.0. Measurement data were expressed as mean ±
standard deviation, using Student’s t-test. Counting data were
expressed as percentage (%), using chi-square test. Survival curve
was drawn by the KM method, using log-rank test. The
correlation between immune cells was evaluated by Spearman’s
correlation coefficient. p < 0.05 or FDR < 0.05 was considered
statistically significant in all tests.
RESULTS

A Cox Model Constructed by Combining
the Intratumoral Infiltration of CD4+TN and
Common Lymphoid Progenitor Can
Improve the Sensitivity of Predicting
Overall Survival in The Cancer Genome
Atlas Pancreatic Ductal Adenocarcinoma
Discovery Cohort
Based on the xCell algorithm, the type and level of immune cell
infiltration in 136 PDAC cases were evaluated, and a total of 36
immune cells were predicted. Then KM survival analysis showed
that only CD4+ naïve T cell (CD4+TN), CLP, and CD4+Th2 cell
(Th2) were closely related to survival, where CD4+TN was
positively correlated with survival (p < 0.001, Figure 1A), while
CLP and CD4+Th2 cell were negatively correlated with survival
(p = 0.009, Figure 1B; p = 0.022, Supplementary Figure S1A).
Furthermore, combined with clinical factors for univariate and
multivariate analyses, only CD4+TN and CLP could be regarded as
independent risk factors, but the p-value was only slightly
significant (Figures 1E, F and Table 2). However, when
combining CD4+TN and CLP to construct a proportional
hazards model (Cox model), its clinical significance could be
dramatically improved (p < 0.001, Table 2). Based on the
individual point of risk-score calculated through the Cox model,
PDAC patients were divided into the low risk-score and high risk-
score groups (median set as cutoff). KM curves confirmed that the
high risk-score group had much worse prognosis than the low
risk-score group (p < 0.001, Figure 1C). Additionally, the risk-
score could estimate OS of patients much sensitively, as the AUC
was 0.713, 0.667, and 0.609 for 1-year, 2-year, and 3-year OS,
respectively, and the discrimination index (C-index) was 0.706
(Figure 1D). Furthermore, this result was also verified in
GSE71729 dataset (p = 0.027, Supplementary Figures S1B, C).

Performance of the Risk-Score to Identify
Molecular Subtypes and Immunotherapy
Sensitivity
In succession, through the scatter plot of patient risk assessment, we
found that risk-score was positively correlated with CLP level and
October 2021 | Volume 12 | Article 769047

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Risk-Score for PDAC Prognosis Prediction
negatively correlated with CD4+TN level (Figure 2A). Meanwhile,
with the increase of risk-score, the survival time of patients was
gradually shortened, and the death events increased. Consistent
with that, the risk-score was significantly higher in the short-term
survival than the long-term survival (Figure 2B, p = 0.01).
Interestingly, this risk-score also happened to be negatively
correlated with the Immune Score, Stroma Score, and
Microenvironment score. Previous studies had shown that
molecular classification of pancreatic cancer was closely related to
prognosis, but its complex algorithm has also become one of the
important factors limiting its clinical application. Therefore, we
were trying to explore whether the risk-score of our model could
well identify high-risk molecular subtypes and replace its prognostic
Frontiers in Immunology | www.frontiersin.org 5
evaluation value. According to Moffitt’s algorithm (13) for
molecular classification of PDAC, we found that with the increase
of the risk-score, the proportion of basal-like and activated stroma
corresponding to the molecular subtype with the worst prognosis
increased. Also, through ROC curve analysis, it was found that
Cox model was also highly sensitive to the prediction of basal-like
molecular subtype (AUC = 0.728, Figure 2C). Furthermore, it was
more sensitive to predict the joint basal-like and activated stroma
molecular subtype (AUC = 0.733, Figure 2C). In addition, we also
performed molecular classification of PDAC according to Puleo’s
algorithm (14), and the results were consistent with those of the
former: with the increase of risk-score, the proportion of pure basal-
like and stroma-activated molecular subtypes associated with the
A B

D

E F

C

FIGURE 1 | Combining intratumoral infiltrating CD4+TN and CLP to construct a Cox model can improve the sensitivity of predicting OS in TCGA PDAC discovery
cohort. (A–C) OS in CD4+TN, CLP, and risk-score high vs. low infiltrating cell/risk-score patients depicted by KM plots in TCGA PDAC discovery, respectively.
(D) ROC curves to depict the accuracy of risk score in identifying poor OS in TCGA PDAC discovery cohort for 1, 2, and 3 years, respectively. (E, F) Forest plot
showing the HR of CD4+TN, CLP, and risk score in the univariate and multivariate Cox analyses, respectively. OS, overall survival; KM, Kaplan–Meier; HR, hazard
ratios; CLP, common lymphoid progenitor; TCGA, The Cancer Genome Atlas; PDAC, pancreatic ductal adenocarcinoma; ROC, receiver operating characteristic.
October 2021 | Volume 12 | Article 769047
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worst prognosis increased as well as high prediction sensitivity
(AUC = 0.696, Figure 2C).

Further studies suggested that risk-score could well predict
the cytotoxicity of T cells in the microenvironment of PDAC and
the sensitivity of PDAC patients to immune checkpoint
inhibitor. The risk-score of the high cytotoxicity group and
immunotherapy sensitive group was lower (p < 0.001 and p <
0.001, respectively; Figures 2D, E). Moreover, PDAC patients in
whom molecular targeted therapy is applicable had a lower risk-
score value (p = 0.004, Figure 2F). Besides that, the risk-score
was positively correlated with the degree of dysplasia and tumor
size; that is, the higher the degree of dysplasia, or the larger the
tumor size, the higher the risk-score (p = 0.005, p = 0.045,
Figures 2G, H). Meanwhile, patients with higher risk-score
usually survived with tumors, and surgery to remove the
tumor totally was more difficult (p = 0.019, Figure 2I).

Risk-Score for Predicting Overall Survival
Was Validated in Clinical Pancreatic
Ductal Adenocarcinoma Patients
In order to further verify that the Cox model we constructed
could indeed assess the prognosis of PDAC patients, we selected
40 PDAC patient samples, Peking2020 cohort, and followed the
above algorithm to analyze the level of intratumoral infiltration
of CD4+TN (CD3+, CD4+, and CD45RA+) and CLP (CD127+

and CD135+) to calculate the risk-score of each case by multiplex
immunofluorescence staining. As expected, the results of
Peking2020 cohort were consistent with the above results.
Contrary to the PDAC with high risk-score, the level of
CD4+TN was higher in the low risk-score group (Figure 3A),
while the level of CLP tended to be lower (Figure 3B). Also,
compared with the short-term survival group, the level of
CD4+TN in the long-term survival group was also higher
(Figure 3C), while the level of CLP and risk-score was in
reverse (Figures 3D, E). Furthermore, we conducted KM
survival analysis and found that CD4+TN was positively
Frontiers in Immunology | www.frontiersin.org 6
correlated with PDAC patient survival (p < 0.001, Figure 3F),
but CLP was negatively correlated with patient survival (p <
0.001, Figure 3G), and after the joint analysis, the significance of
the negative correlation between risk-score and prognosis was
further confirmed (p < 0.001, Figure 3H). In addition, the same
as the results of PDAC dataset from TCGA, the larger the tumor
volume, the higher the risk-score (p < 0.001, Supplementary
Figure S1D). Interestingly, PDAC in the tail of the pancreas had
a higher risk-score than the head of the pancreas (p = 0.0316,
Supplementary Figure S1E).

Gene Expression and Function Profiled in
High and Low Risk-Score Groups
The above studies confirmed the role of risk-score in the
prognostic evaluation of PDAC patients, so we tried to explore
its potential molecular mechanism. First of all, principal
component analysis (PCA) was conducted on the transcriptome
data of healthy pancreas (combined with pancreas tissue from
GTEx and paracancerous tissue of PDAC dataset from TCGA)
and tumor tissue (PDAC dataset from TCGA). The results
showed that the mRNA expression was significantly different
between normal tissues and cancer tissues, while there was no
significant difference between the low risk-score and high risk-
score groups (Supplementary Figures S1F, G). However,
through the analysis of heatmaps and volcano maps, we found
that there were still 172 DEGs between the low risk-score and
high risk-score groups, among which 162 genes were
downregulated and 10 genes were upregulated in the high risk-
score group (Figures 4A, B). Then, GO and KEGG analysis of
these 172 DEGs revealed that they were mainly concentrated
in immune-related functions and pathways, for example,
Complement activation by classical pathway, Immunoglobulin-
mediated immune response, and Cytokine–cytokine receptor
interaction (Figures 4C, D). Furthermore, the 172 DEGs were
analyzed for PPI. Then, the most important core interaction
protein network was screened out through MCODE algorithm.
TABLE 2 | Univariate and multivariate analyses for CD4+TN, CLP, and risk score.

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR p-Value HR 95% CI of HR p-Value

Age 1.02 0.995–1.045 0.118 1.02 0.993–1.049 0.154
Gender 0.772 0.457–1.306 0.335 0.886 0.477–1.646 0.701
Race 1.594 0.824–3.082 0.166 1.375 0.578–3.271 0.471
History of smoke 0.892 0.745–1.067 0.211 0.924 0.737–1.157 0.489
History of alcohol 1.031 0.577–1.841 0.919 1.192 0.622–2.285 0.596
History of diabetes 0.869 0.466–1.622 0.659 1.011 0.515–1.985 0.975
History of chronic pancreatitis 1.147 0.518–2.540 0.735 1.804 0.742–4.384 0.193
Prior malignancy diagnoses 0.98 0.302–3.186 0.974 0.589 0.169–2.049 0.405
Anatomic site of tumorigenesis 0.943 0.733–1.214 0.648 1.15 0.856–1.544 0.354
Neoplasm histologic grade 1.232 0.813–1.865 0.325 1.434 0.895–2.296 0.134
Pathologic_N 1.2 0.634–2.274 0.575 0.905 0.414–1.982 0.803
Pathologic_T 1.385 0.767–2.502 0.28 0.856 0.302–2.426 0.77
Tumor stage 1.523 0.673–3.449 0.313 1.343 0.312–5.784 0.693
T cell CD4+ naïve 0.77 0.598–0.989 0.041* 0.723 0.524–0.997 0.048*
Common lymphoid progenitor (CLP) 2.007 1.294–3.112 0.002* 1.732 1.050–2.855 0.031*
Risk_score 1.539 1.226–1.932 <0.001*** 1.538 1.190–1.988 0.001**
October
 2021 | Volume 12 | Article
For all panels, *p < 0.05, **p < 0.01, ***p < 0.001.
The bold values: p < 0.05.
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It was found that CCL19 occupied one of the most core positions
and interacted closely with other genes (Figure 4E). Moreover,
the function of core interaction protein was mainly related to
regulation of lymphocyte activation and differentiation,
chemokine-mediated signaling pathway, etc. (Figure 4F).
Frontiers in Immunology | www.frontiersin.org 7
Whole-Exome Sequencing Data Showed
the Difference Between High and Low
Risk-Score Groups
Since previous studies had shown that TMB could affect
tumor immune infiltration (18, 19), we further analyzed the
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FIGURE 2 | Performance of the risk-score to identify PDAC molecular subtypes with poor prognosis and immunotherapy sensitivity in TCGA discovery cohort.
(A) Dot plot of survival. Vertical and horizontal axes respectively represent survival time and OS samples, ranked by increasing risk-score. Red and green colors
represent dead and living OS cases, respectively. The second figure from the top is a dot plot of risk-score. Vertical and horizontal axes respectively represent risk-
score and OS samples, ranked by increasing risk-score. Red and green colors represent high and low risk cases, respectively. The remaining figure is a heatmap for
the level of CD4+TN, CLP infiltration, Immune Score, Stroma Score, Microenvironment score, and Moffit’s and Puleo’s molecular subtypes, ranked by increasing risk-
score. (B) Box plot to depict risk-score between long-term survival and short-term survival. (C) ROC curves to depict the accuracy of risk-score in identifying PDAC
molecular subtypes with poor prognosis in TCGA discovery cohort. (D–I) Box plot depicts risk-score of high T-cell cytotoxicity vs. low T-cell cytotoxicity, ICB no
response vs. ICB response, no apply targeted molecular therapy vs. apply targeted molecular therapy, neoplasm histologic grade G1–G2 vs. G3–G4, tumor
dimension ≤ 3.5 vs. > 3.5 cm, and person neoplasm cancer statue tumor free vs. with tumor, respectively. ICB, immune-checkpoint blockade; NR, no response; R,
response; PDAC, pancreatic ductal adenocarcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival; CLP, common lymphoid progenitor; ROC, receiver
operating characteristic.
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TMB in PDAC. It was found that PDAC was a “cold” tumor with
low TMB as reported in the literature (2, 3), but compared with
the low risk-score, the high risk-score group still has higher
TMB, such as conventional TP53 and KRAS mutation
(Figures 5A, B), However, these mutations did not make the
corresponding gene expression different at the transcriptome
level, so it did not affect the expression of DEGs obtained by
transcriptome analysis.

Compared with TMB, CNV between patients was more
constant, and the frequency of variation was higher, which was
one of the key events leading to tumor development (20–22).
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However, there were fewer studies on the tumor immune
microenvironment. Therefore, we tried to find the main CNV
that could affect the value of risk-score. By analyzing the whole-
exome data of CNV, it was found that compared with the low
risk-score group, the high risk-score group had more
characteristic chromosome amplification and deletion
(Figures 5C, D), such as 8q, 9p, 17, 18, 19q, and 20q
chromosome amplification, and 2q, 6, 7, and 8p chromosome
deletion. At the same time, a total of 1,593 differential CNVs
related to expression were generated, mainly enriched in
immune-related functions, such as activation and positive
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FIGURE 3 | Validating the Cox model can improve the sensitivity of predicting OS in Peking2020 cohort. (A, B) Multiplex immunofluorescence analyses on CD4+TN
and CLP intratumoral infiltration in Peking2020 cohort (n = 40). CD4+TN depicts co-localization staining for CD3+, CD4+, and CD45RA+. CLP depicts co-localization
staining for CD127+ and CD135+ (randomly select three fields at least). (C–E) Box plot depicts the level of CD4+TN, CLP, and risk-score between long-term survival
and short-term survival. (F–H) OS in CD4+TN, CLP, and risk-score high vs. low-infiltrating cell/risk-score patients depicted by KM plots in Peking2020 cohort
respectively. OS, overall survival; KM, Kaplan–Meier; CLP, common lymphoid progenitor.
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regulation of immune response, participating in innate immune
response and antigen receptor-mediated signaling pathway
(Figure 5E) by GSEA, where there was a total of six intersection
genes with DEGs generated by the transcriptome, that is, CA9,
TNNT1, FABP4, CCL21, LY86, and CCL19 (Figure 5F).
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CCL19 Was a Potential Factor Affecting
Risk-Score
Compared with those in the normal pancreas (GTEx + TCGA),
CA9, TNNT1, CCL21, LY86, and CCL19 were all expressed higher
in tumor tissues, except for FABP4, which was expressed lower in
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FIGURE 4 | Gene expression and function profiled in high and low risk-score groups. (A) Heatmap of DEGs between low risk-score and high risk-score groups.
Horizontal and vertical axes represent PDAC samples and genes, respectively. Genes with higher, lower, and same expression levels are shown in red, green, and
black, respectively. Color bars on bottom of the heatmap represent sample types, with blue and pink indicating low and high risk-score samples, respectively.
(B) Volcano plot demonstrating the enriched genes between low risk-score and high risk-score groups. Genes expression increased in high or low risk score is
shown in red or green dots, respectively (log2(fold change) > 1 and FDR < 0.05). (C, D) Bar plot for the top 5 of BP-GO terms, CC-GO terms, MF-GO terms, and
KEGG analysis of DEGs. Shown on the left is cir-plot for the correlation between DEGs and GO or KEGG terms. (E) PPI network of core DEGs by MCODE
algorithm. (F) The correlation between core DEGs and top 5 BP-GO terms. DEGs, differentially expressed genes; FDR, false discovery rate; GO, Gene Ontology;
BP, biological processes; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interaction.
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a tumor (p < 0.001, Figures 6A–F). In contrast with that in the low
risk-score group, the expression of CA9 and TNNT1 increased in
the high risk-score group, while FABP4, CCL21, LY86, and CCL19
were contrasting (p < 0.001, Figures 6G–L). Except for FABP4,
their expression was positively correlated with the change of copy
number. Unlike in the low risk-score group, in the high risk-score
group, CA9 showed a variety of copy number changes; that is, in
addition to the normal double copy number, there was also single
copy number deletion, single copy number, or even multiple copy
number amplification (p = 0.023, Figure 6M). TNNT1 and
Frontiers in Immunology | www.frontiersin.org 10
FABP4 mainly showed single copy number amplification
(p = 0.002, p = 0.005, Figures 6N, O), while CCL21, LY86, and
CCL19 mainly showed single copy deletion in the high risk-score
group (p < 0.001, p < 0.001, and p = 0.001, Figures 6P–R).
Furthermore, we analyzed the correlation between these six genes
and risk-score, and we found that except for CA9 (Figure 6S), the
other five genes were significantly correlated with risk-score.
Among them, only the expression of TNNT1 was positively
correlated with risk-score (R = 0.492, p < 0.001, Figure 6T),
FABP4, CCL21, LY86, and CCL19 were negatively correlated with
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FIGURE 5 | Analysis of whole-exome sequencing data showed the difference between high and low risk-score groups. (A) Oncoplots for TMB analysis between
high and low risk-score groups, showing the top 30 mutated genes. The upper barplot indicates the number of mutations per sample, while the right barplot shows
the number of mutations per gene. The mutation types were added as annotations at the bottom. (B) Box plot to show the TMB between high and low risk-score
groups. (C, D) Circos plot for CNV in high and low risk-score groups, respectively. The outermost layer is the chromosome model, and the next two layers illustrate
the CNV (single copy amplification is shown in black dots, double even multiple copy amplification is in red dots, and deletion is in blue dots). (E) Venn diagram
analysis between the different CNV and DEGs from transcriptome. (F) GSEA for different CNVs. The vertical axis represents enrichment score. The enrichment score
increased with the number of enriched genes and vice versa. CNV, copy number variation; GSEA, Gene Set Enrichment Analysis; ES, Enrichment Score; NES,
Normalized Enrichment Score; TMB, tumor mutation burden; DEGs, differentially expressed genes.
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risk-score (R = −0.51, R = −0.6, R = −0.616, R = −0.626, p < 0.001,
Figures 6U–X), while there was no statistical correlation between
CA and risk-score.

Furthermore, we analyzed the survival of these five genes and
found that only TNNT1, CCL21, and CCL19 were closely related
to survival, of which TNNT1 was negatively related to survival
(p = 0.026, Figure 7A), while CCL21 (p = 0.038, Figure 7B) and
CCL19 (p = 0.019, Figure 7C) were positively correlated with
prognosis. Then univariate and multivariate analyses combined
with clinical factors found that only CCL19 was positively
Frontiers in Immunology | www.frontiersin.org 11
correlated with patient survival (p = 0.003, Figure 7D) and
could play a role as an independent prognostic factor (p = 0.005,
Figure 7E). It was also verified in GSE57495 dataset concurrently
(p = 0.034, Figure 7F). Similarly, in Peking2020 cohort, we also
found that CCL19 expression was significantly lower in the high
risk-score group (Figure 7G). Compared with the long-term-
survival patients, CCL19 also showed a downward trend in the
short-term-survival patients group (p = 0.008, Figure 7H).
Further survival analysis showed that CCL19 was positively
correlated with the prognosis (p < 0.001, Figure 7I), consistent
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FIGURE 6 | The expression pattern of six common genes and their correlation with risk score. (A–L) Box plot for analysis of six genes (CA9, TNNT1, FABP4,
CCL21, LY86, and CCL19) expression difference in normal (TCGA + GTEx) vs. PDAC (TCGA), and high risk score vs. low risk score. (M–R) Box plot for analysis of
the relationship between six gene expression (CA9, TNNT1, FABP4, CCL21, LY86, and CCL19) and CNV. (S–X) Correlation of six gene expression (CA9, TNNT1,
FABP4, CCL21, LY86, and CCL19) with risk score. TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; PDAC, pancreatic ductal
adenocarcinoma; CNV, copy number variation.
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with the above result, which suggested that CCL19 may be an
important factor affecting CD4+TN and CLP infiltration.
DISCUSSION

Using tumor immune microenvironment to assess tumor
prognosis has attracted increasing attention, such as breast
cancer, lung cancer, gastric cancer, and glioma. However, there
was no consensus in PDAC. Unlike traditional prognostic
Frontiers in Immunology | www.frontiersin.org 12
evaluation model, we boldly and innovatively combined
infiltrated immune cells to construct Cox model for prognostic
evaluation in PDAC. In order to eliminate the bias caused by a
single xCell algorithm, we used the TIMER and MCPCOUNTER
algorithms to predict infiltrating immune cells. Due to the
differences in the characteristic genes and calculation methods
selected by different algorithms, they cannot accurately predict
36 different immune cells as finely as xCell, which impelled us to
choose cell populations close to or containing CD4+TN and/or
CLP as much as possible. We found that the CD4+ T cells
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FIGURE 7 | CCL19 is a potential factor affecting risk score. (A–C) OS in TNNT1, CCL21, and CCL19 high- vs. low-expression patients depicted by KM plots in
TCGA PDAC discovery cohort, respectively. (D, E) Forest plot showing the HR of TNNT1, CCL21, and CCL19 in the univariate and multivariate Cox analyses,
respectively, in TCGA PDAC discovery cohort. (F) OS in CCL19 high- vs. low-expression patients depicted by KM plots in GSE57495 validation cohort. (G) Multiplex
immunofluorescence analyses on CCL19 expression in Peking2020 cohort (n = 40, randomly select three fields at least). (H) Box plot depicts CCL19 expression
between long-term survival and short-term survival in Peking2020 cohort. (I) OS in CCL19 high- vs. low-expression patients depicted by KM plots in Peking2020
cohort. OS, overall survival; KM, Kaplan–Meier; HR, hazard ratios; TCGA, The Cancer Genome Atlas; PDAC, pancreatic ductal adenocarcinoma.
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predicted by the TIMER algorithm and T cells predicted by
MCPCOUNTER algorithm were positively correlated with the
prognosis (Supplementary Figures S1H, I), which indirectly
supported the reliability of our results by xCell algorithm.
Furthermore, the feasibility of our model to predict prognosis
has also been deeply verified in GEO datasets and our
Peking2020 cohort. We found that the risk-score originated
Cox model was not affected by the demographic characteristics
of age, gender, and race; nor was it interfered by conventional
high-risk factors for PDAC such as smoking, drinking, diabetes,
chronic pancreatitis, and family history of tumors. Besides, there
was no significant correlation between the TNM stage, tumor
stage, surgical method, and risk-score (Supplementary Figure
S2). At the same time, as for the commonly used bio-markers of
PDAC, such as CA199, CA125, and carcinoembryonic antigen
(CEA), there was no significant difference among them in the
expression of tumor tissues between the high risk-score and low
risk-score groups, which suggested that these traditional
indicators to predict prognosis had a certain lag. Based on the
above, the risk-score could be used as an independent prognostic
factor. Nevertheless, the risk-score had nothing to do with the
anatomical site of tumor occurrence in TCGA database, but
tumor in the tail of the pancreas had a higher risk-score than the
head of the pancreas in our Peking2020 cohort unexpectedly,
where the reasons needed to be further explored. In addition,
chemotherapy was closely related to the prognosis of patients. In
our study, we found that chemotherapy can significantly
improve the prognosis of patients, whether in the high risk-
score or low risk-score group (Supplementary Figures S3A–C).
There was no significant difference in risk-score among patients
who received or did not receive chemotherapy (Supplementary
Figure S3D). However, the high risk-score group always had a
worse prognosis than the low risk-score group regardless
of whether the patient received chemotherapy or not
(Supplementary Figures S3E, F). Interestingly, our risk-score
has higher prognostic prediction sensitivity in the patient
without chemotherapy group than with chemotherapy group
(without chemotherapy vs. with chemotherapy AUC (1 year) =
0.743 vs. 0.657, without chemotherapy vs. with chemotherapy
AUC (3 years) = 0.782 vs. 565; Supplementary Figures S3G, H).

It was well known that PDAC was a “cold” tumor, although
the TMB of the high risk-score group was higher than that of the
low risk-score; based on the background of low TMB overall, this
difference may not be sufficient to assess its sensitivity to
immunotherapy. Fortunately, the risk-score still worked well to
predict the sensitivity to immunotherapy, and the patients
possessing higher cytotoxicity or using molecular targeted
therapy all tended to have a lower risk-score. Unfortunately,
due to the current lack of immunotherapy sensitivity indicators,
PDAC patients seldom received immunotherapy. Therefore,
although we can predict the sensitivity of immunotherapy,
we failed to collect enough patients who had received
immunotherapy, and the detailed impact of risk-score on the
prognostic performance in immunotherapy cohort cannot be
accurately assessed. The population must be further expanded,
and more complete information must be collected for in-depth
Frontiers in Immunology | www.frontiersin.org 13
exploration. CNV played a fundamental role in tumorigenesis
and development. It could be used not only as a prognostic
indicator but also as a therapeutic target; for example, Herceptin
and Iressa were developed for HER2 and EGFR copy number
amplification, respectively. In our research, we analyzed the
differences of CNV to explore the potential mechanism of why
our model can evaluate the prognosis. Finally, CCL19 was found
from 1,593 differential copy numbers that can be transcribed.
Copy number deletion or low expression of CCL19 may be key to
potential impact on risk-score.

Previous studies had shown that CCL19 (23, 24) was one of
the most significant chemokines, produced by dendritic cells
(DCs), lymphocytes, and some non-lymphocytes, including
tumor cells, consistent with our results. Moreover, CCL19
could specifically bind to its receptor, chemokine receptor 7
(CCR7), a class A subtype 7-span transmembrane G-protein
coupled receptor, which was expressed onDCs, natural killer (NK)
cells, macrophages, and lymphocytes including CD4+TN and CLP.
Therefore, we speculated that PDAC may promote the infiltration
of immune cells, especially CD4+TN and CLP, by secreting CCL19.
The effect of CD4+TN on tumor prognosis has not been unified.
Some researchgroupshadpointedout thatCD4+TNoften indicated
poor prognosis of breast cancer (25). However, some scholars hold
the view that CD4+TN level in smoking lung cancer is correlated
with favorableprognosis (26).These contradictory conclusionsmay
depend on which kind of cells CD4+TN was finally differentiated
into. In our study, CD4+TN supported favorable prognosis, also
possibly because CD4+TN differentiated into CD4+Th1 cells
induced by the unique microenvironment of PDAC, which
further enhanced CD8+T cell cytotoxicity synergistically and
conditioned B cells to promote the secretion of corresponding
antibodies in line with our prediction in GO annotation.
Although CLP may differentiate into various types of
lymphocytes, it may be induced by the unique microenvironment
of PDAC, whose outcome was similar to that of common myeloid
progenitor (CMP) differentiated into MDSC (27), and finally
differentiated into lymphoid-derived suppressor cells, which is
correlated with poor prognosis.

In addition, apart from CCL19, chemokines such as CCL2,
CCL3, CCL4, CCL5, CCL8, CXCL13, CCL18, and CCL21
(Supplementary Figure S4A) in the low risk-score group also
increased significantly, suggesting that there were more other
immune cell infiltration. Although these were not essential
factors affecting our model and the prognosis, at least they
reflected that the overall immune status of the low risk-score
group was much better than that of the high risk-score group, on
the other hand. Simultaneously, in our study, it was also found
that the low risk-score group had more expression of T cell-
activated co-stimulatory factors (such as ICOSLG, CD40LG,
TNFRSF9, TNFRSF4, TNFSF18, TNFRSF18, ICOS, CD28,
CD27, and CD40) and co-inhibitory factors (such as CTLA4,
PDCDL1G2, PDCD1, VSIR, LAG3, HAVCR2, and TIGIT)
(Supplementary Figures S4B, C), suggesting that PDAC TME
was not a simple binary state of activation or inactivation, which
may be related to the asynchronous activation and inactivation of
infiltrating immune cells. At the same time, each molecule was
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expressed continuously rather than in isolation during the
process from activation to inactivation.

Although studies around PDAC traditional molecular subtype
have paid attention to the indispensable role of TME and made
great efforts to predict the prognosis of pancreatic cancer, there
was a limitation for these findings in clinical transformation in
that the genes applied to prediction had not yet reach consensus,
as well as the need for complex algorithms and transcriptome
sequencing to classify them. Instead, our model was mainly based
on xCell and Cox algorithms; not only that the calculation was
more concise, but also the high-risk molecular subtypes can be
distinguished well. What is more, besides evaluation through
transcriptome sequencing data, our model can also use
economical multiplex immunofluorescence staining to achieve
prognostic evaluation alternately. Additionally, previous studies
had also suggested that high perineural invasion was correlated
with poor prognosis of PDAC (28, 29), whereas high neural
density tended to have a better prognosis (30). Consistent with
the latter, in our model, the activation of nerve fibers mainly
occurred in the low risk-score group by GSEA (Supplementary
Figures S5A–D), which may drop a hint that more neuro-
immune cell units (NICUs) (31), that is, the co-localization of
nerve fibers with immune cells, may be formed in the low risk-
score group. As it happened, NICUs and their interaction can
inhibit tumor progression by driving tissue protection and
immune regulation, which further supported the prominent
position of our model from another dimension.

In future clinical work, we can also learn from this research idea
by analyzing transcriptome sequencing data and then using the
xCell algorithm topredict the level ofCD4+TN andCLP infiltration,
or using multiplex immunofluorescence staining to evaluate the
degreeofCD4+TNandCLP infiltrationper×100magnificationfield
and then using the algorithmof ourmodel for reference to calculate
the risk-score and establish a complete reference interval of
prognostic evaluation scoring based on our model. However, due
to the low detection rate of early PDAC, it was mostly in the
advanced stage when the opportunity for surgery was lost, which
was a huge obstacle for us in collecting the early- or late-stage
samples. In TCGA PDAC datasets, there were only 11 cases
with stage I and only three cases with stage IV in PDAC (136
cases in total). Similarly, there were only four cases with stage I
and only one case with stage IV in our Peking2020 cohort (40 cases
in total). This led to the lack of sufficient early- and late-stage
data in our model for training and validation, which may limit
the accuracy of our model in evaluating the prognosis of such
patients and reduce the sensitivity to predict tumor stage to some
degree. In the future, it was expected to further expand population
data, especially the early- and late-stage patients, for verification
and to promote the clinical application of our model.
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Supplementary Figure S1 | (A, B) OS in high CD4+Th2 cell vs. low CD4+Th2
cell patients in TCGA PDAC dataset, high risk-score vs. low risk-score patients in
GSE71729 dataset depicted by KM plots respectively. (C) ROC curves to depict
the accuracy of risk-score in identifying poor OS in GSE71729 dataset for 1-year.
(D, E) Box plot to depic risk-score of tumor-dimension <=3 vs. >3 centimeter,
anatomic site of tumorigenesis, tail vs. head of pancreas in Peking2020 cohort
respectively. (F, G) PCA analysis among normal pancreatic tissue (including normal
pancreatic tissue in GTEX and paracancerous in TCGA PDAC dataset), high risk-
score and low risk-score, and (G) is the reanalysis of high risk-score and low risk-
score in (F). (H, I) OS in high CD4+T cell vs. low CD4+T cell patients predicted by
TIMER, high T cell vs. low of T cell predicted by MCPCOUNTER in TCGA PDAC
dataset depicted by KM plots respectively. KM, Kaplan Meier survival analysis; OS,
Overall Survival; PCA, Principal Component Analysis.

Supplementary Figure S2 | The relation between risk-score and demographic
and clinical characteristics in the TCGA PDAC dataset. Box plot to analyse risk-
score in different age group (<=65 years old vs. >65 years old), different gender
group (female vs. male), different race group (Asian, Black/African American vs.
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White), different history of smokegroup (none,occasionalvs. frequent),differenthistory
of alcohol group (no vs. yes), different history of diabetes group (no vs. yes), different
history of chronic pancreatitis group (no vs. yes), different prior malignancy diagnoses
group (no vs. yes), different anatomic site of tumorigenesis group (body, head, tail vs.
overlap/other site of pancreas), different pathologic_M group (M0 vs. M1), different
pathologic_N group (N0 vs. N1), different pathologic_T group (T1-T2 vs. T3-T4),
different tumor stage group (stage I, stage II vs. stage III-IV), different surgery performed
type group (no whipple vswhipple), different family history of cancer group (no vs. yes),
respectively. The pathologic TNM staging systemwas based on seventh edition of the
American Joint Committee on Cancer staging system in TCGA PDAC dataset.

Supplementary Figure S3 | Interaction between chemotherapy on risk-score in
TCGA PDAC dataset. (A–C) OS in the patients with Chemotherapy vs. without
Chemotherapy in all-patient, high risk-score group and low risk-score group from
TCGA PDAC dataset depicted by KM plots respectively. (D) Violin plot for analysis
risk-score value between patients with Chemotherapy and without Chemotherapy
group in TCGA PDAC dataset. (E–F) OS in high risk-score vs. low risk-score
patients with chemotherapy or without chemotherapy from TCGA PDAC dataset
depicted by KM plots, respectively. (G–H) ROC curves to depict the accuracy of
risk-score in identifying poor OS of patients with chemotherapy or without
chemotherapy in TCGA PDAC discovery cohort for 1-year and 3-year, respectively.
KM, Kaplan Meier survival analysis; Chemotherapy, the patients with
chemotherapy, no Chemotherapy, the patients without chemotherapy; ns, no
statistical significance.
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Supplementary Figure S4 | The relation between risk-score and chemokine (A),
co-stimulatory factor (B), co-inhibitory factor (C) in the TCGA PDAC dataset. (A)
Box plot for analysis chemokine (CCL2, CCL3, CCL4, CCL5, CCL8, CCL18,
CCL19, CCL21, CXCL9, CXCL10, CXCL11 and CXCL13) expression difference in
high risk-score vs. low risk-score, respectively. (B) Box plot to depict co-stimulatory
factor (CD28, CD27, CD27LG, CD40, CD40LG, ICOS, ICOSLG, TNFSF4,
TNFRSF4, TNFSF9, TNFRSF9, TNFSF18 and TNFRSF18) expression difference in
high risk-score vs. low risk-score, respectively. (B) Box plot to illustrate co-inhibitory
factor (CTLA4, PDCD1LG1, PDCD1LG2, PDCD1, VSIR, LAG3, LAGLS9, HAVCR2,
DIDO1 and TIGIT) expression difference in high risk-score vs. low risk-score,
respectively. ns, no statistical significance.

Supplementary Figure S5 | Differential CNV function annotation and prediction
by GSEA enrichment analysis in TCGA PDAC dataset. (A) Bar chart showing the
top 10 CC-GO terms of differential CNV for high risk-score vs. low risk-score. (B, C)
GSEA-based GO analysis-enrichment plots of representative gene sets: axon part,
neuron projection enrichment in low risk-score, respectively. (D) GSEA-based
KEGG-enrichment plots of representative gene sets from activated pathway:
neurotrohin signaling pathway in low risk-score. In the GSEA plots, the vertical axis
represents enrichment score. The enrichment score increased with the number of
enriched genes and vice versa. CNV, copy-number variation; GSEA, Gene Set
Enrichment Analysis; ES, enrichment score; NES, normalized enrichment score;
GO, Gene Ontology; CC, Cellular Component; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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GLOSSARY

APLNR Apelin receptor
CA9 Carbonic anhydrase 9
CCL18 C-C motif chemokine ligand 18
CCL19 C-C motif chemokine ligand 19
CCL2 C-C motif chemokine ligand 2
CCL21 C-C motif chemokine ligand 21
CCL3 C-C motif chemokine ligand 3
CCL4 C-C motif chemokine ligand 4
CCL5 C-C motif chemokine ligand 5
CCL8 C-C motif chemokine ligand 8
CCR7 C-C motif chemokine receptor 7
CD19 CD19 molecule
CD2 CD2 molecule
CD22 CD22 molecule
CD27 CD27 molecule
CD27LG CD70 molecule/CD27 ligand
CD28 CD28 molecule
CD40 CD40 molecule
CD40LG CD40 ligand
CD79A CD79a molecule
CR2 Complement C3d receptor 2
CTLA4 Cytotoxic T-lymphocyte associated protein 4
CXCL10 C-X-C motif chemokine ligand 10
CXCL11 C-X-C motif chemokine ligand 11
CXCL12 C-X-C motif chemokine ligand 12
CXCL13 C-X-C motif chemokine ligand 13
CXCL9 C-X-C motif chemokine ligand 9
CXCR4 C-X-C motif chemokine receptor 4
DIDO1 Death inducer-obliterator 1
FABP4 Fatty acid binding protein 4
HAVCR2 Hepatitis A virus cellular receptor 2
ICOS Inducible T cell costimulator
ICOSLG Inducible T cell costimulator ligand
IGLL5 Immunoglobulin lambda like polypeptide 5
LAG3 Lymphocyte activating 3
LGALS9 Galectin 9
LY86 Lymphocyte antigen 86
MS4A1 Membrane spanning 4-domains A1
PDCD1 Programmed cell death 1
PDCD1LG1 Programmed cell death 1 ligand 1
PDCD1LG2 Programmed cell death 1 ligand 2
SAA1 Serum amyloid A1
SELL Selectin L
SST Somatostatin
TIGIT T cell immunoreceptor with Ig and ITIM domains
TNFRSF18 TNF receptor superfamily member 18
TNFRSF4 TNF receptor superfamily member 4
TNFRSF9 TNF receptor superfamily member 9/4-1BB
TNFSF18 TNF superfamily member 18
TNFSF4 TNF superfamily member 4
TNFSF9 TNF superfamily member 9/4-1BB ligand
TNNT1 Troponin T1, slow skeletal type
VSIR V-set immunoregulatory receptor
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