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Neutrophils are innate immune cells with important roles in antimicrobial defense.
However, impaired or dysregulated neutrophil function can result in host tissue
damage, loss of homeostasis, hyperinflammation or pathological immunosuppression.
A central link between neutrophil activation and immune outcomes is emerging to be the
calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, which is activated
by neutrophil detection of a microbial threat via pattern recognition receptors and results in
inflammatory cytokine production. This potent pro-inflammatory pathway is also the target
of several immunosuppressive drugs used for the treatment of autoimmune disorders,
during solid organ and hematopoietic cell transplantations, and as a part of anti-cancer
therapy: but what effects these drugs have on neutrophil function, and their broader
consequences for immune homeostasis and microbial defense are not yet known. Here,
we bring together the emerging literature describing pathology- and drug- induced
neutrophil impairment, with particular focus on their effects on calcineurin-NFAT
signaling in the innate immune compartment.

Keywords: immunosuppression, calcineurin inbibitors, neutrophil (PMN) function, sepsis, NFAT signaling, pattern
recognition receptor (PRR)
INTRODUCTION

Neutrophils are the most abundant cells of the innate immune system and play a key role in
antimicrobial and antifungal defenses (1). At the site of infection, pathogens are detected via pattern
recognition receptors (PRRs) whose ligation leads to the activation of a complex network of
signaling cascades that together orchestrate the neutrophil’s ability to kill microbes via the
generation of reactive oxygen species (ROS), degranulation of effector molecules, and the release
of neutrophil extracellular traps (NETs) (2, 3). Moreover, these signaling pathways stimulate the
production and release of chemokines and cytokines by neutrophils that act both locally, recruiting
other immune cells to the site, and systemically, to regulate the wider anti-microbial immune
response (4). An emerging player is the calcineurin (CN)- nuclear factor of activated T-cell (NFAT)
pathway, which is activated by Ca2+ influx, leading to NFAT translocation to nucleus and
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modulation of gene transcription (5), and has critical roles both
in myeloid cell function and immune homeostasis (6).

Neutrophils occupy a unique and critical functional niche
within effective immunity, therefore it is perhaps unsurprising
that impaired neutrophil function or regulation can have
profound consequences: when neutrophils are unable to
respond effectively this leads to increased susceptibility to
infection, and negatively impacts the inflammatory and healing
process (7–11), while their exaggerated activation can result in
tissue damage (10, 12, 13). Neutrophil function may be impaired
by another pathology, as in the case of sepsis (14), but the picture
becomes even more complicated when the cause of neutrophil
dysfunction is medication being used to treat an existing illness.
Recent studies have shown that several types of therapy including
corticosteroids (15), cytotoxic drugs (16), and cancer
chemotherapy (17, 18) can affect neutrophil functions and that
this process is linked with unfavorable treatment outcomes. The
pro-inflammatory pathways operating in neutrophils may also
be directly affected: calcineurin inhibitors (CNI) suppress
activation of the CN-NFAT pathway and are now widely used
in transplantation medicine to prevent graft versus host disease
and also to treat autoimmune disorders as psoriasis, severe atopic
dermatitis, and rheumatoid arthritis (19, 20). While these
strategies may be effective in treating the primary condition,
the downstream consequences of neutrophil impairment are
only just starting to be understood. What appears to unify
these diverse conditions is the emergence of neutrophil subsets
with profoundly immunosuppressive properties, which are only
just beginning to be understood. Here, we will review the latest
findings on neutrophils and their functions during CNI-based
immunosuppressive therapy and in the immunosuppressive
milieu of sepsis, and ask what we can learn from these two
situations that might advance our knowledge of neutrophil
function/regulation and enable better clinical management of
affected patients.
NEUTROPHIL DIVERSITY IN HEALTH
AND DISEASE

For a long time, neutrophils were considered as a homogeneous
population of innate myeloid cells, however, evidence has now
accumulated that the population in fact exhibits considerable
phenotypic and functional heterogeneity (21, 22), that is further
expanded during certain pathologies or under specific conditions
such as immunosuppression.
Neutrophil Subsets: A Primer
Neutrophils produced in the bone marrow are dynamically
released into circulation and within a few hours migrate to
tissue (23). Despite the short life in circulation, neutrophils
undergo morphological and phenotypical changes referred to
as aging (24, 25). In this context, so-called fresh neutrophils are
released from bone marrow, and they leave blood circulation as
aged neutrophils (24). Dynamic of neutrophil release and
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clearance changes during day and levels of fresh and aged
neutrophils follows natural circadian patterns (24). Several
specific functional differences of the aged neutrophils have
been described to date, including lower levels of L-selectin
(CD62L), increased expression of b2-integrins, enhanced ROS
production, and a higher tendency to undergo NETosis (25, 26).
Moreover, aging primes neutrophils for a more aggressive
inflammatory response in vivo (25, 26).

Normal density neutrophils (NDNs) traditionally separate in
high density fraction after density gradient centrifugation.
However, low density neutrophils (LDNs) are a suggested
neutrophil subpopulation with a similar density to peripheral
blood mononuclear cells (PBMCs) associated with a number of
pathological conditions including systemic lupus erythematosus
(27), sepsis (28), tuberculosis (29, 30), HIV (31), severe fever with
thrombocytopenia syndrome (32), asthma (33), cancer (34–36),
and it is associated with postoperative surgical stress in patients
with gastrointestinal malignancies (37). Nevertheless, the impact
of LDN in these pathologies has not been fully characterized.
Recently, LDNs of healthy individuals show identical properties
compared to NDNs (38). LDNs have a comparable ability of
oxidative flare-ups, apoptosis, a similar effect on T-cell
proliferation or IFN-g production. Compared to NDNs, only a
reduced ability of NETosis was found in LDNs in healthy donors
(38). Interestingly, neutrophil stimulating agents (e.g. TNF, LPS,
or fMLF) induced generation of LDNs from NDNs in vitro (38)
suggesting that neutrophil density alone is insufficient to
distinguish individual neutrophil subsets and functional or
phenotypic differences need to be discovered.

While neutrophils have been considered as simply pathogen-
killing cells for a long time, it is only more recently that their
complex role in health and disease, in particular, in
immunosuppression, have begun to be uncovered.

Neutrophil Subsets Associated With
Immunosuppression
The blood of healthy individuals contains both LDN and NDN
(39). Recently, a population of “suppressive NDN” that is
composed of mature activated cells have been defined (40).
Further, in the condition of systemic inflammation, a subset of
NDNs characterized by CD62low CD11bhi CD11chi that suppress
T-cell proliferation through direct contact with the integrin Mac-
1 was identified (41). Concurrently, recent studies revealed
significant increases in the relative proportion of LDNs in
patients with sepsis (28), infectious and autoimmune diseases
(42), and cancer (34). Interestingly, a higher frequency of LDNs
has also been found in immune-compromised patients, such as
those infected with HIV or affected by common variable
immunodeficiency (43). LDNs from these patients may also
show profound functional alterations, for example in systemic
lupus erythematosus where LDN exhibit enhanced spontaneous
NETosis and relatively higher mitochondrial ROS production
when compared to NDN ex vivo (44). In patients with cancer,
circulating LDNs display marked immunosuppressive and pro-
tumorigenic activities, similar to those documented for tumor-
associated neutrophils (45–47).
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These findings caused researchers to further dissect the LDN
population, leading to the discovery of multiple neutrophil
subsets that differ in morphology, abundance, and maturation
and activation status depending on the underlying disease
process (39, 48). However, the expanded LDN population in
thrombocytopenia syndrome exhibiting severe fever (32), as well
as in patients with malaria (49), or asthma (33) wasn´t found to
be suppressive (48), and a recent study in patients with severe
COVID-19 uncovered a population of CD16int LDNs with a
markedly inflammatory gene expression signature whose
frequency correlated with disease severity (50). Thus, it appears
that the heterogeneity within the population of LDN that is
expanded in these disease states can accommodate the
emergence of dominant immunosuppressive, non-suppressive
and pro-inflammatory features. The question arises: are there
any specific cell types within the LDN population that are
strongly and specifically associated with immunosuppression?

Recent studies looking at immunosuppressive neutrophils
have uncovered a potential candidate LDN subpopulation but
have yet to agree on a unified terminology: these cells are
variously termed “granulocytic-” or “polymorphonuclear-
myeloid-derived suppressor cells” (G-MDSCs or PMN-
MDSCs) (47, 48, 51). Although studies of these cells are in
their infancy, we know that PMN-MDSCs often contain
immature neutrophils (48, 52, 53) and are observed in patients
with sepsis or fungal infections caused by Aspergillus fumigatus
(A. fumigatus) or Candida albicans (C. albicans) (54, 55).
Ex vivo, PMN-MDSCs from these patients inhibit T-cell
proliferation and IFN-g production via ROS or arginase-1
production (48, 54, 55). Identifying PMN-MDSCs among
LDNs has been challenging as there is a lack of a defined,
consensus surface molecule expression panel that can
distinguish between the two (38, 47). However, it is possible to
confirm MDSCs’ identity functionally, through their ability to
suppress immune responses (e.g. inhibition of T cell proliferation
or IFN-g production), or by their expression of biochemical and
molecular markers (such as the genes encoding ARG1, NOS2,
NOX2, and TGF-b) (56). It is hoped that future studies, perhaps
utilizing scRNA-seq, will be able to define a unique phenotype
allowing reliable identification and isolation of these cells for
further study: one of the most pressing questions is which
molecular pathways are involved in normal neutrophil
Frontiers in Immunology | www.frontiersin.org 3
functions, and how are they altered in immunosuppressive
neutrophil subsets.
NFAT SIGNALING IN MYELOID IMMUNE
CELLS: IS THIS THE KEY PATHWAY
MEDIATING NEUTROPHIL FUNCTIONS?
The CN-NFAT pathway, prototypically recognized in T cells (57,
58), has in recent years been identified as an important signaling
cascade linking PRR activation, anti-microbial immunity, and
myeloid cell functions (6, 59–61). Early work demonstrated
NFAT activation in murine monocytes and DCs following the
engagement of dectin-1 by zymosan or live C. albicans (62), with
subsequent studies showing that this pathway can be stimulated
by multiple pathogen-associated molecules, with varied
outcomes. For example, bacterial LPS stimulation of murine
DCs induced CD14-dependent extracellular Ca2+ influx, leading
to CN-NFAT activation (63). Recently, these findings were
enriched by a study that showed the importance of inositol
triphosphate (IP3) receptor 3 (IP3R3) and IP3 kinase B (ITPKB)
in LPS-induced NFAT activation in mouse and human DCs (64),
signifying an atypical mechanism of Ca2+ mobilization leading
to CN-NFAT activation in these cells.

CN-NFAT activation also occurs in human monocytes
exposed to the ligand from Saccharomyces cerevisiae (S.
cerevisiae) cell wall - zymosan (65), and similarly in murine
macrophages and DCs after dectin-1 ligation by zymosan or live
C. albicans (62). However, in macrophages exposed to A.
fumigatus distinct pathway of TLR9- and phagocytosis-
dependent NFAT activation mediated by Bruton’s tyrosine
kinase (BTK), but independent on MyD88 has been
reported (66).

Soon after the discovery that LPS stimulation induced CN-
NFAT activation in murine DCs, similar findings were made in
neutrophils, including induced expression of the genes involved
in inflammation modulation including IL-10, Cox2, Erg1, and
Erg2 (67, 68). Furthermore, the engagement of dectin-1 by either
zymosan or live C. albicans leading to CN-NFAT activation has
also been confirmed in murine and human neutrophils (Table 1)
(67, 68).
TABLE 1 | PRR expressed by neutrophils and their signaling affected by calcineurin inhibitors demonstrated in neutrophils or derived from myeloid cells.

Ligand PRR Major signaling pathway Inhibitor TFs Affected cell type/
organ

Reference

PAM3CSK4 TLR2 MAPKs, NF-kB, PI3K-Akt, CN-NFAT CsA NFAT Hu-mast cell (69, 70)
LPS CD14 CD14/ITPKB/IP3R3/Syk/PCg2/IP3/Ca

2

+↑/CN-NFAT
FK506 NFAT M-DC (63, 64)

Unmethylated CpG
motifs

TLR9 BTK/PCg2/IP3/Ca
2+↑/CN-NFAT FK506 NFAT M- MF, M- Neu (66)

zymosan Dectin-1 hemITAM/Syk/PCg2/IP3/Ca
2+↑/CN-NFAT CsA, 11R-

VIVIT
NFAT M-MF, M-DC, M-Neu,

Hu-Neu
(62, 68)

B2-integrins Streptoccocal M1 protein complex with
fibrinogen

Ca2+↑/CN/NFAT A-285222 NFAT M-lung, spleen, liver (71)
N
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Taken together, these data indicate likely parallels between
the pathways and effects of CN-NFAT activation in monocytes
and neutrophils, further solidifying NFAT as a central player in
myeloid cell immunity. However, while little direct research has
been done into the role of CN-NFAT in driving neutrophil
functions or in different neutrophil subsets, studies with patients
undergoing immunosuppressive therapy with CNI, or with
disease-associated immunosuppression, have generated
intriguing insights into this topic.
IMPACT OF IMMUNOSUPPRESSION ON
NEUTROPHIL FUNCTION AND ITS
CLINICAL CONSEQUENCES

Immunosuppression is a concerning state for the host, leaving it
open to opportunistic infection with an unresponsive defense
system. This situation can result directly from pathogen
infection, but may also be therapeutically induced in the case
of frank autoimmunity or the need for dampened reactivity
following organ transplant. Here we will explore neutrophils’
involvement in two distinct but partially-overlapping scenarios:
during CNI immunosuppressive therapy and in post-
sepsis immunosuppression.

Impact of Calcineurin Inhibitors on
Neutrophils
Drugs inhibiting CN-NFAT signaling, such as tacrolimus
(FK506) and cyclosporine A (CsA), are widely used to suppress
T‐cell responses and prevent allograft rejection in transplantation
medicine (20, 72). These clinically successful CNI were also
recently repurposed to treat autoimmune disorders [reviewed in
(59)] and as cancer chemotherapy considering that several cancer
types have constitutively activated and overexpressed NFAT (73,
74). However, counterbalancing their potentially beneficial
therapeutic role, a growing body of evidence indicates the
potential impact of these compounds on myeloid cell function,
leading to increased susceptibility to infections (59, 65, 66).
Frontiers in Immunology | www.frontiersin.org 4
Different experimental models and clinical reports suggest
that increased susceptibility to fungal and bacterial infections in
patients treated with CNI is not a generic effect of inhibition of
adaptive immune responses, but rather due to direct impairment
of NFAT signaling in myeloid leukocytes, including neutrophils
(Table 2) (6, 15, 59, 66, 68, 76, 78, 79). In vitro, treatment with
CsA significantly inhibited the expression of NOD1, an
intracellular receptor for bacterial peptidoglycan, in murine
neutrophils, macrophages, and DCs (76). Similarly, in vivo,
CsA-treatment of mice decreased the renal resistance to
uropathogenic Escherichia coli infection associated with
decreased expression of neutrophil-attracting chemokines
CXCL2 and CXCL1, and myeloperoxidase (MPO) in mouse
kidneys (76). Similarly, administration of CNI affected the
production of CCL2, CCL7, CCL12, and delayed pathogen
clearance in mice infected by S. cerevisiae (80). CsA treatment
also negatively altered the phagocytic ability of neutrophils in the
blood of human transplant recipients, which can be explained by
the downregulation of Nod1 mRNA both in vitro and in
vivo (76).

These molecular effects of CNI upon neutrophils can have
profound consequences, most clearly demonstrated in the case of
infection with the normally-harmless opportunistic pathogen, A.
fumigatus. Neutrophils are the main innate immune cell type
interreacting with germinating A. fumigatus conidia and hyphae
to prevent their growth (81, 82); however, the ability of
neutrophils to interfere with A. fumigatus is significantly
impaired in CNI-treated patients after hematopoietic stem cell
transplant (15) – an effect that has been mechanistically linked
with increased mortality in CNI-treated A. fumigatus-infected
mice (83). The impact of impaired CN-NFAT signaling on
patients’ susceptibility to A. fumigatus is even more marked
during GvHD or solid organ transplantation (75), partially
explaining the severe and frequently fatal complication of A.
fumigatus infection in patients suffering from these conditions.

Such observations led to several studies in vitro and in animal
models aiming to understand how CNI affected neutrophil
responses to fungal infection. FK506 treatment of mice with
pulmonary aspergillosis led to reduced cytokine/chemokine
TABLE 2 | Impact of impaired calcineurin-NFAT signaling on neutrophil functions during infection.

Pathogen Experimental model/
Patient’s cohort

Used inhibitor Effect on neutrophil function References

Aspergillus fumigatus Patients after HSCT Impaired A.f. hyphae growth inhibition (15)
Aspergillus fumigatus C57BL/6 WT mice and

Rag2-/- mice
FK506 Impaired neutrophil recruitment and fungal killing (66)

Aspergillus fumigatus zebrafish FK506 Reduced neutrophil recruitment (and increased mortality) (66)
Aspergillus fumigatus Mice (BALB/c and

C57BL/6)
FK506 with
hydrocortisone

Unspecific effect leading to increased mice/host mortality (75)

Escherichia coli (UPEC) Mice CsA Impaired CXCL2 and CXCL1 production, decreased neutrophil recruitment/
migration and phagocytic killing of UPEC

(76)

Escherichia coli (UPEC) Renal transplant recipients CsA Defective NOD-1 mediated bacterial phagocytosis by neutrophils (76)
Candida albicans Mice (WT and Rag2-/-) CsA Decreased ex vivo killing of C. albicans by neutrophils leading to increased

mortality
(68)

M1 protein from
Streptococcus pyogenes

Mice A-285222 Reduced neutrophil infiltration in lung (77)
November 2021 | Volume 12 | A
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responses (TNF-a; IL-6; CXCL-1 and CCL-3), delayed
neutrophil recruitment, decreased neutrophil influx, and
reduced fungal killing in the lung (66). The lowered ability of
CNI-exposed neutrophils to kill fungal pathogens seems also to
be mechanistically linked to the lack of CN-NFAT activation:
neutrophil degranulation is a Ca2+-dependent process (84),
which is impaired in the presence of a range of different CNI
(78, 85–87). Similarly, NETosis requires the mobilization of both
extracellular and intracellular calcium pools and is reduced by
treatment with CsA and the macrolide immunosuppressant
ascomycin (88). Recent data have also indicated a link between
CNI treatment and the development and accumulation of PMN-
MDSCs (89), raising the possibility that CN-NFAT signaling is
also required for normal neutrophil subpopulation homeostasis.

These findings demonstrate a novel, incompletely
characterized, connection between CN-NFAT signaling in
neutrophils and increased susceptibility to infections, operating
both at the population (PMN-MDSC emergence) and individual
cell level (inhibition of cytokine production, degranulation, and
NETs generation). Moreover, such data also clearly illustrate the
crucial role of CN-NFAT signaling in maintaining these
processes in the disease-free host.

Given the profound effects of common immunosuppressive
drugs targeting CN (CsA, FK506) on neutrophils, the potential
benefits of their use need to be carefully considered in the
context of the risk of increased susceptibility to serious
opportunistic infections.

Neutrophil Role in Sepsis-Induced
Immunosuppression
Sepsis is a life-threatening condition caused by the dysregulated
host response to infection and subsequent organ dysfunction
(90). The host immune response during sepsis is complex,
involving simultaneous activation of both excessive pro-
inflammatory and anti-inflammatory processes (14), which
ultimately results in disturbed homeostasis and profound post-
sepsis immunosuppression: the predominant driving force for
late morbidity and mortality in patients with sepsis (91, 92).
Neutrophils are strongly affected by sepsis and are thought to
play a critical role in determining the clinical outcome (93).
Multiple neutrophil effector functions become impaired during
the course of the disease (14, 94, 95), leading to functional
paralysis of these cells in severe sepsis. One contributing factor
is thought to be TLR-induced upregulation of G protein-coupled
receptor kinase 2 (GRK2) expression, which ultimately
desensitizes neutrophils to CXCL2 coming from the site of
infection, thereby inhibiting several functions as well as their
migration (93). Alongside, sepsis is associated with impaired
neutrophil phagocytosis: in part, this can be linked with the
release of immature neutrophils with limited phagocytic capacity
from the bone marrow into the blood during sepsis and septic
shock (96); but is also associated with decreased expression of the
NOD1 receptor in patients with sepsis (97). These pathways are
critically important, as impaired neutrophil phagocytic activity
and reduced cell-surface CD64 (Fc gamma receptor) expression
have been strongly correlated with poor outcomes in patients
with sepsis (98). While there is some evidence from the CNI
Frontiers in Immunology | www.frontiersin.org 5
setting that NOD1-receptor-mediated neutrophil phagocytosis is
CN-NFAT-dependent (76), this has yet to be assessed in cells
from patients with sepsis.

In many of these studies, neutrophils are considered as a bulk
population, but more recent work has begun to look at the
possible involvement of the PMN-MDSCs in sepsis. Thought to
arise as a result of the persistent immune activation and
inflammatory environment, PMN-MDSCs have been detected
in patients affected by sepsis (54, 99, 100) where they exhibit
strong immunosuppressive activity (54, 101–103). A recent study
showed that the frequency of PMN-MDSCs remain elevated also
in sepsis survivors long after their recovery from sepsis,
suggesting that these cells might contribute to the long-term
adverse effects observed in sepsis survivors (100). These findings
suggest a possible role of PMN-MDSCs in sepsis-induced
immunosuppression and thus future research should be
directed to elucidate their function and the underlying
mechanisms involved.
FUTURE PERSPECTIVES

It is now clear that neutrophils play a decisive role in different
pathologies and during immunosuppressive therapies. As effector
cells of innate immunity, they are crucial for pathogen clearance,
but they are also involved in host homeostasis: on the flip side,
neutrophil dysregulation is implicated in the development/
maintenance of the immunosuppressive microenvironment
found in cancer and after sepsis, but also in the inflammatory
response underlying autoimmunity. This dual role of neutrophils
in opposing pathological processes reflects their plasticity and
heterogeneity, as more recently evidenced by the identification of
functionally and phenotypically distinct neutrophil subsets.

The specific activation or immunosuppressive status of
neutrophils is tightly regulated through neutrophil signaling
pathways: nevertheless, the details of these signaling pathways
and specifically how they might be explored as potential targets
of therapeutic interventions are not sufficiently described. One
such knowledge gap that is beginning to be filled concerns the
calcineurin/NFAT pathway which, although its presence and
activity is sufficiently demonstrated in neutrophils, has yet to
reveal the consequences of its signaling in these cells under
different conditions. This is likely to prove key moving forward
because a detailed understanding of the immunosuppressive
context of downstream PRR signaling in neutrophils is needed
in order to define the mechanistic aspects which may have
potential medical implications. Some progress is already being
made in this regard with the development of next-generation
CNI, such as the VIVIT peptide, which selectively inhibits the
calcineurin/NFAT interaction, but does not compromise
calcineurin’s phosphatase activity (104). A recent study showed
the potential of this peptide, conjugated to nanoparticles
designed to target phagocytic cells, to dampen inflammation in
a murine model of arthritis (64). Not only do such approaches
hold direct therapeutic potential, but they may also prove
invaluable as tools with which to discriminate the roles of CN-
NFAT activation in specific cell types, including neutrophils.
November 2021 | Volume 12 | Article 770515
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Overall, there is emerging evidence pointing to the importance
of the CN-NFAT axis in the myeloid cell/neutrophil response to
pathogens and also the effects of its impairment on myeloid cell/
neutrophil function during different disorders. Although CNI-
mediated immunosuppression is applied in multiple situations,
the broader adverse effect on the immune system needs to be
carefully evaluated: the development of more specific therapeutic
strategies targeting individual cell types or over-activated pathways
should be considered a priority. Our knowledge of the biology of
NFAT signaling in neutrophils is in its infancy and highlights the
need for expanding our understanding of the molecular
mechanismsmodulatingneutrophil functions inhealth anddisease.
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Pompeiano A, et al. Calcineurin Inhibitors Reduce NFAT-Dependent
Expression of Antifungal Pentraxin-3 by Human Monocytes. J Leukoc Biol
(2020) 107:497–508. doi: 10.1002/JLB.4VMA0318-138R

66. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al.
Phagocytosis-Dependent Activation of a TLR9-BTK-Calcineurin-NFAT
November 2021 | Volume 12 | Article 770515

https://doi.org/10.3389/fimmu.2019.02761
https://doi.org/10.1371/journal.pone.0153567
https://doi.org/10.1371/journal.pone.0153567
https://doi.org/10.1371/journal.pone.0048939
https://doi.org/10.1371/journal.pone.0048939
https://doi.org/10.1186/s12879-019-3701-4
https://doi.org/10.1016/j.anai.2014.08.024
https://doi.org/10.1016/j.celrep.2014.12.039
https://doi.org/10.1016/j.imbio.2016.02.001
https://doi.org/10.1016/j.imbio.2016.02.001
https://doi.org/10.1189/jlb.0310162
https://doi.org/10.1189/jlb.0310162
https://doi.org/10.1016/j.jss.2019.08.022
https://doi.org/10.1016/j.jss.2019.08.022
https://doi.org/10.3389/fimmu.2021.625922
https://doi.org/10.3389/fimmu.2021.672520
https://doi.org/10.1182/bloodadvances.2019031609
https://doi.org/10.1172/JCI57990
https://doi.org/10.1172/JCI57990
https://doi.org/10.1007/s00281-013-0375-7
https://doi.org/10.4049/jimmunol.1800102
https://doi.org/10.1038/nm.4027
https://doi.org/10.1007/978-1-4939-3801-8_13
https://doi.org/10.1093/bmb/ldy029
https://doi.org/10.3389/fimmu.2021.602963
https://doi.org/10.1111/imr.12448
https://doi.org/10.1016/j.celrep.2015.11.055
https://doi.org/10.1172/jci.insight.148435
https://doi.org/10.1007/s00262-019-02302-2
https://doi.org/10.1038/s41590-017-0022-x
https://doi.org/10.1038/s41590-017-0022-x
https://doi.org/10.1016/j.smim.2016.03.018
https://doi.org/10.1164/rccm.201606-1143OC
https://doi.org/10.1164/rccm.201606-1143OC
https://doi.org/10.1016/j.chom.2015.02.007
https://doi.org/10.1016/j.chom.2015.02.007
https://doi.org/10.1038/ncomms12150
https://doi.org/10.1038/ncomms12150
https://doi.org/10.1128/MCB.8.4.1715
https://doi.org/10.1128/MCB.8.4.1715
https://doi.org/10.1126/science.3260404
https://doi.org/10.15252/emmm.201707698
https://doi.org/10.1002/eji.201242580
https://doi.org/10.1126/sciimmunol.aan2725
https://doi.org/10.1126/sciimmunol.aan2725
https://doi.org/10.4049/jimmunol.178.5.3107
https://doi.org/10.1038/nature08118
https://doi.org/10.1126/scisignal.aaz2120
https://doi.org/10.1002/JLB.4VMA0318-138R
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vymazal et al. Impact of Immunosupression on Neutrophils
Pathway Co-Ordinates Innate Immunity to Aspergillus Fumigatus. EMBO
Mol Med (2015) 7:240–58. doi: 10.15252/emmm.201404556

67. Vega Rioja A, Chacon PJ, Monteseirıń Mateo J, Bekay R, Alba Jiménez G,
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