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Although breast cancer has been previously considered “cold” tumors, numerous studies
are currently conducted to explore the great potentials of immunotherapies in improving
breast cancer patient outcomes. In addition to the focus on stimulating adaptive immunity
for antitumor responses, growing evidence showed the importance of triggering host innate
immunity to eradicate established tumors and/or control tumor metastasis of breast cancer.
In this review, we first briefly introduce the breast tumor immunemicroenvironment. We also
discuss innate immune targets and pathways and mechanisms of their synergy with the
adaptive antitumor response and other treatment strategies. Lastly, we review clinical trials
targeting innate immune pathways for breast cancer therapies.
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1 INTRODUCTION

Breast cancer is considered one of the leading causes of death in women. The American Cancer
Society (ACS) predicted that nearly 280,000 new breast cancer cases would be diagnosed in 2020.
Over 40,000 breast cancer-related deaths can be present in the same year (1). Breast cancer disease is
well known for its phenotypical heterogeneity. It is usually classified into three subtypes that display
unique cellular and molecular patterns: luminal ER-positive, HER2-like, and basal-like subtype (2,
3). In general, breast tumors mainly consist of malignant cells, extracellular matrix (ECM), and
stromal components, including infiltrating immune cells that shape tumor initiation. The malignant
cells undergo a constant evolution during tumor development to form a specialized tissue
architecture with a dissociated ECM and cancer-associated inflammation (4).
2 THE IMPORTANCE OF INNATE IMMUNITY IN BREAST CANCER

2.1 Overview of Immunology in Breast Cancer
Notably, cancer-associated inflammation, including cancer-intrinsic inflammation and cancer
extrinsic inflammation, is present at different stages of breast tumorigenesis (5–8). Cancer-intrinsic
inflammation is usually triggered by cancer-initiating mutations that are genetically stable and can be
predictable for drug treatment response or resistance (7). Leukocytes are recruited and migrated to the
cancer site, further undergoing activation during tumor progression. However, cancer-extrinsic
inflammation is associated with various exogenous risk factors, such as bacterial or viral infections,
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obesity, excessive alcohol consumption, tobacco smoking,
hormone therapies, autoimmune diseases, overexposure to
radiation, etc. (8). Both cancer-intrinsic and cancer-extrinsic
inflammation contribute reciprocally to immunosuppression,
w h i c h p r o v i d e s a f a v o r a b l e e n v i r o nm e n t f o r
malignant progression.

2.2 Breast Cancer Immune
Microenvironment
The microenvironment of breast cancer is highly inflammatory. It
consists of a broad spectrum of stromal components, including
mesenchymal-derived fibroblasts, pericytes, vascular structure,
infiltrating immune cells, cytokines and growth factors, which
coordinately enable carcinogenesis and breast tumor progression
(9–12). The breast tumor stroma complex also supports
neovascularization, as well as functionally modulating the
immune cells, cytokines and inflammatory cascade. These
together orchestrate the formation of solid breast tumors (5, 13,
14). Breast tumor microenvironment is populated by diverse
innate immune cells (macrophages, dendritic cells, natural killer
cells, myeloid-derived suppressor cells, mast cells, and
granulocytes) and adaptive immune cells (T and B lymphocytes,
NKT cells) (Figure 1). These infiltrating immune cells are either
originated from residential mammary tissue associated
populations or recruited from the periphery or draining
lymphoid organs. The types of inflammatory cells and their
roles have been well identified in both animal and human breast
cancer studies (6, 10, 15, 16). For example, human monocytes/
macrophages have been demonstrated to produce EGF receptor
Frontiers in Immunology | www.frontiersin.org 2
(EGFR) ligands and stimulate STAT3 signaling pathway to
promote mammary tumor cell invasion, which in turn facilitated
TAMs infiltration depending on the secreted CSF1 and CXCL12
(17, 18). Another study has reported that inflammatory breast
cancer patients express a high level of IL8 and growth-regulated
oncogene (GRO) chemokines that activate STAT3, which induce
the formation of immune-suppressive M2-like macrophages and
cancer mesenchymal cells (15). In murine 4T1 metastatic breast
tumors, tumor entrained neutrophils have been shown to mediate
anti-metastasis in the lung by inducing oxidative stress and CCL2
(19). Furthermore, a cohort study of approximately 3000 patients
suggested that circulating leukocyte profiles may serve as
biomarkers to predict breast cancer risk (16). Collectively, these
innate immune cells can regulate tumor cell invasion,
differentiation, and disease development.

Moreover, recent findings suggested that infiltrating immune
cells are associated with treatment response, which can
potentially predict clinical outcomes in breast cancer patients.
For instance, tumor-infiltrating CD8+ cytotoxic lymphocytes
were positively correlated with tumor stage and improved
survival rate (20). In contrast, the infiltrating regulatory T cells
correlated with poor treatment outcomes in both ER-negative
and positive breast cancers (21, 22). In particular, infiltrating
innate immune cells build a cellular network and rigorously
regulates the antitumor response via direct tumor killing and/or
bridging and activating the adaptive antitumor immunity (12,
13). Here, we focus on discussing the innate immune cells and
therapeutic targets and pathways for developing translational
antitumor treatment.
FIGURE 1 | Breast cancer microenvironment is populated by diverse infiltrating immune cells. These immune cells are categorized into immunosuppressive
population and immunostimulating population (e.g.) according to their major characteristics in modulating breast cancer. The immunosuppressive cells include
polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), monocytic MDSC (Mo-MDSC), regulatory T cells (Treg), mast cells (MC), M2-like macrophages
and type 2/3 innate lymphoid cells (ILC 2/3). The immunostimulating cells include tumor infiltrating lymphocytes CD8+ and CD4+ T cells, nature killer cells/type 1
innate lymphoid cells (NK/ILC1), dendritic cells (DCs) and eosinophils. This figure is reproduced with permission from “The Crosstalk Between Tumor Cells and the
Immune Microenvironment in Breast Cancer: Implications for Immunotherapy, doi.org/10.3389/fonc.2021.610303” Copyright ©2021 Frontiers.
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2.3 Impact of Innate Immunity in
Breast Cancer
Innate immune populations play key roles during cancer
evolution, specifically contributing to early responses against
cancer-associated inflammation. They also can initiate a
complete and vigorous antitumor response via regulating
critical pathways for enhanced priming of adaptive immunity.
In breast cancer, malignant cells primarily encounter different
innate immune cells to trigger specific downstream cascades.
Classic activation of adoptive T cell response needs three signals
transmitted from innate antigen-presenting cells (APCs) (23). For
instance, professional APCs, includingDCs andmacrophages, first
recognize and bind to the dying breast tumor cells or release tumor-
associated antigens through pattern recognition receptors (PRRs)
(24, 25). PRRs can identify and recognize the damage-associated
molecular patterns (DAMPs), which are derived from the tumor or
dying cells to drive cancer intrinsic inflammation. They can also
detect foreign pathogen-associated molecular patterns (PAMPs),
including the microbes encountered during extrinsic cancer
inflammation (24, 26). Upon binding of DAMPs or PAMPs,
APCs internalize and load tumor antigen or DNA into
upregulated major histocompatibility complex (MHC). They
form MHC-peptide complexes, binding to the T cell receptor
(TCR) as the first activation signal (27). To further activate
adaptive lymphocytes for tumor antigen-specific cytotoxic killing,
APCs are required to display co-stimulatory molecules of both
CD80 and CD86 and recognize the CD28 expressed on
lymphocytes as the second signal (28). The secreted cytokines
(e.g., TGF-b, IL-1b, IL-6, IL-23, IL-12, and interferon) act as the
third signal to support repolarization of the activated lymphocytes
into specific subsets, which can induce distinct proinflammatory
(antitumoral) or anti-inflammatory (pro-tumoral) responses (29).

Breast cancer, including ER-positive and ER-negative subsets,
has heterogeneous patterns of innate immune infiltration. In ER-
positive breast tumors, NK cells and neutrophils have been found
as major innate immune populations (9, 30). Tumor cells are
known to escape the host immune attack by self down-regulating
MHC Class I antigens, which can be recognized by NK cells and
potentially induce antitumor effect via the release of stimulatory
cytokines and chemokines (31). Interestingly, the cooperative
interplay between NK cells and intratumoral type I conventional
dendritic cells (cDC1) can affect tumor microenvironment in
response to checkpoint immunotherapy (32, 33). Others have
reported the use of eosinophils, monocytes, and mast cells as
prognostic biomarkers in breast cancer, while tumor-associated
macrophages (TAMs) have been associated with poor prognosis
(34–37). In ER-negative breast tumors, a large proportion of
TAMs and mature mast cells was correlated with an increased
risk of metastasis and poor prognosis. Meanwhile, cDC1s
responses are significant against breast cancer. Despite their
small proportion within breast tumors, cDCs are associated
with favorable immune infiltrate and better prognosis (36, 38–
40). Recently studies have shown that cDC1 induce antitumor
responses by facilitating Th1 immunogenic microenvironment,
which correlates with the levels of IL-12, IFN-g, and cytotoxic
lymphocyte–recruiting chemokines (41–45). These findings
Frontiers in Immunology | www.frontiersin.org 3
suggest the impact of innate immunity in modulating the
immunosuppressive microenvironment that can improve
breast cancer immunotherapeutic outcomes. Therefore, we
believed that explore the defining characteristics of the innate
immunity provided a much-needed bridge for translational
breast cancer research.
3 PRECLINICAL STUDIES TARGETING
INNATE IMMUNITY FOR BREAST
CANCER THERAPY

Innate immunity is the primary defense line of the host against
mammary tumor progression. Upon encountering dying breast
tumor cells released components, immune surveillance is
established for direct antitumor activities, including immune
recognition and suppression (46, 47). Specifically, the anticancer
innate immune cells participate in releasing cytotoxic contents to
directly kill target breast tumor cells, engaging professional
antigen-presenting cells to detect and remove breast tumor cells,
and further activating the phagocytosis process or alternative
complement pathways. Thus, modulating innate immunity
paves the way for developing innovative cancer therapeutic
interventions in preclinical settings of breast carcinoma.

3.1 Colony-Stimulating Factors
Colony-stimulating factors (CSF) are hematopoietic cytokines
that regulate the proliferation, maturation, and apoptosis of
myeloid cells (48). Based on their origins, CSF can be classified
as macrophage CSF (M-CSF), granulocyte CSF (G-CSF),
granulocyte-macrophage CSF (GM-CSF), and interleukin-3
(IL-3). In breast cancer, CSFs have been reported to play
different roles in various stages of tumor immunity. One
recently study has shown that CSFs derived from mammary
tumor cells primarily regulate myeloid cell arginase 1 expression
and form the immunosuppressive microenvironment while
inhibiting host anti-tumor immunity (49). In contrast, others
have found that CSFs involved in triggering the antigen
presentation in the tumor microenvironment to harness innate
immunity for antitumor responses. For example, GM-CSF can
recruit DCs to the tumor site and undergo cell proliferation and
maturation there, and matured DCs are optimally equipped with
antitumor immunity (50). They further infiltrate the tumors to
stimulate antigen presentation and activate adaptive immunity
(30). GM-CSF has been reported to increase the percentage of
DCs in tumor-draining lymph nodes and enhance tumor-
specific immunity for treatment (51). GM-CSF secreting tumor
cells were modulated as a vaccination approach to completely
protect the mice after challenging with live parental breast cancer
cells (52).

Furthermore, the abundance of M-CSF1 and its receptor
(CSF-1R) expressed on TAMs has been correlated to poor
clinical outcomes in breast cancer (53). Consistent with this
finding, CSF-1R blockade by using small molecular inhibitors
and monoclonal antibodies has been applied to deplete TAMs in
breast cancer (54). However, Hollmen et al. discovered that anti-
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CSF-1R treatment could facilitate 4T1 breast tumor cell
metastasis to lung and lymph nodes, since 4T1 tumors express
high levels of G-CSF (55). Therefore, understanding the
sophisticated mechanism of CSF/CSF-1R interaction between
tumor and innate immunity can guide to select CSF targeting
agents for clinical treatment.
3.2 Interferons
Interferons (IFNs), including type I and II IFNs, are involved in
regulating immune response in breast cancer. Activation of the type
I IFNs (IFN-a/b) signaling pathway can cause cancer cell apoptosis
and cellular senescence, and breast tumor cell secreted type I IFNs
has been shown to induce anti-metastatic response.However, type I
IFNs also attributed to drug resistance specifically in triple negative
breast cancers (TNBC) and inflammatory breast cancer (IBC) (56,
57). Type II IFNs (IFN-g), on the other hand, has been reported to
cause tissue damage in response to tumor hyperproliferation. The
initiation of tissue damage signals, such as IFN-g, triggers the innate
immune response by recruiting NK cells and T helper cells for
differentiation (58). Previous studies have reported the essential
roles of IFN-g signals in polarizing TAMs phenotypes (59) and
modulating the MHC I expression level on breast tumor cells (60).
For instance, in an epidermal growth factor receptor (HER)2-
positive breast tumor model, IFN-gR1low expressing tumor cells
successfully escaped fromimmunesurveillanceandstayeddormant
from tumor elimination (61).

IFN-based therapy has shown promising outcomes in multiple
murine breast cancer models (4T1 and 66cl4), specifically by
regulating the metastatic spread of tumor cells to the bone (62,
63). The administration of type I IFN via intravenous injection
could reduce tumor burden, stimulateNKcells and effectorCD8+T
cellswhile dampening the immunosuppressiveMDSCs in theblood
and bone marrow. Notably, these results could limit tumor
outgrowth in remote site and eventually increase the metastasis-
free survival rate. Clinical trials using IFNs in the solid tumor
showed some efficacies. However, the induced moderate-to-severe
toxicity issues could not be neglected (64, 65).
3.3 Vaccine Adjuvants
Adjuvants are derived from DAMPs and/or PAMPs to improve
the potency of breast cancer vaccines and treatment by inducing
robust innate immune responses. They can stimulate innate
immune cells, such as DCs, by binding to the expressed PRRs,
including toll-like receptors, C-type lectin receptors, and retinoic
acid-inducible gene I-like receptors, nucleotide-binding
oligomerization domain-like receptors, or cytosolic STING-
dependent DNA sensors (66). Recently, tremendous progress
has been made in targeting PRRs and STING pathways for breast
cancer treatment (67–71).
3.3.1 Toll-Like Receptors (TLRs)
PAMPs orDMAPs recognition by TLRs activates an inflammatory
response that promotes the elimination of cancer cells in the host
(72). There is evidence that TLR signaling can abrogate
Frontiers in Immunology | www.frontiersin.org 4
immunosuppression by reducing myeloid-derived suppressor
cells (MDSCs) while upregulating stimulatory molecules,
including CD40, CD80, CD86, and pro-inflammatory cytokines
production. These signals can further stimulate a more potent
nonspecific innate immunity and bridge the adaptive immune
responses against breast cancer (73–75).

Among all these TLR-agonists, poly (I: C) was reported to
effectively modulate MDSCs activity in a mice model of breast
cancer (76). Poly (I: C) directly bond to TLR3 expressed on the
surface of MDSCs, therefore, caused the reduction of circulating
and infiltrating MDSCs in breast tumors. In addition, TLR7/8
agonist R484 is another successful adjuvant in breast cancer. The
use of R484 alone has been demonstrated to retard tumor growth
(68). After repeated intraperitoneal injection of R484, the
vasculature density of breast tumors was reduced, and tumor
cell apoptosis was induced significantly.

Recently, Zheng et al. reported utilizing a vaccine-based
nanosystem as an innate immune stimulator for treating breast
tumors (77). They confirmed the importance of TLR7 in APC
activation, and the nano-sized innate immune stimulator
activated the endosomal TLR7 signaling to promote antigen
cross-presentation. Furthermore, it can be potentially used as
cancer vaccine adjuvants or immunotherapeutic agents to
improve immune checkpoint blockade (ICB) immunotherapy.
3.3.2 RIG-I-Like Receptors (RLRs)
RLRs family includes RIG-I and melanoma differentiation-
associated gene 5 (MDA5), both of which are cytoplasmic
RNA sensors (78). The RNA recognition of RLRs can
effectively inhibit breast cancer growth by inducing apoptosis
in the IFN-independent manner (79). For example, RIG-I
activation mimics viral infection in various cancer types,
including breast cancer. The activated RIG-I signaling is
associated with NK cell attack, phagocytosis of apoptotic
tumor cells, and other immunogenic forms of tumor inhibition
(80, 81).

More recently, Domankevich et al. applied an intra-tumoral
cytoplasmatic delivery agent to directly activate RLR while
bypassing endosomal recognition via TLRs (82). They showed
the reduced 4T1 triple-negative breast tumors, and the metastasis
development was retarded after re-challenge. Another similar
study was conducted to deliver poly (I: C) to the cytoplasm in an
MDA5-dependent manner while bypassing the TLR3-mediated
signaling pathway (69). Furthermore, three human breast cancer
cell lines, including MCF-7, MDA-MB-231, and BT-549, were
tested to transfect poly(I: C). The transfected cells showed less
tumorigenicity when implanting for breast tumor growth.
Together, these results suggested that innate adjuvant receptors
are emerging targets for antitumor drug therapies.
3.3.3 NOD-Like Receptors (NLRs)
NLRs are cytosolic receptors that detect intracellular pathogens and
endogenous byproducts from tissue injury. In recent years, targeting
innate immuneNLRpathways for cancer immunotherapy, including
breast cancer, has attracted increasing attention, due to theirmultiple
November 2021 | Volume 12 | Article 771201
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functions in intracellular pathogens detection, initiation of
inflammation, and the regulation of tissue repair (83). One such
example is that NOD1 has been investigated in breast tumormodels
and showed protective function in breast tumorigenesis (84). Mice
inoculatedwithNOD1-deficientMCF-7 breast cancer cells exhibited
rapid growth and continuous malignancy. Another aggressive
Hs578T triple-negative breast cancer cell line was also designated
to study the impact of NOD1 and NOD2 receptors (70). In this
model, NOD1 overexpression reduced estrogen-induced tumor
proliferation, while NOD2 activation led to a remarkable
suppression of tumor growth. Numerous findings suggested that
NLRs and their downstream signaling factors switch roles during
different stages of cancer development, including initiation,
elimination, and maintenance (83). Thus, it is necessary to
elucidate the immune-stimulatory properties of NLRs in breast
cancer and potentially modulate treatment outcomes.
3.3.4 C-Type Lectins Receptors (CLRs)
CLRs play a crucial role in facilitating antigen uptake and
presentation by MHC molecules (71). Dectin-1 is one typical
CLR that can be activated by beta-glucan to regulate the
antitumor immune responses. The dectin-1 receptors were
expressed mainly on macrophages, neutrophils, dendritic cells,
and a subpopulation of T-lymphocytes. Beta-glucan binding to
the lectin site of neutrophils or NK cells generated a primed state
of the receptor, capable of recruiting tumoricidal granulocytes
for cytotoxic killing (71, 85). Oral administration of beta-glucan
has been shown to stimulate peripheral blood monocytes
expansion and activation in patients with metastatic breast
cancer (86), similarly, another clinical trial suggested b-glucans
as useful adjuvants in improving life quality for breast carcinoma
patients during chemotherapy (87). Lectin-like oxidized-low-
density lipoprotein (oxLDL) receptor-1 (LOX-1) was reported
to induce TNF-a expression, cellular adhesion and trans-
endothelial migration of MDA-MB-231 breast cancer cells
(88). Besides, LOX-1 expression on DCs was associated with
cross-presentation and activation of cytotoxic CD8+ T cells (89,
90), and meanwhile mediated B cell differentiation and migration
(91). Moreover, high levels of LOX-1 expression was found on
MDSCs from peripheral blood and tumor of cancer patients but
not on MDSCs from healthy donors (92). Therefore, future
studies remain to be performed to apply these potential CLRs
as anti-breast cancer vaccine adjuvants.
3.3.5 Cytosolic Stimulator of Interferon Genes
(STING)-Dependent DNA Sensor
STING is recently discovered as an intracellular DNA recognition
receptor that can induce type I interferon production and host
innate immune activation. Synthetic STING agonists have been
found to regulate tumorigenesis and potently induce antitumor
immunity in metastatic breast cancer (93). In addition to its direct
inhibitory effect in tumor cells, emerging evidence suggested that
STING agonists function as vaccine adjuvants to promote
therapeutic response.
Frontiers in Immunology | www.frontiersin.org 5
Among the STING agonists, 5,6-Dimethylxanthenone-4-
acetic Acid (DMXAA) was shown to mediate robust antitumor
innate immune responses in MMTV-PyMT tumor bearing mice
by vessel destruction and amplified immune cell infiltration (94).
However, DMXAA was a murine STING restricted agonist and
failed in targeting human breast cancer in phase III clinical trials.
Based on these findings, several STING agonists have
been generated to target human species while preserving the
ability to induce strong type I IFN. Cyclic dinucleotides,
such as cyclic diguanylate monophosphate (c-di-GMP), cyclic
deadenylate (c-di-AMP), and cyclic guanosine monophosphate–
adenosine monophosphate (cGAMP), have been shown to
improve vaccination in multiple cancer types, including breast
tumor (95–97). Similarly, c-di-GMP could inhibit the spread of
metastasis and tumor size in 4T1 metastatic breast tumors. In situ
delivery of a STING-activating cyclic dinucleotide, ADU-S100/
MIW815, against established HER2+ breast tumors overcame
immune tolerance and further induced tumor regression (98).
Moreover, nanoparticle delivery of STING-activating cGAMP was
recently demonstrated to inhibit tumors in a genetically
engineered mouse model of basal-like triple-negative breast
cancer C3 (1)Tag, which was insensitive to checkpoint blockade
therapy (67). To further explore the function of STING targeted
therapy, increasing preclinical experiments and clinical trials are
undergoing investigation in breast cancer and other cancer types
(99, 100).
3.4 Targeting Innate Immunity in
Combination With Other Breast
Cancer Therapies
The antitumor response induced by one singular innate immune
reagent can be limited, hindering potential therapeutic
application. Synergistic activation of innate and efferent arms
represents the future therapeutic modality owing to the high
potency and specificity for translational medicine. Various
approaches have been explored to reduce toxicity and facilitate
both innate and adaptive antitumor immune responses. STING-
deficient mice showed impaired CD8+ T cells, and these mice
were more vulnerable to tumor progression and resistance to
immunotherapy. Thus, STING targeting therapy had a pivotal
function in enhancing immune checkpoint blockade response
(ICB) (101). Remarkably, in the ICB-resistant breast cancer
model, combination treatment of IFN inhibitors and ICB led
to complete tumor eradication and survival (102). This study
demonstrated that inhibition of the IFN signaling pathway could
restore the immune responses to ICB, which largely expands the
use of immunotherapies for highly extensive ICB-combination-
therapy-resistant tumors.

Moreover, when combined with ionizing radiation, nano-
vaccines delivery of STING activator also reversed the
immunosuppressive tumor microenvironment, and this
combined approach has been proved as safe and effective
radioimmunotherapy for primary and metastatic tumors (103).
Interestingly, plasmacytoid dendritic cells (pDC) promote
immunosuppression within the tumor microenvironment.
November 2021 | Volume 12 | Article 771201
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However, they are the major type I IFN producers in response to
TLR7 and TLR9 activation. Inspired by these features, Wu et al.
introduced TLR7 ligand imiquimod (IMQ) and the TLR9 ligand
CpG to target pDC, and the combined treatment induced a more
potent effect compared to the single-agent (104). Collectively,
these emerging strategies (Table 1) suggested that rationally
designed innate immunostimulatory adjuvants can be
potentially efficient and versatile for developing combination
immunotherapy for breast cancer.
4 CLINICAL APPLICATIONS AND
CURRENT TRIALS OF INNATE IMMUNITY-
BASED BREAST CANCER THERAPY

So far, several breast cancer immunotherapies have broken
immune tolerance in clinical applications, giving novel
promises for cancer therapy. We expansively summarized the
clinical studies targeting innate immunity for breast cancer
therapy (Table 2). Several clinical applications targeting innate
immunity, using colony-stimulating factors, stimulator of
interferon genes along with their agonistic ligands for toll-like
receptors, showed these clinical treatments not merely regard as
vaccine adjuvants but as well as antitumor agents. Moreover,
combination therapies have revealed superior efficacy, may offer
a new promise for the development of immune therapy. Herein,
we focus on completed or ongoing clinical trials of innate
Frontiers in Immunology | www.frontiersin.org 6
immunity-based breast cancer therapy. Currently there are 16
clinical trials from phase 1 to 4 using colony-stimulating factors
(CSF) together with chemotherapy or radiotherapy for breast
cancer treatment. CSF was mainly used for enhance the efficacy
of chemotherapeutic drugs such as paclitaxel, ciprofloxacin and
reduced the neutropenia caused by those drugs. The safety of
CSF or PEGylated CSF has been verified in human being. The
clinical trials of interferons and toll-like receptors are mainly at
stage 1 or 2 to study the safety and optimize the tolerated doses.
There is also one stage 1 trial using cytosolic STING-dependent
drug to determine the side effects and safety.
5 CONCLUSION AND FUTURE DIRECTIONS

The innate immunity exerts essential roles in shaping breast cancer
development and altering tumor microenvironment through the
recruitment of circulating innate immune cells and trigger the
activation of adaptive immune cells, or through the functional
skewing of residential immune cells by the secreted cytokines,
growth factors and PRRs-mediated interaction. To understand
the breast tumor microenvironment, preclinical studies have been
shown that innate immune cells and the secreted cytokines have
multifaceted roles that either promote or suppress breast tumor
during disease progression or therapeutic responses. For instance,
when upon interaction with tumor antigen via TLR or STING that
primarily expressed on DCs and macrophages, these stimulated
TABLE 1 | Factors and mechanisms related to anticancer innate immunity and summary of agents in the use of breast cancer immunotherapy.

Innate immune
pathway/
receptor

Classification Role in cancer immunity Innate cells Agent Ref

Colony-
stimulating
factor

M-CSF, G-CSF, GM-CSF,
IL-3

regulate the proliferation, maturation, and apoptosis
of myeloid cell

DC, TAM, MDSC,
neutrophils, NK cell

the anti-CSF1R antibody,
CSF1R inhibitor

(53)

Interferon Type I IFN (IFN-a and
IFN-b, etc.)

maturation of dendritic cells; recruit NK cell and T
helper cells; polarize macrophage phenotypes;

Drug: FLAC with GM-
CSF

IFN-a2a, IFN-a2b (41, 105)

Type II IFN (IFN-gR1 and
IFN-gR2)

TLRs/Toll-like
receptors

Cell surface TLRs (TLR1,
TLR2, TLR4, TLR5, TLR6,
and TLR10)

mediate both immune surveillance and immune
tolerance; activates inflammatory response; cancer
vaccine adjuvants or immunotherapeutic agent

DC, TAM, MDSC,
neutrophils, NK cell,
basophils, eosinophils,
mast cell

TLR3 agonist PolyI:C,
TLR4 agonist LPS, TLR7/8
imiquimod, TLR9 agonist

(69)

Intracellular TLRs (TLR3,
TLR7, TLR8, TLR9,
TLR11, TLR12, and
TLR13)

CpG ODNs (68)

RLRs/RIG-I-like
receptors

RIG-I and MDA5 promote transcription factor IRF3 and NF-kB; affect
the secretion of inflammatory cytokines; promote
phagocytosis of apoptotic tumor cells

DC, TAM, MDSC,
neutrophils, NK cell,
basophils, eosinophils,
mast cell

RIG-I activator MK-4621,
Bo-112

(78)
(80, 81)
(79)

NLRs/NOD-like
receptors

NLRA, NLRB, NLRC,
NLRP, NLRX

intracellular pathogens detection; initiation of
inflammation; regulation of tissue repair; induce type
I IFN secretion

DC, TAM, MDSC,
neutrophils, NK cell, mast
cell

NOD-2 agonist
mifamurtide

(83).

CLRs, C-type
lectin receptors

Dectin-1 facilitate antigen uptake and presentation by MHC
molecules; recruiting tumoricidal granulocytes

DC, TAM, neutrophils CMB305, imprime PGG. (71, 85)

CDS, Cytosolic
DNA sensors

STING-dependent
Sensors

promote AIM2 inflammasome activation; induce the
production of pro-inflammatory cytokines

DC, TAM, MDSC, mast
cell

STING agonists MK-1454,
MIW815, DMXAA

(94)
(98)
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TABLE 2 | Clinical applications and current trials of innate immunity-based breast cancer therapy.

Target Phase Clinical
status

Summary Interventions Clinical trial
identifiers

Colony-
stimulating
factors

1 Active, not
recruiting

Patients’ tumor cells were used to formulate a vaccine to
stimulate their immunity by secreting granulocyte-macrophage
colony-stimulating factor (GM-CSF).

Biological: Autologous, Lethally Irradiated Breast
Cancer Cells

CT00317603

Colony-
stimulating
factors

2 Completed GM-CSF was used to improve chemotherapy-induced toxicity
in metastatic/locally advanced breast cancer.

Drug: FLAC with GM-CSF NCT00001239

Colony-
stimulating
factors

3 Completed FLAC chemotherapy and GM-CSF or PIXY321 for patients
with locally advanced breast cancer.

Drug: FLAC chemotherapy with GM-CSF NCT00001338

Colony-
stimulating
factors

1 Completed Treatment of IL-3 alone or in combination with GM-CSF after
FLAC chemotherapy was conducted to study the maximal
dose of IL-3 in patients with metastatic breast cancer.

Drug: IL-3 NCT00001269

Colony-
stimulating
factors

1 Completed Treatment of paclitaxel (weekly) combined with radiotherapy
(biweekly) was performed to study toxicity and response rate.

Drug: Paclitaxel, Vinorelbine, Filgrastim NCT00724386
Radiation: Radiation

Colony-
stimulating
factors

3 Completed The biosafety and efficacy of injecting GSF fusion protein and
recombinant human serum albumin were studied for
preventing chemotherapy-induced neutropenia.

Drug: rHSA-GCSF and G-CSF NCT03251768

Colony-
stimulating
factors

4 Completed Treatment of prophylaxis combined with either ciprofloxacin or
G-CSF was conducted to diminish chemotherapy-induced
febrile neutropenia.

Drug: Ciprofloxacin NCT02816112
Drug: Neupogen

Colony-
stimulating
factors

4 Not yet
recruiting

Post chemotherapy, patients received a second injection of
PEG-rhG-CSF to prevent bone marrow suppression and/or
febrile neutropenia in breast cancer.

Drug: PEG-rhG-CSF NCT04477616

Colony-
stimulating
factors

1 Completed Treatment of different doses of rHSA/GCSF to study the
safety and tolerance in breast cancer patients.

Drug: rHSA/GCSF NCT03246009

Colony-
stimulating
factors

4 Not yet
recruiting

Treatment of PEG-rhG-CSF as the primary prevention of
neutropenia to study the clinical efficacy, tolerance, and safety
in early breast cancer patients.

Drug: PEG-rhG-CSF NCT04009941

Colony-
stimulating
factors

2 Completed To study tumor response rate and survival rate in patients
after GM-CSF treatment.

Drug: Herceptin NCT00429104
Drug: GM-CSF

Colony-
stimulating
factors

2 Completed To determine the dose and safety of combined rintatolimod
and GM-CSF treatment.

Biological: HER-2/neu peptide vaccine NCT01355393
Biological: sargramostim, Rintatolimod

Colony-
stimulating
factors

1 Completed To determine the dose and safety of co-treatment of vaccine,
Montanide ISA-51 and sargramostim for stage IV breast
cancer patients.

Biological: incomplete Freund’s adjuvant,
Sargramostim

NCT00079157

Biological: telomerase: 540-548 peptide vaccine
Colony-
stimulating
factors

3 Completed To study the side effect and efficacy of administering

NeuVax™ with sargramostim (GM-CSF).
Biological: NeuVax™ vaccine, Leukine®

(sargramostim, GM-CSF)

NCT01479244

Colony-
stimulating
factors

2 Completed To determine the efficacy of vaccine and sargramostim (GM-
CSF) in post-surgical female patients diagnosed as stage II/III
breast cancer with metastasis to the lymph nodes.

Biological: recombinant fowlpox-CEA(6D)/TRICOM
vaccine, recombinant vaccinia-CEA(6D)-TRICOM
vaccine, Sargramostim

NCT00052351

Drug: cyclophosphamide, Doxorubicin
hydrochloride, Paclitaxel
Radiation: radiation therapy

Colony-
stimulating
factors

2 Completed To compare the efficacy of the GP2 peptide vaccine and GM-
CSF in breast cancer patients.

Biological: GP2 peptide + GM-CSF vaccine, GM-
CSF (sargramostim), AE37 + GM-CSF vaccine,

NCT00524277

Interferons 2 Terminated To determine the combined efficacy of capecitabine and
interferon alfa-2a in breast cancer patients with recurrent or
progressive brain metastases.

PEG-interferon alfa-2a NCT00227656
Drug: Capecitabine

Interferons 2 Recruiting To optimize the dose and safety of delivering interferon-
gamma and paclitaxel/trastuzumab/pertuzumab in HER2
positive breast cancer patients.

Biological: Interferon-gamma NCT03112590
Drug: Paclitaxel, Trastuzumab, Pertuzumab

Interferons 1 Recruiting To explore the safe dose range of IFN-a-2a and the human
tolerance index.

Drug: IFN-a-2a NCT04522557

Interferons 2 Completed To determine the efficacy of combining cyclophosphamide
and tumor cell vaccine in cancer participants at high risk of
recurrence.

Biological: allogeneic tumor cell vaccine, autologous
tumor cell vaccine, recombinant interferon alfa,
recombinant interferon-gamma, sargramostim

NCT00002475
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innate immune cells undergo maturation or repolarization (e.g.
immature DCs differentiate into mature DCs; pro-tumoral TAMs
repolarize towards anti-tumoral M1 macrophages). They secrete
IL-12 and type I IFNs that can prime and activate tumor specific
CD8+ T cells for cytotoxic killing against breast tumor cells. The
secreted IL-12 and type I IFNs also can activate NK cells for lysing
tumor cells. Meanwhile, breast tumor cells synthesize and secret
TGFb that directly or indirectly target various immune cells, which
altogether mediate the immune escape for invasion and metastasis
(46). This also leads to another opportunity of developing routine
immunoprofiling analysis of breast tumors and patients, which
should be matched to effective strategy during treatment planning
and prognosis. Therefore, understanding the interaction among
innate immune cells with breast tumor microenvironment can aid
to select therapeutic strategy for achieving successful outcomes
based on the personalized immunoprofiling information.

Although T cell-based immunotherapies have achieved
breakthrough outcomes in many cancer types, including some breast
cancers, patients with poor infiltrating lymphocytes had limited or no
response. To tackle the difficult-to-treat breast cancers or enhance the
antitumor responsiveness of immunotherapy, numerous preclinical
studies and early clinical trials have been conducted to activate innate
immune cell populations or sensing pathways alone or in combination
with adaptive immune therapies. One clinical study NCT02981303 is
conducted onmetastatic triple negative breast cancer (TNBC) patients
to test the combination of Dectin Receptor agonist Imprime PGG and
the immune checkpoint blocker pembrolizumab. They showed robust
infiltration of activated myeloid cells and TILs associated with
promising synergistic anti-tumor effects. Another ongoing phase I
trial NCT03841110 is conducted to evaluate the combined effect of
adoptive transferredNKcells (iPSC-derived) andanti-PD-1antibodies
(nivolumaborpembrolizumab).Although the trialNCT03172936was
Frontiers in Immunology | www.frontiersin.org 8
recently terminated, their preliminary results suggest that STING
agonist ADU-S100 in combination with the PD-1 blocker
spartalizumab was well tolerated and mediated some clinical activity
in patients with PD-1-naïve TNBC (99, 106). Therefore, increasing
progress is being made to manage patient safety and determining
nontoxic doses of single-agent or combination drugs that exhibit
effective antitumor responses. Current data encourages a continued
exploration of these strategies for translational application.
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TABLE 2 | Continued

Target Phase Clinical
status

Summary Interventions Clinical trial
identifiers

Drug: cyclophosphamide
Interferons 1 Completed To determine the safety and optimal dose of treating

interferon alfa in participants with stage IV solid tumors (breast
cancer), lymphoma, or myeloma.

Biological: recombinant interferon alpha-1b NCT00276536
Drug: IFN

Toll-like
receptors

2 Completed To study the optimal dose and efficacy of Imiquimod together
with cyclophosphamide and radiotherapy in participants with
breast cancer and skin metastases.

Radiation: Radiation NCT01421017
Drug: Imiquimod
Drug: Cyclophosphamide

Toll-like
receptors

1 Terminated To study the dose range of cyclophosphamide, pegfilgrastim,
and TLR8 agonist VTX-2337 (CyNeuMoto).

Drug: Cyclophosphamide NCT02650635
Biological: Pegfilgrastim, TLR8 Agonist VTX-2337

Toll-like
receptors

2 Completed To study the side effect and efficacy of Imiquimod in patients
with breast cancer and metastases to skin or chest wall
recurrences.

Drug: Imiquimod NCT00899574

Toll-like
receptors

2 Completed To determine the safe dose of Imiquimod together with
Abraxane.

Drug: Imiquimod, Abraxane NCT00821964

Toll-like
receptors

2 Completed To study the efficacy of 852A in metastatic breast cancer
patients.

Drug: 852A NCT00319748

Toll-like
receptors

1 Terminated To study the immunogenicity of administering a TLR3 vaccine
together with poly-ICLC in patients with stage I.B. to IIIA
breast cancer.

Biological: poly-ICLC NCT01532960
Biological: Peptides from Her-2/neu, CEA, & CTA,
Peptide-te

Cytosolic
STING-
dependent

1 Recruiting To determine the side effect and efficacy of E7766 by
intratumorally administrated in patients with advanced solid
tumors or lymphomas.

Drug: E7766 NCT04144140
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