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Immune cell-derived extracellular vesicles (EVs) have increasingly become the focus of
research due to their unique characteristics and bioinspired applications. They are lipid
bilayer membrane nanosized vesicles harboring a range of immune cell-derived surface
receptors and effector molecules from parental cells. Immune cell-derived EVs are
important mediators of intercellular communication that regulate specific mechanisms
of adaptive and innate immune responses. However, the mechanisms underlying the
antitumor effects of EVs are still being explored. Importantly, immune cell-derived EVs
have some unique features, including accessibility, storage, ability to pass through blood-
brain and blood-tumor barriers, and loading of various effector molecules. Immune cell-
derived EVs have been directly applied or engineered as potent antitumor vaccines or for
the diagnosis of clinical diseases. More research applications involving genetic
engineering, membrane engineering, and cargo delivery strategies have improved the
treatment efficacy of EVs. Immune cell-derived EV-based therapies are expected to
become a separate technique or to complement immunotherapy, radiotherapy,
chemotherapy and other therapeutic modalities. This review aims to provide a
comprehensive overview of the characteristics and functions of immune cell-derived
EVs derived from adaptive (CD4+ T, CD8+ T and B cells) and innate immune cells
(macrophages, NK cells, DCs, and neutrophils) and discuss emerging therapeutic
opportunities and prospects in cancer treatment.
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INTRODUCTION

Cancer is a leading cause of human death worldwide, and the
vast majority of cancer patients are treated with chemotherapy
and radiotherapy, which are typically only partially effective and
lead to a variety of serious side effects. In contrast, the past
decade has witnessed the development and validation of cancer
immunotherapies that stimulate the immune system of patients
to combat cancers (1, 2). The human immune system is
responsible for the recognition and elimination of antigenic
foreign substances and coordinates with other biological
systems of the body to jointly maintain the stability of the
internal environment and physiological balance (3, 4). The
system is composed of immune tissues, organs, and cells and
immune-active substances, which control the dynamic functions
of immune surveillance, defense, and regulation. In certain types
of cancer, the immune system can be both cause and cure by
contributing to chronic inflammation that promotes tumor
development; however, in other types of cancer, the immune
system provides the ultimate weapons against metastatic disease
(5, 6). Compared to conventional therapies, which directly kill
both cancer and healthy cells, immunotherapy can more
specifically target cancer cells via modulation of the functions
of immune cells, causing milder side effects (7). Thus, the
development of means to harness, direct, or restrain immune
responses has great potential for enhancing our health and
preventing future relapses (8, 9). Research focused on cancer
immunology and translational immunotherapy has been
bolstered by recent successes of clinical trials, including
immune checkpoint antibodies, monoclonal antibodies,
vaccinations, and chimeric antigen receptor (CAR)-T cell
therapies (10–12).

Human immune cells belong to two functional groups: innate
and adaptive cells. Innate immune cells are the first line of
defense against abnormal cells, such as tumor and pathogen-
infected cells (13). These innate immune cells rapidly move to
the sites of infection or tissue damage and secrete potent
inflammatory mediators to help destroy tumor cells (14–16).
Adaptive immune cells, T and B lymphocytes complement the
functions of innate immune cells. They recognize specific
antigens associated with tumors and proliferate and
differentiate (17, 18). Then, these cells destroy the tumor with
a high degree of specificity (19). Notably, some T and B cells have
long-term memory functions that prevent recurrence of tumors
expressing previously encountered antigens; these cells enable
protection by many vaccines for decades (20–22). Innate and
adaptive responses work cooperatively to effectively clear tumors
without damaging the host tissues.

The clinical success of cancer immunotherapies ultimately
involves the regulation of immune cells; these treatments include
tumor vaccines that modulate dendritic cells (DCs), immune
checkpoint blockade therapies that enhance T cell function in the
tumor microenvironment, and chimeric antigen receptor
(CAR)-T cell therapies, which have been developed to
stimulate tumor-specific humoral and cytotoxic T lymphocyte
(CTL) responses (23–25). These treatments involve direct or
indirect application of immune cells; however, many barriers to
Frontiers in Immunology | www.frontiersin.org 2
the implementation of these methods pose problems due to
tumor heterogeneity and escape mechanisms. Both preclinical
and clinical data revealed that DC vaccination induces effective
antitumor immunity in vivo. However, only a limited number of
patients benefit from clinical trials performed during the past
two decades (15, 26). As a means of the most promising
immunotherapy, CAR-T cells have also been reported to cause
toxic effects, such as cytokine release syndrome, which is
characterized by high fever, hypotension, hypoxia, multiorgan
toxicity, and CAR-T cell-related encephalopathy syndrome (27).
Systemic cell-based therapies are being studied, and multiple
potential alternative approaches are being investigated.

Extracellular vesicle (EV)-based therapies have emerged as a
potential option for current cancer due to their pathophysiological
efficacy. The ongoing clinical trials of cancer immunotherapy
based on EVs are listed in Table 1 (28). EVs are nanometric
membrane vesicles that are secreted by cells in the body, including
almost all immune cells. EVs have some unique functions,
including accessibility, storage, passing through the blood-brain
and blood-tumor barriers, loading various effector molecules, and
combining with other therapeutic modalities (29, 30). Multiple
studies have examined tumor cell-derived vesicles as important
mediators of intercellular communication that regulate specific
mechanisms of tumor survival, growth, angiogenesis, and
metastasis (31). Immune cell-derived EVs carry a range of
functional molecules, and various EV-based strategies are being
developed for applications in preclinical studies, including genetic
engineering, membrane engineering, and cargo delivery (32, 33).
Thus, immune cell-derived EV treatment is a separate or
complementary technique for immune cell-based therapy. The
present review is specifically focused on the structural features and
major effects of innate and adaptive immune cell-derived EVs. The
roles of these EVs in mediating immune regulation provide new
ideas for the future diagnosis and treatment of cancers.
BIOLOGICAL CHARACTERISTICS OF
IMMUNE CELL-DERIVED VESICLES

Immune cell-derived vesicles are heterogeneous in size, originate
from cells, and are detected in the blood, urine, saliva, and
cerebrospinal fluid (34). Based on their biogenesis mechanism,
EVs are classified into three types: exosomes, microvesicles and
apoptotic bodies. These three types of vesicles are different in
diameter; microvesicles are generally larger in size with a diameter
of approximately 100 nm to 1 mm, and exosomes have a diameter
of 30-150 nm. Apoptotic bodies derived from apoptotic cells have
a diameter of 1-5 mm EVs (30, 35, 36). A summarized list of the
characteristics of each vesicle is provided in Table 2 (37–39). In
this review, we focus on exosomes and microvesicles that come
from immune cells and refer to them as EVs in general.
ISOLATION AND IDENTIFICATION

It was critical to obtain a large number of EVs with high purity
and quickly to meet the demands of basic research and clinical
December 2021 | Volume 12 | Article 771551
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appl i cat ion . The most commonly used method is
ultracentrifugation, based on EV density. Initially, large dead
cells and cell debris were eliminated. Then, the supernatant was
centrifuged for 70 min at 105 × g to pellet EVs. The final pellet
was washed in PBS to eliminate contaminating proteins. In
addition, immune-affinity antibody capture techniques, size-
dependent gradient centrifugation, ultrafiltration and
precipitation were also used to isolate EVs from diverse
organic samples. A list of characteristics of each isolation
method is summarized in Table 3 (29, 40, 41).

The routine methods of EV identification include western
blotting and flow cytometry. Several markers are commonly used
for immunoblot analysis, such as tetraspanins (CD9, CD63, and
CD81), a protein involved in multivesicular biogenesis (Tsg101),
and a cytoskeleton-associated protein (ezrin). Moreover, EVs can
be characterized by physical and morphological characteristics,
including scanning electron microscopy (SEM), transmission
electron microscopy (TEM), cryoelectron microscopy (cryo-
EM), dynamic light scattering (DLS), atomic force microscopy
Frontiers in Immunology | www.frontiersin.org 3
(AFM), resisting pulse sensing (RPS) and nanoparticle tracer
analysis (NTA) (42–44).
INNATE IMMUNE CELL-DERIVED EVs

The antitumor response requires the participation of innate and
adaptive immune cells. Innate immune cells include monocytes/
macrophages, neutrophils, natural killer (NK) cells, NKT cells,
gdT cells, eosinophils, basophils, and mast cells (45, 46). DCs are
professional antigen-presenting cells known to play a key role in
the initiation and maintenance of antitumor immunity, bridging
innate and adaptive immune responses (47). The functions of
EVs derived from NK cells, macrophages, DCs and neutrophils
are summarized in detail separately.

Natural Killer Cell-Derived EVs
NK cells are innate immune effector cells that play an important
role in human organ immunosurveillance, cancer, or pathogen
TABLE 1 | The part of ongoing clinical trials of cancer immunotherapy based on EV.

ID Sponsor Tumor Enrollment Strategy Phase/Status

Immunotherapy
NCT01159288 Gustave Roussy, Cancer Campus,

Grand Paris
NSCLC 41 Cyclophosphamide and tumor antigen-loaded

Dex
Phase 2/
Complete

NCT03608631 M.D. Anderson Cancer Center Pancreas cancer 28 EVs With KrasG12D siRNA Phase 1/
Recruiting

NCT01550523 Jefferson University Recurrent malignant
gliomas

13 EVs deliver tumor antigens, activate immune
response

Phase 1/
Complete

Diagnosis
NCT03824275 Columbia University Prostate cancer 300 Diagnostic marker Phase 2/3/

Recruiting
NCT03228277 Konkuk University Medical Center NSCLC 25 Marker after treatment Phase 2/

Complete
NCT02977468 Eileen Connolly TNBC 15 Marker after treatment Phase 1/

Recruiting
Drug delivery
NCT01294072 University of Louisville Colon cancer 35 Plant EVs Deliver Curcumin Phase 1/

Recruiting
December 2021 | Volume 1
The data source: https://clinicaltrials.gov/. NSCLC, Non small cell lung cancer; TNBC, Three-negative breast cancer.
TABLE 2 | Major types of extracellular particles.

Vesicle Size (nm) Origin Markers

Exosomes 30-150 Endosomes Tetraspanins, Alix, TSG101, CD63
Microvesicles 100-1000 Plasma membrane Integrins, selectins, CD40
Apoptotic bodies 1000-5000 Plasma membrane, endoplasmic reticulum Phosphatidylserine, genomic DNA, receptors
TABLE 3 | Isolation methods of EVs.

Isolation Methods Purity Principle Characters

Ultracentrifugation High Density Large acquisition
Density-gradient centrifugation High Density Cost time
Immune-affinity capture High Biomarker High cost
Ultrafiltration Moderate Size Easy and fast
Precipitation Low Precipitation Contaminants
2
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infections (48). NK cells express germline-encoded activating
and inhibitory surface receptors that tune NK cell-mediated
cytotoxicity by sensing changes in the extracellular
microenvironment (35, 48). Under steady-state conditions, NK
cell activity is stringently controlled by membrane-expressed
inhibitory receptors binding to human leukocyte antigen
(HLA) molecules, which block activating receptors of NK cells
from binding to specific molecules (49). These receptors form
activating immunological synapses with target cells through
surface receptors, including NKp46, NKp30, NKp44, NKG2D,
and DNAM-1, and utilize their cytotoxic ability to eliminate
abnormal cells at an early stage of tumorigenesis or infection.
When tumor ce l l s or v i ruses dominate the loca l
microenvironment at a late stage, inhibitory receptors, such as
KIRs and NKG2A/CD94, represent an important mechanism
that limits the cytotoxic effects of autologous NK cells (29,
50, 51).

NK-derived EVs contain typical NK surface receptors that
perform a function similar to that of parental cells (Figure 1).
The release of active NK EVs is able to induce apoptosis of tumor
cells. In contrast, NK ligand-bearing tumor cells induce
downregulation of the expression of active receptors, such as
Frontiers in Immunology | www.frontiersin.org 4
NKG2D, and inhibit degranulation on NK cells, resulting in
compromised cytotoxicity and reduced levels of antitumor
immune surveillance and lytic proteins (52). EVs released from
NK cells deliver a cargo of cytotoxic proteins, including perforin,
granzymes, granulysin, FasL/CD178, TNF-related apoptosis-
inducing ligand (TRAIL/CD253) and small antimicrobial
peptides (53). These effector molecules destroy target cells,
including breast cancer, melanoma, and hematologic
malignancies, via a well-known mechanism of the direct killing
pathway (54, 55).

NK-derived EVs contain other molecules involved in cellular
homing, adhesion, and immune activation that cause indirect
tumor killing. Immunomodulation studies revealed that NK-
derived EVs mainly function by stimulating peripheral blood
mononuclear cells (PBMCs) and increasing the fraction of
CD56+ NK cells (48). A study by Paolo Neviani and coworkers
showed that NK-derived EVs carrying the tumor suppressor
miRNA-186 are cytotoxic against neuroblastoma cell lines.
Targeted delivery of miRNA-186 directly inhibits the
expression of oncogenes, including MYCN, AURKA, TGFBR1,
and TGFBR2, and prevents TGFb1-dependent immune escape
in high-risk neuroblastoma patients (56). Yoon-Tae Kang et al.
FIGURE 1 | Typical characteristics and anti-tumor application of NK-derived EVs. NK EVs binds tumor cells through NKG2D-MICA/B and exhibit cytotoxic effect
resulting from a cargo of released cytotoxic proteins, including perforin, granzymes and small antimicrobial peptides, resulting tumor cell apoptosis. Additionally,
Engineered NK EVs-coated nanoparticle was employed for chemotherapeutic drug delivery.
December 2021 | Volume 12 | Article 771551
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reported the fabrication of a novel microfluidic system based on
an NK-graphene oxide chip. The chip combined patient-specific
NK cells and biogenesis of NK-derived EVs. NK-derived EVs
exhibited cytotoxic effects on circulating tumor cells (CTCs).
This versatile system is expected to be used for patient-specific
NK-based immunotherapies against CTCs for potential
prognostic/diagnostic applications (57).

Macrophage-Derived EVs
Macrophages express various functional programs in response to
various microenvironmental signals. As multifunctional cells,
macrophages infiltrate tumor tissues (tumor-associated
macrophages, TAMs) and play an important role in tumor
initiation and progression. Proinflammatory M1 macrophages
and “alternatively activated” anti-inflammatory M2
macrophages represent the extremes of a continuum of
functional states (58, 59). Clinical and experimental evidence
has shown that M1 macrophages phagocytose tumor cells and
that M2 macrophages promote tumor growth and metastasis
(60). Macrophages absorb antigens that are released by EVs and
subsequently deliver them to CD4+ or CD8+ T cells. Receptor
cells bind EVs due to receptor-ligand interactions (61). Certain
Frontiers in Immunology | www.frontiersin.org 5
surface ligands and adhesion molecules, such as tetraspanins,
ICAM-1, and phosphatidylserine, are involved in the process
(Figure 2). Macrophage-derived EVs have multiple functions
depending on various phenotypes of parental cells. Both
endogenous and exogenous stimulatory factors influence the
secretion of macrophage-derived EVs (62). Lysosomes can fuse
with multivesicular bodies to determine their trafficking
pathway. Therefore, vesicles highly depend on the functions of
lysosomes (63). Other factors, such as autophagy and aging, can
also influence the contents of macrophage-derived EVs (64, 65).
The hypoxic microenvironment is a common feature of solid
tumors and can augment the release of macrophage-derived
EVs (61).

Macrophage-derived vesicle-mediated cell-to-cell interactions
can mediate the exchange of miRNAs, long noncoding RNAs
(lncRNAs), and proteins. Noura Ismail and coworkers
demonstrated that miRNA-223 contained in macrophage-
derived EVs was transported to the target cells and induced
the differentiation of macrophages (66). Zhengtian Li et al.
demonstrated that miRNA-16-5p derived from M1
macrophage-derived EVs enhanced the T cell-dependent
immune response by decreasing the expression of PD-L1,
FIGURE 2 | M1 and M2 macrophage-derived EVs display the opposite anti-tumor effect. Left panel: The presence of MHC and ICAM molecules on the surface of
M1 EVs give them the potential to stimulate T cells, resulting T cell activation and tumor apoptosis. The miRNA and LncRNA derived from M1 EVs may aid this
process. Right panel: M2 EVs transferred miRNA and LncRNA to regulate invasion-related protein, thus promoting the invasion and metastasis of tumor.
December 2021 | Volume 12 | Article 771551
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which inhibited gastric cancer formation in vitro and in vivo (67).
MiRNA-12-5p and miRNA-155-5p were present at high levels in
M2 macrophage-derived EVs, which were transferred to
colorectal cancer cells; these EVs bound to the cells and
decreased the expression of BRG1, leading to cancer cell
migration and invasion, as demonstrated by Jingqin Lan et
al. (68).

LncRNAs in macrophage EVs modulate the tumor
microenvironment and participate in tumor pathogenesis. For
example, Lei Wu et al. demonstrated that M2 macrophage-
derived EVs carried the lncRNA-PVT1 sponge miRNA-21-5p
to upregulate SOCS5, which alleviated inflammation and
protected EAE mice by repressing the JAK/STAT3 pathway
(69). Xifeng Mi et al. demonstrated that M2 macrophage-
derived EVs carried the lncRNA AFAP1-AS1 sponge miRNA-
26a to upregulate ATF2, promoting the invasion and metastasis
of esophageal cancer (70). Thus, these results provide a new
point of view in which macrophage-derived EVs carrying
lncRNAs participate in tumor pathogenesis. Macrophage-
derived EVs are also packaged with a variety of protein effector
molecules, such as ERAP1 and CCL3, to enhance phagocytic
functions. TNF-a and IFN-g are crucial for nitric oxide (NO)
synthesis, which also facilitates vesicle-mediated macrophage
functions (71). Integrin aMb2 contained in M2 macrophage-
derived EVs is notably specific and efficient and contributes to
the migration of hepatocellular carcinoma by activating the
MMP-9 signaling pathway (Figure 2) (72). Importantly,
vesicle-mimetic nanovesicles derived from M1 macrophages
can repolarize M2 macrophages to M1 macrophages.
Enhancement of the antitumor efficacy of aPD-L1 and
suppression of tumor growth result from the release of
proinflammatory cytokines (73).

Dendritic Cell-Derived EVs
DCs are the most powerful antigen-presenting cells in the human
body that can activate resting T cells, building an essential bridge
between innate and adaptive responses (14, 74, 75). Tumor-
proximal DCs can capture the antigens generated and released
during tumorigenesis and present captured tumor-associated
antigens (TAAs) in cooperation with costimulatory molecules,
such as CD80 and CD86, through the major histocompatibility
complex (MHC)-I and MHC-II molecules to naïve CD8+ T
cytotoxic cells and naïve CD4+ T helper cells, respectively,
leading to the initiation and activation of antitumor immune
responses (76, 77).

DC-derived EVs are small lipid vesicles that have been used to
stimulate antitumor immune responses in mouse models and
clinical trials. Näslund showed that protein-loaded DC-derived
EVs activated CD8+ T cell and B cell responses in vivo antitumor
immunity (78). A phase II clinical trial involving the
administration of tumor antigen-loaded Dex in NSCLC has
been completed (28). EVs contain the CD1a, b, c, and d
proteins, which are involved in cross-presentation of lipid
antigens (40, 79). Importantly, the tumor antigen peptide-
MHC complex and costimulatory factors, such as CD86, are
expressed at high levels on the surface of mature DC-derived
Frontiers in Immunology | www.frontiersin.org 6
EVs, which can be presented to immune cells to activate TAA-
specific effector T cells (80, 81). EVs contain a variety of
membrane proteins, such as aMb5, milk fat globule-EGF
factor 8 protein (MFGE8), and intercellular cell adhesion
molecule-1 (ICAM-1), which can be targeted to bind and fuse
to immune cells (DCs, T cells, and NK cells) with high levels of
integrin avb5 receptor expression (82). Additionally, the ligand
of the NK cell activating receptor (NKG2D) is expressed at high
levels on the surface of DC-derived EVs, which can directly
activate NK cells in vitro and in vivo in a non-MHC-dependent
manner to exert an antitumor effect (83). DC-derived EVs also
express Toll-like receptors (TLR1/2 and TLR4) on their surface,
which enhance the expression of transmembrane tumor necrosis
factor and activation of bystander DCs, leading to the production
of proinflammatory cytokines and subsequent activation of NK
cells (Figure 3) (84).

DC-derived EVs contain heat shock proteins (HSPs) that are
involved in antigen presentation. HSC73, a member of the
HSP70 family, together with HSP90, is present at a high
abundance in the cytosolic fraction of DC-derived EVs and
can bind antigens to load onto MHCs (85). Additionally, DC-
derived EVs contain various metabolic enzymes, such as lipid
kinases, peroxidases, enolase-1, and pyruvate (86). In addition to
proteins, DC-derived EVs contain various RNAs, which facilitate
intercellular communication and induce posttranslational
modifications. Importantly, miRNAs delivered by EVs are
functional because they suppress targeted mRNAs in acceptor
DCs (87).

In addition to proteins, DC-derived EVs mediate cell-to-cell
interactions and exchange miRNAs. Various miRNAs can be
exchanged depending on the maturation of DCs. Angela
Montecalvo et al. demonstrated that 63 miRNAs are differentially
expressed in immature versus mature DC-derived EVs (87).
Qingshan Ji et al. demonstrated that miRNA-21 delivered by
vesicles derived from thymic stromal lymphopoietin-treated DCs
regulates Th17/Treg differentiation by inhibiting smad7 (88).
Zhongliu Cao et al. reported that miRNA-335 delivered by
vesicles derived from mature DCs enhances the proliferation and
osteogenic differentiation of marrow-derived mesenchymal stem
cells by targeting LATS1, and this effect was accompanied by
inhibition of Hippo signaling (89). Engineering DC-derived EVs
expressing miRNAs, which modulate signaling pathways, may
enhance antitumor activity (40, 90). Moreover, EVs have distinct
advantages over DC-based therapy and have highly promising
prospects for immunotherapy.

Many factors influence the production and release of DC-
derived EVs, including the maturation stage of DCs, stimulatory
signals produced by T cells, and DNA-damaging treatment. C
Théry and coworkers reported that the production of EVs
downregulated DC maturation (85). Sophie Viaud et al.
demonstrated that MHCI, MHCII, and costimulatory factors
are more abundant in EVs derived from mature DCs (91).
Stimulatory signals produced by T cells encountering
immature DCs may trigger a transient increase in EV secretion
(92). However, the DNA-damaging signal via TSAP-6 regulates
protein secretion, leading to a severe compromise of the
December 2021 | Volume 12 | Article 771551
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production of DC-derived EVs (82). The phenotype and
immunogenicity of EVs are critical for their function. IFN-g,
IL-3, and IL-4 are used for DC maturation, whereas GM-CSF/IL-
4 and GM-CSF/IL-10 inhibit DC maturation. EVs maintain the
same phenotype as parental DCs, leading to antitumor effects or
to inhibition of inflammation.

Previous studies demonstrated that DC-derived EVs can
initiate potent antitumor immunity via direct or indirect
pathways (Figure 3). DC-derived EVs directly present tumor
antigen-MHC complexes to T cells with low efficiency (93). EVs
merge the DC surface membrane and deliver the tumor antigen
peptide-MHC complex, which is called a cross-dressing process,
to be recognized by T cells without the need for antigen uptake.
This approach results in a stronger antitumor effect than that
achieved by direct presentation (82). Moreover, DC-derived EVs
can deliver some tumor antigens in the form of proteins or long
peptide chains directly to DCs, which perform antiuptake,
processing, and presentation (93). Furthermore, Graziela
Gorete Romagnoli et al. reported that DC-derived EVs can
turn tumor cells into immunogenic targets to deliver immune
function-associated molecules to cancer cells, resulting in
Frontiers in Immunology | www.frontiersin.org 7
extensive proliferation of previously sensitized IFN-g-secreting
T cells (94).

DC-derived EVs have attracted attention in cancer
immunotherapy because they activate both T and B cells to
induce antitumor immunity in vivo. CD8+ T cells are extensively
activated by the EV TAA-MHCI complex (78). Various
strategies, such as chemical adjuvants, IFN-g, and aGC, which
boost DC maturation, can remarkably promote an increase in
IFN g-producing CD8+ T cells and enhance the level of IL-2 (95).
CD4+ T cell propagation was extensively initiated by the vesicle
TAA-MHCII complex through an indirect pathway when DCs
were loaded with a protein rather than a peptide antigen. Ben J C
Quah and coworkers demonstrated that primary B cells can also
propagate upon stimulation of EVs derived from mycoplasma-
infected DCs, and these effects do not involve CD40, LPS, or the
CpG signaling pathway (96).

Neutrophils-Derived EVs
According to the spatiotemporal production mechanism, EVs
derived from neutrophils can be divided into two subtypes,
neutrophil-derived trails (NDTRs) and neutrophil-derived
FIGURE 3 | DC-derived EVs may stimulate both CD8+ and CD4+ T cells by direct and indirect routes. A route for DC EVs stimulation of T cells occurs directly via
the expression of MHC-I, MHC-II and costimulatory molecules on the surface of it. The indirect way stimulation of T cells occurs via bystander DCs through two
mechanisms. The first way involves EVs internalization and transfer of antigen-MHC complex. The other way called cross-dressing involves antigen-MHC complex
direct transfer to DC surface. Additionally, DC EVs have been shown to possess NKG2D-L and the IL-15/IL-15Ra complex, which can result in NK activation.
December 2021 | Volume 12 | Article 771551
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microvesicles (NDMVs). NDTRs are produced by migrating
neutrophils, while NDMVs are produced by neutrophils that
have migrated to the site of inflammation (97). Further studies
have found that the neutrophil production of NDTRs and
NDMVs depends on features of the immune environment,
such as interactions between adhesion molecules, rather than
on the type of stimulation (98, 99). The two types of EVs have
similar characteristics, including surface markers, stimulating
factors and bactericidal activity (100). Both types of EVs kill
bacteria through ROS- and granule-dependent mechanisms (97).
However, integrin-mediated interactions are necessary for the
production of NDTRs, and the production of NDMVs mainly
depends on the PI3K pathway. Although NDTRs and NDMVs
share the most common markers, studies have found that
NDMVs express CD16 at relatively high level, while NDTRs
express PSGL-1 and Fcg type III receptor at relatively high levels
(101). Although both types of EVs are easily taken up by
monocytes , NDTRs induce the polarizat ion of M0
macrophages toward a proinflammatory phenotype, while
NDMVs induce their polarization toward an anti-
inflammatory phenotype (100, 102). Differential expression
analysis of miRNAs in NDTRs and NDMVs revealed that
NDTRs contain proinflammatory miRNAs, such as miR-4454,
miR-1260, miR-7975 and miR-1285, whereas NDMVs contain
anti-inflammatory miRNAs, such as miR-451a, miR-150 and
miRNA-126. This result indicates that neutrophils may integrate
different types of miRNAs into EVs according to the immune
environment (100). In addition, neutrophil-derived EVs such as
granules can have a certain killing effect and provide defense
against invading pathogens. Moreover, neutrophil-derived EVs
have a short life span and can be easily handled, making them
very advantageous for use as drug carriers.
ADAPTIVE IMMUNE CELL-DERIVED EVs

The adaptive immune response mainly involves T lymphocyte-
mediated cellular responses and B lymphocyte-mediated
humoral immunity (103). These lymphocytes play a major role
in the antitumor immune response. The functions of EVs derived
from T and B immune cells are summarized in detail separately.

CD4+ T Cell-Derived EVs
T lymphocytes are immune cells that play critical roles in
carrying out and bolstering the immune response against
pathogens, the self, allergens, and cancers (104). T cells can be
classified into various subsets according to their immune
phenotype, mainly CD4+ T helper cells and cytotoxic CD8+ T
cells. CD4+ T cells can be further divided into Th1, Th2, Th9,
Th17, Th22, follicular helper T cells (Tfhs), and regulatory T cells
(Tregs), and each of these groups produces specific effector
cytokines under unique transcriptional regulation (105).

The tetraspanin family of proteins, such as CD63, CD9, and
CD81, are mainly used as EV markers on the membranes of T
cells. Moreover, the membranes of T cells contain many
function-related molecules, including CD2, CD3/TCR, CD4,
Frontiers in Immunology | www.frontiersin.org 8
CD8, CD11c, CD25, CD69, LFA-1, CXCR4, FASL, and GITR
(106). These membrane proteins are involved in the activation,
proliferation, differentiation, antigen presentation, and effector
functions of the cells. T cell-derived EVs unidirectionally transfer
miRNA from T cells to antigen-presenting cells (107).
Furthermore, activated T cell-derived EVs are delivered to
DNA-primed DCs through antigen-driven contacts (108).
CD4+ T cell-released EVs potentiate the efficacy of the hBsAg
vaccine by enhancing B cell responses (109).

Regulatory Treg-derived EVs have received widespread
attention due to their ability to exert immunosuppressive
effects, as they were shown to prolong the survival of a kidney
allograft rat model (110). Okoye et al. found that Tregs could
suppress effector T cells by delivering miRNAs. Treg-derived
EVs contain premature and mature miRNAs, particularly with
proapoptotic or antiproliferative functions (31). Isobel S Okoye
al. reported that the microRNA Let-7d was preferentially
packaged into Treg EVs and transferred to Th1 cells, thereby
suppressing Th1 cell proliferation and IFN-g secretion (111). In
addition to microRNAs, regulatory Treg-derived EVs contain
CD25, CTLA-4, and CD73. CD73-positive Treg EVs were shown
to convert extracellular denosine-5-monophosphate to
adenosine. Once adenosine binds to its receptors on activated
effector T cells, it suppresses cytokine production and T cell
responses (41). Therefore, regulatory Treg-derived EVs have
potential as a target for cancer immunotherapies.

CD8+ T Cell-Derived EVs
The functions of CD8+ T cell-derived EVs depend on their
parental cell subpopulations and activation status. Fully
activated CTLs enhance the activation of low-affinity CTLs
through EV secretion in immunotherapy for cancers and
chronic viral infections (112, 113). Moreover, Yufan Qiu et al.
recently reported that activated T cell-derived exosomal PD-1
attenuates PD-L1-induced immune dysfunction in TNBC,
providing a potential therapeutic strategy to attenuate the
suppressive tumor immune microenvironment (114). However,
Xiaochen Wang et al. demonstrated that functionally exhausted
CD8+ T cells could secrete vast EVs, which can be taken up by
normal CD8+ T cells, and impaired their proliferation (Ki67), cell
activity (CD69) and the production of cytokines such as
interferon-g and interleukin-2. Microarray detection identified
257 candidate lncRNAs derived from exhausted CD8+ T cells,
which regulate diverse processes related to CD8+ T cell activity,
such as metabolism, gene expression, and biosynthesis (115).

However, in many cases, CD8+ T cell subtype-derived vesicles
show higher immunosuppressive properties in tumors, which is
inconsistent with the functions of the corresponding source cells.
EVs from activated CD8+ T cells were shown to activate ERK and
NF-kB in melanoma cells, leading to increased MMP9 expression
and promoting cancer cell invasion in vitro, suggesting a role for
T cell-derived vesicles in tumor progression (116). In addition,
Hua Min et al. reported that EVs derived from irradiated
esophageal carcinoma-infiltrating T cells promote the metastasis
of esophageal cancer cells by inducing the epithelial to
mesenchymal transition (117). All these studies documented
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that T cell-derived vesicles may play an important role in tumor
formation and invasion. However, it is well known that the
functions of T cell-derived EVs may be influenced by an
unfavorable tumor microenvironment. Studies on the
immunological enhancement of EVs are essential for cancer
treatment (Figure 4).

One of the approaches involves the separation of single T cells
by cell sorting to obtain T cell subsets with high viability and
purity. Wen-Jie Zhou et al. reported that CD45RO-CD8+ T cell-
derived EVs release more miRNA-765 than CD45RO+CD8+ T
cells. In therapeutic studies, these vesicles limit estrogen-driven
disease development via regulation of the miRNA-765/PLP2 axis
(118). Additionally, T cell-derived EVs carry the effector molecules
perforin and granzyme. Selective targeting and therapeutic
properties of anticancer agents will be of great benefit due to
genetic engineering. Currently, CAR-T cells have been widely
recognized by the medical community as a novel form of viable
tumor treatment due to their high efficacy in cancer therapy.
However, as a means of systemic cell-based therapy, CAR-T cells
have been reported to induce toxic effects, such as cytokine release
syndrome, which is characterized by high fever, hypotension,
Frontiers in Immunology | www.frontiersin.org 9
hypoxia, and multiorgan toxicity (119, 120). A recent study
showed that CAR-T-derived vesicles (CAR vesicles) can be used
for cancer immunotherapy because they express CAR and
cytokine molecules that evoke significant antitumor effects
(Figure 4). CAR vesicles were also shown to cause fewer side
effects, such as cytokine release syndrome, and to lack functional
suppression by PD-L1 (44). These vesicles may have several other
advantages, including accessibility, storage, passing through
physical barriers, and an ability to be combined with traditional
treatments (43). CAR-T cell-derived EVs, as a cell-free treatment,
which is a complementary technique for immune cell-based
therapy, have a lower risk of toxicity than living CAR-T cells.

B Cell-Derived EVs
In addition to antibody production, B cells also play roles in
antigen presentation and in the activation and regulation of T
cells and innate immune effector cells. B cells can secrete antigen-
presenting vesicles under the stimulation of CD40, CD40L,
interleukins, interferons, and tumor necrosis factor, among
others. Among many factors, the TCR-MHCII interaction
plays a major role in the release of EVs from B cells (121, 122).
FIGURE 4 | The antitumor and immunoregulatory effects of T cell-derived EVs. Left panel: CAR-T cell EVs induce antitumor effect by CAR-targeted tumor cells and
secreting perforin and granzyme B Middle panel: T EVs exposing the PD-1 receptor can bind PD-L1 expressing tumor cells preventing T cell inactivation. Right
panel: T EVs exposing FasL receptor can bind Fas expressing DCs resulting DCs apoptosis and tumor proliferation.
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In many cases, B cell-derived EVs provide immunogenic
stimulation. Raposo discovered that B cells can secrete antigen-
presenting vesicles, and some molecules, such as MHCII, B7,
LFA-3, and ICAM, are expressed on the vesicle membrane to
facilitate CD4+ T cell activation (123). B cell-derived EVs are also
involved in CTL activation. Sarah C used DH LMP2A mice to
demonstrate that the BCR plays an important role in the
induction of effective CTL responses by B cell vesicles (124).
However, Matthew W showed that a human B cell-derived
lymphoblast-like cell line (LCL) expresses MHCII+ FasL+ EVs
at very high levels, which can induce CD4+ T cell apoptosis (123).
Zhang et al. found that CD19+ EVs from B cells contain high
levels of CD39 and CD73, which hydrolyze the ATP released by
tumor cells after chemotherapy into adenosine and attenuate the
effect of chemotherapy by inhibiting the CD8+ T cell response
(125). The above evidence shows that the antitumor role of B
cell-derived EVs is complicated. Follicle dendritic cells (FDCs) in
lymphoid follicles are another potential target of B cell-derived
EVs. MHCII, FcR, and integrin a4b1, which play important roles
in the germinal center B cell-FDC interaction, are highly
enriched in B cell EVs (126).
ENGINEERING IMMUNE
CELL-DERIVED EVs

Novel insights into the biological functions of immune cell-
derived EVs has paved the way for the efficient production of
engineered EVs as potent antitumor vaccines and for specific
functional applications. Engineered technologies include genetic
engineering, membrane engineering and cargo delivery
strategies. These methods are applied to the parent cell to
promote their secretion of genetically modified EVs or directly
to the EVs themselves. Many studies have used tumor-derived
EVs; however, little is known about whether these exosomes have
potential negative effects (127). Immune cell-derived EVs have
improved safety and functionality profiles and serve as an
emerging therapeutic strategy for cancer treatment.

Engineering of EVs Content
Due to the small size of EVs, many investigators have engineered
donor cells and then isolated the EVs containing miRNAs,
antigens, cytokines or drugs of interest (128). MiRNAs have
various biological functions and play important roles in tumor
immunotherapy. Functional miRNAs are overexpressed in
parental cells to enhance the load of secreted EVs through
nonviral or viral methods. EVs ensure that the content remains
intact and lessen degradation upon transfer to recipient cells in
miRNA and anti-miRNA therapies (127). O’ Brien et al. found
that miRNA-134 was downregulated in breast tumors and played
a role in controlling Hsp90. miRNA-134 was then overexpressed
in the cell, and the secreted EVs were then isolated. Exosomes
enriched with miR-134 reduced the invasion and migration of
breast cancer cells and enhanced their sensitivity to anti-Hsp90
drugs (129).
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Recently, an increasing number of studies have focused on
vesicles as drug delivery carriers. Engineered NK-derived vesicles
may be used to support tumor therapy (Figure 1). D Han et al.
used NK-derived EV-entrapped paclitaxel to enhance the
antitumor effect of the drug (130). Guosheng Wang et al.
reported a “cocktail therapy” strategy based on excess NK-
derived EVs in combination with biomimetic core-shell
nanoparticles for tumor-targeted therapy. The nanoparticles
were self-assembled and had a dendrimer core loaded with a
therapeutic miRNA and a hydrophilic EV shell (131).
Engineered macrophage vesicle-coated nanoparticles were also
employed for drug delivery in triple-negative breast cancer
(TNBC) treatment targeting the epithelial to mesenchymal
transformation factor c-Met, which was overexpressed in
TNBC, resulting in significantly improved efficiency of cellular
uptake and inhibition of tumor growth (132). Sagar Rayamajhi
and coworkers constructed a macrophage-derived vesicle-
mimetic hybrid for the delivery of doxorubicin for breast
cancer treatment. Hybrid vesicles, with sizes less than 200 nm,
can deliver drugs in acidic cancer environments and demonstrate
prominent toxicity against breast cancer cells (133). These results
indicated that engineered vesicles will be a promising drug
delivery platform for tumor treatment.

Engineering of EVs Surface
As mentioned in the preceding text, immune cell-derived EVs
express the majority of surface receptors on their parental cells.
These signaling molecules on the membrane surface help EVs
find ligand molecules of target cells and release their load. For
instance, proteins such as CD80, CD86, and ICAM1, which are
involved in T cell costimulation, also accumulate in DC-derived
EVs (29, 134). Macrophage-secreted EVs can transfer their
surface antigens to DCs, thereby promoting the activation of
CD4+ T cells (135). Inspired by this, EV surface modification has
also been employed. The engineered EV surface displays a special
functional peptide or glycolipid fragment, which accumulates in
tumors or lesion organs through active targeting.

Genetic engineering is also a reliable and commonly used
method. Y Tian et al. modified immature DC-derived EV
surfaces by introducing the pEGFP-C1-RVG-Lamp2b plasmid,
which fused the iRGD peptide (CRGDKGPDC) to the N-
terminus of the murine membrane protein Lamp2b. The
engineered iRGD peptide exhibited a highly efficient targeting
ability and delivered doxorubicin to breast cancer cells, resulting
in the inhibition of tumor growth (136). We previously generated
human CAR constructs encoding an MSLN-targeted and Myc-
tagged scFv. The second-generation CARs were designed with a
transmembrane region and signaling domain and were
transduced via a lentiviral vector. The genetically engineered T
cell-derived EVs maintained most of the characteristics of their
parental T cells, including the surface expression of CAR. CAR-
carrying EVs inhibited the growth of MSLN-positive triple-
negative breast cancer (TNBC) cells, and no obvious side
effects were observed (43). These results suggest that EVs that
allow proper membrane protein function are promising options
for clinical treatment.
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TUMOR-DERIVED EVs ON
IMMUNE CELLS

Numerous immune cell types, including T/B cells and DCs,
emerge in tumor-infiltrating tissues (3, 7). Tumor-derived EVs
affect the functions of immune cells. The contents and membrane
composition of tumor-derived EVs are also similar to those of
parental cells expressing tumor-specific antigens and
immunostimulatory and immunosuppressive signaling
molecules, thus have both antitumor and protumor effects (41).
Tumor-derived EVs, as tumor antigens, are taken up by MHC I
molecules on antigen-presenting cells and presented to T cells to
activate antitumor responses. A typical example is the use of
glioma-derived EVs to induce DC maturation and immunization
in mice and thereby induce specific CD8+ T cell antitumor effects
(137). In addition, EVs derived from HSP70-positive tumors
stimulate TNF-a production in macrophages, leading to the
migration and cytolytic activity of NK cells and macrophages
(41). Although evidence suggests that tumor-derived EVs have
antitumor effects, and opposing point of view does exist.
Immunosuppressive signaling molecules on the surface of
tumor cells, such as PD-L1, bind to PD-1 on the surface of
activated T cells to induce the apoptosis of activated antitumor T
cells, thereby facilitating tumor escape from immune surveillance
(138). Douglas D et al. found that EVs shed from ovarian tumors
express FasL, leading to the loss of T cell CD3-z expression and T
cell fas-dependent apoptosis (139). Tumor-derived EVs
expressing the NKG2D ligand downregulate the expression of
NKG2D, weaken the cytotoxic effects of NK cells and CD8+ T
cells, and promote tumor invasion and metastasis (140). Tumor-
derived EVs also block the maturation of DCs and macrophages
through a TGF-b1-dependent mechanism and promote the
proliferation of Treg cells (41, 141).
CONCLUSION AND PERSPECTIVES

Cancer immunotherapy has emerged as a promising alternative
to conventional therapies to treat a variety of malignancies and
has demonstrated remarkable clinical results. Immune cell-
derived EVs are gaining considerable attention as potential
cancer treatment candidates (142). At present, numerous
studies have focused on EVs, and their structure, formation,
secretion, and functions have uncovered a significant role of EVs
as intercellular communication messengers (36, 39). The other
aspects of EV functions are poorly understood due to unclear
mechanisms. However, EVs derived from immune cells have
been successfully used to treat solid and nonsolid tumors in
laboratory and preclinical studies (143).

EVs are an ideal tool for diagnostic and therapeutic markers.
Many studies have shown abnormal levels of EVs in the body
fluids of patients with cancer or other diseases, including blood,
urine, ascites, and saliva (51). EVs can easily travel through the
bloodstream due to the composition of their membrane and
nanosize effects. Unique markers, such as specific RNAs and
proteins, from their parental cells can be identified after EVs are
isolated. Immune cell-derived EVs are also used for immune
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diagnosis (48, 144). Circulating immune cell-derived EVs can be
disease-specific biomarkers of inflammation and tumorigenesis.
The levels of these EVs in the sera are correlated with the severity
of chronic hepatitis, fatty liver, etc. In the case of therapeutic
interventions, the ability of immune cell-derived EVs to kill tumors
is unstable and depends on the state and concentration of the
extract (145). Various strategies are used to improve the treatment
and reduce the side effects. (1) In genetic engineering strategies, IL-
4, FasL, or IDO can be genetically transferred into DCs, and
overexpressing DC-derived EVs are able to target specific tumors.
(2) Membrane engineering strategies involve meticulous
regulation of the membrane phospholipid composition or
insertion of a targeting antibody on the surface of the EV
membrane. This process can be accomplished via chemical
crosslinking using various ligand/receptor molecules. (3) Cargo
delivery strategies involve miRNAs, siRNAs, chemotherapeutic
drugs, or antigens loaded into EVs. Immune cell-derived EVs
are novel promising vaccines or adjuvant candidates for the
treatment of cancer (42, 143). DC-derived EVs loaded with an
antigen or adjuvant can induce specific CD4+ and CD8+ T cell
reactions as vaccines. A combination of immune cell-derived EVs,
such as NK cells and CTLs, and antitumor drugs was shown to
inhibit proliferation and migration. More work is required to
understand the complex functions of immune cell-derived EVs in
the tumor and disease microenvironments. Nonetheless,
continued breakthroughs will allow immune cell-derived EVs to
emerge as novel cancer treatments to benefit patients.
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