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CD38 Defines a Subset of B Cells
in Rainbow Trout Kidney With
High IgM Secreting Capacities

Diana Martin’, Pedro Perdiguero’, Esther Morel’, Irene Soleto’,
J. German Herranz-Jusdado’, Luis A. Ramdn’, Beatriz Abés ', Tiehui Wang?,
Patricia Diaz-Rosales ' and Carolina Tafalla™

7 Animal Health Research Center, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, Consejo Superior de
Investigaciones Cientificas (CISA-INIA-CSIC), Madirid, Spain, 2 Scottish Fish Immunology Research Centre, School of
Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom

CD38 is a multifunctional molecule that functions both as a transmembrane signaling
receptor and as an ectoenzyme with important roles in cell adhesion, calcium regulation
and signal transduction. Within the B cell linage, CD38 is expressed in diverse murine B
cell subsets, with highest levels in innate B cell subpopulations such as marginal zone (MZ)
B cells or B1 cells. In humans, however, CD38 is transiently expressed on early
lymphocyte precursors, is lost on mature B cells and is consistently expressed on
terminally differentiated plasma cells. In the present work, we have identified two
homologues of mammalian CD38 in rainbow trout (Oncorhynchus mykiss), designating
them as CD38A and CD38B. Although constitutively transcribed throughout different
tissues in homeostasis, both CD38A and CD38B mRNA levels were significantly up-
regulated in head kidney (HK) in response to a viral infection. In this organ, after the
generation of a specific monoclonal antibody (mAb) against CD38A, the presence of
CD38A" populations among IgM* B cells and IgM" leukocytes was investigated by flow
cytometry. Interestingly, the percentage of IgM*CD38A* B cells increased in response to
an in vitro stimulation with inactivated Aeromonas salmonicida. Finally, we demonstrated
that HK IgM*CD38A™ B cells had an increased IgM secreting capacity than that of cells
lacking CD38A on the cell surface, also showing increased transcription levels of genes
associated with B cell differentiation. This study strongly suggests a role for CD38 on the B
cell differentiation process in teleosts, and provides us with novel tools to discern between
B cell subsets in these species.

Keywords: teleosts, B cells, CD38, IgM, plasmablasts, kidney

INTRODUCTION

Different B cell subsets are defined in mammals. These include follicular (FO) B2 cells (conventional
B cells), Bl cells and marginal zone (MZ) B cells. FO B2 cells, which constitute the largest B cell
compartment in adult mammals, are generally activated in response to thymus dependent (TD)
antigens within the lymphoid follicles and trigger the formation of germinal centers (GCs). Within
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these sites, B cells receive co-stimulatory signals from T follicular
helper cells (Tth) and specialized follicular dendritic cells (fDCs)
and differentiate to antibody-secreting cells (ASCs), plasmablasts
and eventually terminally-differentiated plasma cells (PCs).
Throughout this differentiation process some cells become
memory B cells. In mammals, during this follicular
differentiation, isotype switching recombination takes place to
remove the variable H chain segment (VD]) of IgM and associate
it with a different constant (CH) region, consequently secreting
Ig isotypes with increased affinity such as IgG, IgE, or IgA (1). In
parallel, the genes encoding the variable domains of the heavy
and light chains undergo a high rate of point mutations by a
process called somatic hypermutation (SHM). SHM results in an
increased diversity of the antibody pool after which only B cells
with higher affinity are selected by the antigen. This
diversification of Ig genes is critical for the generation of an
adequate specific immune protection (2). In contrast to
conventional B2 cells, MZ B cells and Bl cells are usually
considered elements of the innate immune system, being
globally designated as innate B cells (3). These innate B cell
populations mount extrafollicular immune responses outside the
GCs in the absence of cognate T cell cooperation. They are
normally activated by thymus independent (TI) antigens that
stimulate the B cell receptor (BCR) and are simultaneously
recognized by innate receptors expressed in these B cells (4).
MZ B cells seem to specifically recognize blood-borne pathogens
in the spleen (5), while B1 cells recognize pathogens in the early
stages of the immune response and produce natural IgM
antibodies with low affinity and wide reactivity until specific
B2 cells respond (6). In mammals, B1 cells are mainly found in
the peritoneal and pleural cavities, mucosal surfaces and spleen,
but are absent or scarce in lymph nodes and peripheral blood
(7, 8).

Teleost fish do not possess lymph nodes and do not develop
conventional GCs. Interestingly, several recent studies have
revealed many similarities between mammalian Bl cells and
teleost B cells, including a strong phagocytic capacity (9, 10), the
expression of B1-specific markers such as CD9 and CD5 (11, 12),
the transcription of a wide range of pattern recognition receptors
(PPRs) or the low IgD and high IgM surface expression (12). The
resemblance of teleost B cells to mammalian B1 cells, along with
the fact that no cognate sites where B and Tth cells interactions
are organized in teleosts during the immune response, strongly
suggests that teleost B responses are analogous to mammalian
extrafollicular IgM responses. In agreement with this hypothesis,
is the fact that teleost fish lack high affinity Igs such as IgG, IgE,
or IgA and therefore do not undergo class switch
recombination (CSR).

Two different ADP-ribosyl cyclase/cyclic ADP-ribose
hydrolase proteins have been described in vertebrates to date.
The first one is encoded by CD38 and the second one is encoded
by the bone marrow stromal antigen 1 gene (BSTI). CD38 is a
45-kDa type II glycoprotein with multiple roles, as an
ectoenzyme, a transmembrane receptor or an adhesion
molecule. Thus, CD38 is a bifunctional enzyme capable of
converting NAD" into Ca**-mobilizing agent cADPR, and

subsequently hydrolyzing cADPR to ADPR (13). These
reaction products are essential for the regulation of
intracellular Ca®*, an ancient and universal cell signaling
system that conditions many immune cell functions. As a
receptor, CD38 binds the specific ligand CD31, a surface
molecule mainly expressed by endothelial cells (14), thereby
regulating cell adhesion. Additionally, it has been documented
that CD38 can establish strong associations with professional
signaling complexes of different cell lineages (i.e., CD3/TCRin T
lymphocytes, BCR/CD19/CD21 in B lymphocytes and CD16/
CD61 in NK cells). Through these interactions, CD38 plays a
critical role in transducing activating signals in these immune cell
populations (15). Although first identified as a marker for thymic
T cells (16) and later on for B cells (17), it is now known that is a
widely distributed molecule in both hematopoietic and non-
hematopoietic cells such as brain neurons, prostate epithelial
cells or pancreatic cells [reviewed in (18)]. Among hematopoietic
cells, CD38 is broadly expressed in monocytes, myeloid cells, B
and T cells, NK cells, platelets [reviewed in (18)]. In most of these
cells, the expression of CD38 is regulated by stimulation or
defines particular subsets of cells with specific functions. Hence,
for example, in humans, CD38 expression has been reported in
circulating monocytes but not in macrophages (19).
Nevertheless, monocytes up-regulate further CD38 expression
levels upon stimulation with interferon y (IFN-y) but not in
response to LPS or tumor necrosis factor oo (TNF-o) (19). Within
the T cell linage, high CD38 expression levels have been reported
in specific T cell receptor (TCR)*CD4 CD8  thymocytes with
unique regulatory functions (20), or in a subset of activated T
cells with reduced proliferating capacities but improved potential
to produce cytokines (21). Similarly, CD38 marks a subset of
mature human NK cells that display enhanced killing and IFN-y
secretion capacities (22). Within the B cell lineage, different
patterns of expression are found in mice and humans. In mice,
immature B cells emerging from bone marrow express CD38. In
the spleen, transitional 2 lymphocytes (T2) express more CD38
than transitional 1 lymphocytes (T1) or mature naive FO B cells,
whereas MZ B cells have higher CD38 expression levels.
Nonetheless, B1 cells found in the peritoneal cavity have the
highest expression of CD38 on their surface in mice [reviewed in
(23)]. In contrast, in humans, terminally differentiated plasma
cells express the highest levels of surface CD38 (24). Nonetheless,
to date, the role of CD38 during plasma cell differentiation is still
unclear in mammals.

In the current work, we have identified two homologues of
mammalian CD38 in rainbow trout, designating them as CD38A
and CD38B. We have analyzed their levels of transcription
throughout diverse tissues and in response to a viral infection
in the head kidney (HK). The HK is the main hematopoietic
tissue in teleost fish, as well as the main B cell maturation site
(25). Additionally, we have produced a specific monoclonal
antibody (mAb) against CD38A, and used it in flow cytometry
to differentiate between HK IgM™ B cells that express CD38A on
the cell surface (IgM"CD38" B cells) and those that do not
(IgM"CD38" B cells). Interestingly, the capacity of IgM"CD38" B
cells to secrete IgM was significantly higher than that of the
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IgM*CD38" B cell population. In concordance, the transcription
levels of genes related to B cell differentiation to plasmablasts/
PCs were also higher in B cells expressing CD38A on the cell
surface. Altogether, our results point to CD38A as a
differentiation marker for B cells in rainbow trout, whereas the
antibody produced in this work constitutes a novel tool to help us
differentiate specific B cell subsets in teleosts.

MATERIAL AND METHODS

In Silico ldentification and Analysis of
CD38 Homologues in Rainbow Trout

Using human CD38 and BST1 as queries and the Blastp software,
all potential genes encoding ADP-ribosyl cyclase/cyclic ADP-
ribose hydrolase proteins from Oncorhynchus mykiss were
identified along the reference genome Omyk_1.0 obtained
from the RefSeq genome database. In the same way, several
protein sequences homologous to human CD38 and BST1 from
several species were retrieved from the genomes present in the
RefSeq database. In order to analyse the evolution of these genes,
a selection of proteins from several species covering different
classes were included in a multiple protein alignment using the
ClustalW software. The alignment was used for the construction
of a phylogenetic tree using maximum likelihood, testing the tree
with a bootstrap method using 1,000 replications. All steps were
implemented in the MEGA X software (26). The ADP-ribosyl
cyclase/cyclic ADP-ribose hydrolase proteins identified in
Branchiostoma belcherii and B. floridae were included as an
outgroup and used for rooting purposes.

The synteny analysis was performed using the information
related to CD38 and BST1 and their neighbouring genes available
in the RefSeq genomes. For this purpose, the proteins from key
species were identified in the phylogenetic tree previously
constructed. The selection of species included Petromyzon
marinus as the most ancient species, three different
chondrichthye species (Callorhinchus milii, Scyliorhinus
canicula and Amblyraja radiate) and a group of ancient fish
with a key position in fish evolution (Latimeria cholumnae,
Erpetoichthys calabaricus, Acipenser ruthenus and Lepisosteus
oculatus). The synteny analysis also included the genomic
information from additional teleost fish (Anguilla anguilla,
Scleropages formosus, Paramormyrops kingsleyae, Danio rerio,
Esox lucius, Oreochromis niloticus, Oryzias latipes, Perca
flavescens and Takifugu rubripes), together with a group
representing salmonids (Oncorhynchus mykiss, Salmo salar,
Salmo trutta and Salvelinus alpinus). Finally, several tetrapods
(Homo sapiens, Mus musculus, Gallus gallus, Crocodylus porosus,
Chrysemys picta, Anolis carolinensis and Xenopus tropicalis) were
also included in the analysis. The information related to the 5-6
coding neighbouring genes at both sides of the genes of interest
were analysed using the NCBI genome data viewer tool (https://
www.ncbi.nlm.nih.gov/genome/gdv/), extracting the direction
relative to CD38 and the annotation assigned by RefSeq. The
annotation was revised using the Blastp software, comparing the
coding protein sequence from neighbouring genes as queries
using UniProtDB as a reference database. To obtain the synteny

images, the gene information was shown together with a
phylogenetic tree based on the one originally constructed by
Berthelot et al. (27).

The potential secondary and three-dimensional (3D)
structure of O. mykiss ADP-ribosyl cyclase/cyclic ADP-ribose
hydrolase proteins was analyzed using the Phyre2 software (28).
For this purpose, the amino acid sequences were examined using
the normal mode method by which the sequence regions
encoding alpha helixes, beta strands or transmembrane helixes
were identified. At the same time, the sequences were compared
with different domains corresponding to fold libraries contained
in the Phyre2 database, selecting the most confident structure as
a template for the 3D model.

Fish Maintenance

Healthy rainbow trout (O. mykiss) of different sizes were
obtained from Piscifactoria Cifuentes (Cifuentes, Guadalajara,
Spain) and maintained at the animal facilities of the Animal
Health Research Centre (CISA-INIA-CSIC, Spain) in an aerated
recirculating water system at 14°C, with a 12:12 h light: dark
photoperiod. Fish were fed twice a day with a commercial diet
(Skretting, Spain). Prior to any experimental procedure, fish were
acclimatized to laboratory conditions for at least 2 weeks. During
this period no clinical signs of disease were ever observed.

Evaluation of CD38A and CD38B
Transcription in Rainbow Trout Tissues
Rainbow trout of approximately 10-15 cm maintained at CISA-
INIA-CSIC were euthanized by benzocaine (Sigma Aldrich)
overdose. Spleen, head and posterior kidney, thymus, skin,
gills, foregut, pyloric caeca, stomach, midgut, hindgut, liver,
brain, heart, gonad and adipose tissue were collected and
placed in TRIzol (Invitrogen) after having performed a
transcardial perfusion using teleost Ringer solution pH 7.4
with 0.1% procaine in order to remove all the circulating blood
from the tissues (29, 30).

Total RNA was extracted from tissue samples using a
combination of TRIzol and RNAeasy Mini kit (Qiagen)
previously described (11). In summary, samples were
mechanically disrupted in 1 ml of TRIzol using a disruption
pestle. Then, 200 pl of chloroform were added and the suspension
centrifuged at 12,000 x g for 15 min. The clear upper phase was
recovered, mixed with an equal volume of 100% ethanol and
immediately transferred to RNAeasy Mini kit columns. The
procedure was then continued following manufacturer’s
instructions, performing on-column DNase treatment. Finally,
RNA pellets were eluted from the columns in RNase-free water,
quantified in a Nanodrop 1000 spectrophotometer (Thermo
Scientific) and stored at -80°C until use. Two pg of RNA were
used to obtain cDNA in each sample using the Bioscript reverse
transcriptase (Bioline Reagents Ltd) and oligo (dT)5 15 (0.5 pg/ml)
following manufacturer’s instructions. The resulting cDNA was
diluted in a 1:5 proportion with water and stored at -20°C.

To evaluate the levels of transcription of the two CD38
homologues, real-time PCRs were performed in a LightCycler
96 System instrument (Roche) using SYBR Green PCR core
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Reagents (Applied Biosystems) and specific primers (shown in
Table S1). The efficiency of the amplification was determined for
each primer pair using serial 10-fold dilutions of pooled cDNA,
and only primer pairs with efficiencies between 1.95 and 2 were
used. Each sample was measured in duplicate under the
following conditions: 10 min at 95°C, followed by 40
amplification cycles (15 s at 95°C and 1 min at 60°C). A
melting curve for each PCR was determined by reading
fluorescence every degree between 60°C and 95°C to ensure
only a single product had been amplified. The expression of
individual genes was normalized to relative expression of trout
EF-1c. and the expression levels were calculated using the 27
method, where ACt is determined by subtracting the EF-1c value
(Table S2) from the target Ct as previously described (31, 32).
Negative controls with no template and minus reverse
transcriptase controls were included in all the assays.

Leukocyte Isolation

Rainbow trout of approximately 20-25 cm were euthanized by
benzocaine overdose and spleen, HK and gills removed. Tissue
suspensions were prepared using 100 um nylon cell strainers (BD
Biosciences) and Leibovitz’s medium (L-15, Gibco) containing
100 LU./ml penicillin and 100 pg/ml streptomycin (P/S, Life
Technologies), 10 IU/ml heparin and 2% fetal calf serum (FCS,
Thermo Fisher Scientific). Cell suspensions were then placed
onto 30/51% Percoll (GE Healthcare) density gradients and
centrifuged at 500 x g for 30 min at 4°C. Leukocytes were also
isolated from peripheral blood. For this, blood obtained from the
caudal vein was diluted 10 times with L-15 medium containing
P/S, 10 U/ml heparin and 5% FCS and placed onto 51% Percoll
density gradients and centrifuged at 500 x g for 30 min at 4°C. In
all cases, the interface cells were collected and washed with L-15
supplemented with antibiotics and 2% FCS. The viable cell
concentration was determined by Trypan blue (Sigma-Aldrich)
exclusion and cells were resuspended in L-15 with 5% FCS at a
concentration of 2 x 10° cells/ml.

Evaluation of CD38A and CD38B
Transcription in IgM* B Cells
The constitutive levels of transcription of the two CD38
homologues were studied in IgM" B cells from HK and spleen.
For this, leukocyte suspensions from the two tissues were washed
in FACS staining buffer (phenol red-free L-15 medium
supplemented with P/S and 2% FCS) and incubated with a mAb
specific for rainbow trout IgM [1.14 mAb mouse IgG; coupled to
R-phycoerythrin (R-PE), 1 pg/ml] (33). After 30 min of incubation
at 4°C, cells were washed with FACS staining buffer and the YO-
PRO dye (0.05 pM) added to the suspension for dead cell
exclusion. Lymphoid (small, low complexity) IgM* YO-PRO
(live) cells were then isolated in a FACSAria ™" TII sorter (BD
Biosciences) equipped with BD FACSDiva " software (BD
Biosciences). The purity of the sorted population (above 98%)
was confirmed in a FACS Celesta flow cytometer (BD Biosciences).
DNase I-treated total RNA was reverse transcribed directly
from FACS sorted populations using the Power SYBR Green
Cells-to-Ct Kit (Invitrogen) following the manufacturer’s
instructions. For comparative purposes, RNA was also isolated

from the RTSI1 rainbow trout macrophage-monocyte cell line
(34). Real-time PCR was performed using SYBR Green PCR core
Reagents (Applied Biosystems) using specific primers (Table S1)
and following the manufacturer’s instructions as described
previously (30).

VHSV In Vivo Infection

Rainbow trout of approximately 6-8 cm maintained at CISA-
INIA-CSIC were challenged with viral hemorrhagic septicemia
virus (VHSV) by bath as previously described (35). Briefly, fish
were transferred to 4 1 of a viral solution containing 5 x 10°
TCIDs5p/ml of the VHSV strain 0771. After 1 h of viral adsorption
with strong aeration at 14°C, each experimental group was
transferred to an individual water tank. Mock-infected groups
were treated in the same way in the absence of virus. At days 1, 3
and 7 post-infection, six trout from each group were sacrificed by
over-exposure to benzocaine. HK were sampled and placed in
TRIzol for RNA isolation. Total RNA was extracted from tissue
samples as described above.

Production and Characterization of an
Anti-CD38A Antibody

The nucleotide sequence corresponding to the extracellular
domain of CD38A (Figure S1) was synthetized and subcloned
into the E3 expression vector (Abyntek) together with an N-
terminal 6 x histidine tag. The recombinant plasmid was
transformed into BL21 cells and a kanamycin-resistant single
positive colony was then incubated at 37°C in Luria-Bertani (LB)
media. When the OD600 reached 0.6, 0.1 mM of isopropyl -D-
thiogalactoside (IPTG, Sigma Aldrich) was added to induce
protein production. After 16 h, cells were harvested, lysed by
sonication and dissolved using urea. Thereafter, CD38A was
obtained through the use of Nickel columns (Sigma Aldrich).
The CD38A-containing fractions were pooled, refolded and used
to immunize three independent mice. Animals were immunized
intravenously (i.v.) at days 0, 15, 30, and 45. Mice were sacrificed
3 d after the last immunization, and splenocytes isolated.
Generation of hybridomas by fusion of mouse splenocytes with
SP2 myeloma cells, isolation of clones, and purification of
specific anti-trout mAbs were performed as previously
described (36). The recombinant CD38A protein was used to
test the specificity of the antibodies by ELISA following methods
previously described (37).

Western Blot

The extraction of proteins (soluble proteins and cell membrane
proteins) was carried out as described by Bouchet-Bernet et al.
(38) with minimal modifications. Briefly, fresh HK tissue
obtained from 20-25 c¢m rainbow trout was pulverized with a
Polytron in 4 ml of Buffer SB [10 mM Tris-HC1, 0.5 mM
dithiothreitol, 1.5 mM EDTA, 10% (v/v) glycerol, and 1 tablet
of Mini Protease Inhibitor Cocktail (Roche) per 50 ml of buffer,
pH 7.4] at 4°C. The sample was then centrifuged at 10,000 x g for
20 min at 4°C. The supernatant corresponding to the soluble
fraction was removed, aliquoted and stored to -80°C until use.
The pellet was dissociated by pipetting up and down with 4 ml of
Buffer MB [20 mM Tris-HCI, 125 mM NaCl, 1% (v/v) Triton
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X-100 and 1 tablet of Mini Protease Inhibitor Cocktail per 50 ml
of buffer, pH 7.4]. Thereafter, the sample was centrifuged at
10,000 x g for 20 min at 4°C and the supernatant corresponding
to the cell membrane fraction removed, aliquoted and stored to
-80°C until use. These kidney protein lysates as well as the
recombinant CD38A protein were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
electrotransferred to a nitrocellulose membrane which was
incubated with the anti-trout CD38A (final concentration 2
ug/ml) following standard methods (39). The antigen-antibody
complex was developed by using anti-mouse streptavidin-
peroxidase and the ECL reagent (GE Healthcare) following the
manufacturer’s instructions.

Flow Cytometry

HK, blood, spleen and gill leukocytes were stained with anti-
trout IgM [1.14 mAb mouse IgG1 coupled to R-phycoerythrin
(R-PE), 0.25 pg/ml] and anti-trout CD38A [mAb mouse IgG2b
coupled to FITC, 5 pug/ml] for 1 h at 4°C in the dark in staining
buffer. After this time, cells were washed twice with staining
buffer. The cell viability was checked by addition of 4’,6-diamine-
2’-phenylindole dihydrochlorid (DAPI 0.2 pg/ml). Cells were
analysed on a FACS Celesta flow cytometer (BD Biosciences)
equipped with BD FACSDiva' " software. Flow cytometry
analysis was performed with FlowJo V10 (TreeStar).

In some experiments, HK leukocytes were exposed to
different stimuli prior to studying the distribution of CD38A.
For this, leukocytes in L-15 medium supplemented with
antibiotics and 5% FCS were dispensed into 24-well plates
(Nunc) and exposed to Aeromonas salmonicida previously
inactivated for 1 h at 65°C (2 x 10° bacteria/ml) or VHSV
previously inactivated for 30 min at 56°C (1 x 10° TCIDs,/ml).
Cells incubated with media alone were also included. After 72 h
of incubation at 20°C, cells were stained with anti-IgM and anti-
CD38A and analysed by flow cytometry as described above.

To test whether the mAb raised against CD38A was capable
of detecting CD38A on the cell surface by flow cytometry spleen
leukocytes were stained with anti-CD38A coupled to PECy5 (20
ug/ml) and the binding specificity was assessed by flow
cytometry blocking the antigen recognition site with the
recombinant protein used for the immunization at different
peptide:mAb ratios (200:1. 100:1 and 50:1).

In order to study the amount of intracellular IgM within
IgM'CD38A" and IgM'CD38 B cells, an intracellular IgM
staining was carried out on HK leukocytes. For this, cells were
first stained with anti-trout IgM coupled to APC (0.3 pg/ml) and
anti-trout CD38 coupled to FITC (5 ug/ml) for 30 minutes. The
cells were then fixed for 15 min with 4% PFA, permeabilized with
0.05% saponin and stained again with anti-trout IgM coupled to
APC (0.3 pg/ml).

Sorting of CD38A*IgM* B Cells

HK leukocytes were stained with anti-trout IgM [1.14 mAb
mouse IgG1 coupled to allophycocyanin, 0.5 pg/ml] and anti-
trout CD38A [mAb mouse IgG2b coupled to FITC, 5 pug/ml] for
1 h at 4°C in the dark in staining buffer. Following several
washing steps, cells were resuspended in staining buffer and

IgM"CD38A", IgM'CD38A" and IgM CD38A" cells isolated by
flow cytometry using a BD FACSAria III cell sorter based on the
fluorescence emitted by the anti-IgM and anti-CD38A
antibodies. Approximately 50,000 isolated IgM'CD38A",
IgM"CD38A" B cells and IgM CD38A" cells were seeded in 96-
well plates and incubated at 20°C for 3 days. After this time,
supernatants were collected to determine total IgM
concentration in supernatants by ELISA. Additionally, 50,000
IgM'CD38A" and IgM'CD38A" B cells were collected for
subsequent RNA isolation and analysis of immune gene
transcription using the Power SYBR Green Cells-to-Ct Kit as
described above.

ELISA

An ELISA was used to assess total IgM levels in supernatants
obtained from sorted HK IgM" B cell populations. For this, 96-
well ELISA plates were coated overnight with 100 pl of 2 pug/ml
mouse anti-trout Ig mAb (1.14). Wells were then blocked with
100 pl of 1% BSA in 0.3%Tween 20 PBS with for 1 h at RT. Plates
were washed 3 times with 0.3% Tween 20 PBS and supernatants
added to the wells. Samples were then incubated for 1 h at RT
and washed 3 times in 0.3% Tween 20 PBS. Then, 50 ul of
biotinylated 1.14 mADb (1 ug/ml) diluted in blocking buffer were
added to the wells and samples incubated for 1 h at RT. After
three washing steps, plates were incubated with 50 pl of
Streptavidin-HRP (1:1000 in PBS-1% BSA) 1 h at RT. Wells
were washed again 3 times and then 50 pl of OPD (o-
phenylenediamine dihydrochloride) substrate (Sigma) added.
The reaction was stopped by adding 50 ul of 2M H,SO, and
absorbance at OD49, was measured in a FLUO Star Omega
Microplate Reader (BMG Labtech). Positive and negative
controls were included in all the plates.

Confocal Microscopy

FACS isolated HK IgM*/CD38  and IgM*/CD38" B cell
populations were collected as described above and seeded on a
poly-L-lysine (0.01% solution, Sigma)-coated slides and
incubated at RT for 30 min in a humidified chamber. The
slides were then fixed in 4% paraformaldehyde solution for 30
min at RT. The fixed samples were incubated for 1 h at RT with a
blocking solution (TBS, pH 7.5 containing 5% BSA and 0.5%
saponin) to permeabilize the cells and to minimize non-specific
adsorption of the antibodies to the coverslip. The samples were
then incubated with a mAb against trout IgM coupled to APC
(17 mg/ml) for 1 h at RT in a humidified chamber. Slides were
counterstained with 1 ug/ml DAPI (Sigma-Aldrich) for 10 min
at RT, rinsed with PBS 1x and mounted with Fluoromount
(Sigma-Aldrich) for microscopy. Laser scanning confocal
microscopy images were acquired with an inverted Zeiss
Axiovert LSM 880 microscope with Zeiss Zen software. Images
were analyzed and processed with Zeiss Zen and Adobe
Photoshop CS6 software packages.

Statistical Analysis

Data handling, analysis and graphic representation were performed
using GraphPad Prism version 7.00 for Windows, GraphPad
Software, La Jolla California USA (www.graphpad.com). Statistical
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analyses were performed using a two-tailed Student’s ¢ test and the
differences between the mean values were considered significant
when P < 0.05.

RESULTS

Evolution of ADP-Ribosyl Cyclase/Cyclic
ADP-Ribose Hydrolase Proteins

To study the evolution of CD38 (ADP-ribosyl cyclase/cyclic ADP-
ribose hydrolase 1) and BST1 (ADP-ribosyl cyclase/cyclic ADP-
ribose hydrolase 2), homologue genes were identified along the
genomes of several species covering key groups throughout species
evolution. Multiple protein alignments were undertaken followed by
a phylogenetic tree reconstruction. Starting the analysis in
cephalochordates, both in the Belcher and in Florida lancelet
genome, unique genes annotated as “ADP-ribosyl cyclase/cyclic
ADP-ribose hydrolase” were identified, which were used as a root in
the phylogenetic tree (Figure 1). A first evidence of gene duplication
was detected in the sea lamprey genome, where two genes annotated
as ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2-like (BST1-
like) were identified. The first of these genes was close in the
phylogenetic tree to the lancelet proteins, whereas the second one
appeared closely related with genes annotated as CD38 (Figure 1).
Following evolution, this duplication of BSTI-like genes is
conserved in several genomes from chondrichthyes, including
smaller spotted catshark and thorny skate whereas other species
like elephant shark only conserve one gene copy. In general, no
genes annotated as CD38-like were identified in the genomes of
these species. Interestingly, three genes encoding ADP-ribosyl
cyclase/cyclic ADP-ribose hydrolase proteins were identified in
coelacanths, key species in fish evolution. Among these three
genes, one was grouped with BST1-like genes whereas the other
two genes annotated as CD38-like were grouped together within the
CD38 group. Remarkable differences were observed when tetrapods
and fish species were compared. In general, the genomes from
tetrapod species (including frogs, reptiles, birds and mammals)
present one gene encoding CD38 and another gene encoding BST1,
which form different subgroups in the phylogenetic tree. Fish
genomes in general do not contain BST1-like genes, with the
exception of sterlet and European eel genomes, which present
homologue genes located in the phylogenetic tree together with
BSTI-like genes from chondrichthyes. In contrast, several fish
genomes contain at least two genes encoding CD38-like genes,
designated as cd38a and cd38b, which form two independent
clusters in the phylogenetic tree (Figure 1). This is the case for
rainbow trout in which cd38a (XP_021418507.1) and cd38b
(XP_021418509.1) genes were identified. In some species, a
significant gene expansion has occurred, as three copies have been
identified in sterlet and Japanese medaka, four in yellow perch and
torafugu, and eight copies in Nile tilapia.

A synteny analysis was performed to explore the genomic
context of the identified CD38 or BSTI homologues genes.
As mentioned above, the lancelet genome presents only one
gene whereas the two copies of sea lamprey BST1-like genes are
located in tandem in chromosome 11 (Figure 2). The genomic

context of these genes in both species is exclusive and very
different from that of other classes. Analyzing the chondrichthye
genomes, two gene copies of BSTI-like genes from the smaller
spotted catshark and thorny skate are also located in tandem
(Figure 2). In tetrapods, most species contain one BSTI and one
CD38 gene, which are also found in tandem (Figure 2).
Interestingly, all neighboring genes identified in chondrichthyes
are conserved in tetrapods and also in some ancient fish, in which
some new genes appear, such as FBXL5 near BSTI or either
FGFBPI and FGFBP2 near CD38 (Figure 2). Total conservation of
synteny was found between tetrapods and coelacanths as well as in
the ancient fish species redfish and sterlet (Figure 2). In addition, a
partial synteny conservation maintaining the same genes at one
side of the studied genes was identified in spotted gar or European
eel (Figure 2). Synteny conservation was also observed in a more
evolved teleost fish species such as old calabar mormyrid, although
in this case a global inversion was observed (Figure 2). Although
synteny is not conserved between highly evolved teleost fish and
tetrapods, the gene tnfaip3 located near cd38a in some ancient fish
is also conserved in the same position and orientation in several
more evolved teleost fish such us Japanese medaka, yellow perch,
torafugu, and Nile tilapia, species that then show a high degree of
synteny conservation at both sides of the genes of interest with
Northern pike and salmonids (Figure 2).

Secondary and 3D Structure Analysis of
ADP-Ribosyl Cyclase/Cyclic ADP-Ribose
Hydrolase Proteins

The amino acid sequences of rainbow trout CD38A and CD38B
were analyzed to identify structural features and model their
potential 3D structure. According to the initial Blastp results
both proteins showed CD38 as the most homologue human
protein with aa identities of 34.01 and 34.68, respectively. The
predicted secondary structure is highly similar for both proteins
with a 42-47% of the sequence predicted to be alpha helixes and
12% predicted to form beta strands (Figure S2). Both proteins
also showed a transmembrane helix between amino acids 142-
151 in CD38A and 126-135 in the case of CD38B (Figure S2).
These structural similarities were confirmed by the 3D structure
homology modelling (Figure S2).

Constitutive Expression of CD38A and
CD38B in Rainbow Trout Tissues

and IgM™ B Cells

CD38A was constitutively transcribed in all rainbow trout tissues
analysed (Figure 3A). Transcription levels were highest in
foregut, stomach, liver, brain and heart, and lowest in spleen,
head and posterior kidney (Figure 3A). In the case of CD38B,
transcription levels were highest in skin, gills, heart and gonad,
whereas slightly lower mRNA levels were observed in
stomach (Figure 3A).

The levels of transcription of CD38A and CD38B were also
studied in isolated IgM* B cells from kidney or spleen. Both
populations constitutively transcribed CD38A and CD38B, but
higher mRNA levels were detected for both genes in spleen IgM "
B cells than in kidney IgM™ B cells (Figure 3B). No CD38A or
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FIGURE 1 | Phylogenetic tree using BST1 and CD38 proteins from the genomes of several species included in the RefSeq databases. Protein alignments were
performed using the ClustalW software and a phylogenetic tree constructed using maximum likelihood analysis. Tree confidence was tested using bootstrapping
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outgroup and used for rooting purposes.
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FIGURE 2 | Synteny analysis of BST1 and CD38 genes associated to phylogenetic reconstruction. Different genes showing certain degree of conservation along
species are represented by different coloured arrows. Non-conserved genes along the figure are showed in light grey. The neighbouring genes of BST7-CD38 were
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FIGURE 3 | Constitutive levels of transcription of CD38A and CD38B. (A) The levels of transcription of CD38A and CD38B was estimated in spleen, HK, posterior
kidney (PK), thymus, skin, gills, foregut, pyloric caeca, stomach, midgut, hindgut, liver, brain, heart, gonad and adipose tissue (AT) obtained from 3 non-stimulated
perfused fish through real time PCR. Data are shown as the mean gene expression relative to the expression of endogenous control EF-1o.+ SD (n=3). (B) The levels
of transcription of CD38A and CD38B were also estimated in isolated IgM* B cells from spleen and HK, and compared to those observed in the RTS11 cell line.
Data are shown as the mean gene expression relative to the expression of endogenous control EF-1a.+ SD (n=5).

CD38B transcription was detected in the monocyte-macrophage
cell line RTS11 (Figure 3B).

Modulation of CD38A and CD38B
Transcription in Response to a

Viral Infection

To establish whether CD38A and CD38B transcription levels
could be modulated in response to a pathogenic encounter, we
infected fish with VHSV and determined the levels of
transcription of both genes in the HK, an organ known to
contain B cells in different stages of maturation/differentiation,
including plasmablasts and PCs (25). For this, we challenged
rainbow trout with VHSV by bath and sampled the HK after 1, 3
or 7 days of infection. CD38A transcription was significantly up-
regulated at days 3 and 7 post-infection (Figure 4). In contrast,
CD38B mRNA levels were significantly down-regulated in

response to the virus at days 1 and 3 post-infection, but then
increased significantly in comparison to the levels obtained in
control fish at day 7 post-infection (Figure 4). It should be noted
that these changes in CD38A and CD38B transcription could
imply regulation of mRNA levels in cells, or mobilization of cells
expressing CD38A or CD38B from or to the HK.

Production of a Specific Anti-CD38A
Antibody

To establish whether CD38A was a marker for specific B cell
subsets as in mammals, we raised a mAb to a recombinantly
produced extracellular domain of the rainbow trout CD38A. The
specificity of the different clones was initially tested by ELISA
(data not shown) and Western blot using this recombinant
protein. Thus, clone 6E4G8 seemed to specifically recognize a
protein of the expected size (44 KDa corresponding to 31 KDa of
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FIGURE 4 | Effect of VHSV infection on CD38A and CD38B transcription levels
in kidney. Rainbow trout were bath infected with VHSV (5 x 10° TCIDso/ml) or
mock-infected. At days 1, 3 and 7 post-infection six trout from each group were
euthanized and the kidney sampled to determine the levels of expression of
CD38A and CD38B genes by real-time PCR. Data are shown as the mean
gene expression relative to the expression of endogenous control EF-1o.+ SD.
Asterisks denote levels of expression significantly different to those observed in
mock-infected fish (*P < 0.05, **P < 0.01 and **P < 0.001).

extracellular CD38A and 13 KDa of the histidine tag) by Western
blot (Figure 5A). The specificity of the Ab was then tested by
Western blot using rainbow trout kidney lysates. 6E4G8
recognized a band of the expected size (45 KDa corresponding
to the complete CD38A protein) in kidney lysates enriched in cell
membranes but did not detect the protein in kidney lysates
enriched in soluble proteins (Figure 5A).

We next tested whether the mAb raised against CD38A was
capable of detecting CD38A on the cell surface by flow
cytometry. This initial experiment was performed using spleen
leukocytes. Approximately 2.5% of splenocytes expressed
CD38A on the cell membrane (Figure 5B). The binding
specificity was also assessed by flow cytometry blocking the
antigen recognition site with the recombinant protein used for
the immunization. After the blockage of the mAb, only a residual
population with non-specific binding could be detected
(Figure 5B), indicating a specific recognition. Furthermore,
this blockage was not observed when an irrelevant peptide was
used (data not shown).

Identification of IgM™ B Cell Subsets
Expressing CD38A on the Membrane
Having established the specificity of the rainbow trout anti-
CD38A mADb, we used it to investigate CD38A surface expression

on IgM" B cells from the HK. We detected a small subpopulation
of IgM"CD38A" B cells that corresponded to approximately
0.2% of all kidney leukocytes, accounting for approximately 1.9%
of all IgM" B cells found in this tissue (Figure 6). Cells expressing
CD38A on the cell surface but no IgM were also detected in the
cultures, accounting for approximately 0.4% of all kidney
leukocytes (Figure 6). Similarly, IgM"CD38A" B cells and
IgM CD38A" cells were also detected in blood, spleen and
even in mucosal tissues such as gills (Figure S3). Interestingly,
in the gills, the percentage of IgM CD38A™ cells was much higher
than in systemic tissues, accounting for approximately 3.25% of
the total leukocyte population. The nature of these cells is
still unknown.

Regulation of IgM*CD38A* B Cells in
Response to Different Stimuli

To determine if the number of cells expressing CD38A could be
regulated in HK B cells in response to an immune stimulus, we
exposed HK leukocyte cultures to a viral or a bacterial antigen
and then studied the expression of CD38A on IgM"* B cells
through flow cytometry. After 72 h of stimulation, only A.
salmonicida was capable of significantly up-regulating the
percentage of IgM'CD38A™ cells in the cultures, whereas
VHSV on the contrary, had no effect (Figure 7). As previously
reported (40, 41), the percentage of IgM" B cells with no CD38A
on the membrane (IgM"'CD38A" cells) increased significantly in
response to both stimuli (Figure 7). Finally, the percentage of
CD38A" cells with no IgM on the membrane (IgM CD38A"
cells) also increased in response to A. salmonicida (Figure 7).

Characterization of HK IgM*CD38A*
B Cells

In order to provide some insights on the nature of these IgM* B
cells that expressed CD38A on the membrane, we sorted
IgM'CD38A", IgM"CD38A" B cells and IgM CD38A" cells
and then analysed their IgM secreting capacity. We established
that the amount of IgM secreted by isolated IgM"CD38A" B cells
after 3 days in culture was significantly higher than that
produced by IgM"CD38A" B cells (Figure 8A). The capacity of
IgM'CD38A" cells to secrete IgM was quite similar to that of
IgM*"CD38A" B cells and significantly lower than that
of [gM*CD38A™ B cells (Figure 8A).

Having established the superior capacity of [gM"CD38A" B
cells to secrete IgM, we studied in these cells the levels of
transcription of a selection of genes implicated in the
differentiation of B cells to plasmablasts/PCs, comparing them
to those obtained in IgM"CD38A™ B cells. Our results revealed
that IgM"CD38A" B cells have significantly higher mRNA levels
of two homologues of mammalian Blimpl (prdml-cI and
prdmi-c2) and irf4 in comparison to IgM"CD38A" B cells
(Figure 8B). Additionally, the levels of pax5 transcription were
lower in IgM"CD38A™ B cells when compared to IgM*CD38A" B
cells, although in this case the differences were not significant due
to a high individual variability (Figure 8B). Nevertheless, the
transcriptional profile of [gM*CD38A™ B cells agrees with that of
cells that have started a differentiation process to plasmablasts/
PCs. To further support this statement, we verified that
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IgM*CD38A" B were significantly larger than of IgM"CD38A™ B
cells (Figure 8C). IgM"CD38A" B cells also showed more total
IgM (both membrane and intracellular IgM) than IgM " CD38A"
B cells (Figure 8D). Finally, visualization of the sorted B cell
subsets also evidenced that IgM"CD38A" B cells had a larger
cytoplasm-to-nucleus ratio than did IgM'CD38A™ B cells
(Figure 8E). All of these features support the hypothesis that B
cells expressing CD38A on the membrane have undergone a
differentiation process to plasmablasts/PCs.

DISCUSSION

The important differences that exist between fish and
mammalian immune structures and existing elements, make it
difficult to assume that fish B cells will be regulated as
mammalian conventional B cells. In fact, recent evidence
points to a functional and phenotypical resemblance of fish B
cells with mammalian B1 cells (12, 42, 43). Nevertheless, whether
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FIGURE 5 | Testing of the specificity of the anti-CD38A mAb. (A) The specificity of the anti-CD38A mAb was demonstrated by Western blot analysis using the
recombinant CD38 protein used for immunization and kidney protein lysates. Detection of CD38A was compared in lysates enriched in cell membranes (memb) and
lysates enriched in soluble proteins (sn) (B) The specificity of the mAb was also established by flow cytometry, blocking the antigen recognition site of the anti-CD38
mADb by pre-incubation with the recombinant CD38 protein. The results obtained in a representative spleen culture are shown, including the plots obtained when
cells were incubated with the isotype control, with the preincubated mAb at different peptide:mAb ratios (200:1. 100:1 and 50:1) or with the mAb alone (Control).

different B cell subsets coexist in teleost fish as in mammals is still
unknown, apart from those B cell subsets defined by the pattern
of expression of Igs on the cell membrane (IgM*IgD", IgMIgD,
IgD'IgM™ and IgT" B cells). Similarly, tools to differentiate
among B cells in different stages of differentiation are also
lacking, strongly hampering a deeper understanding of how
teleost B cells are regulated.

Although CD38 is broadly expressed in many different immune
and non-immune cell types, it has been used extensively to classify
various subpopulations of lymphocytes in both humans and mice
(23, 24). However, the pattern of expression of CD38 throughout
the B cell lineage significantly differs in mice and human. In mice,
highest CD38 are found in immature B cells emerging from bone
marrow, splenic T2 lymphocytes, MZ B and B1 cells [reviewed in
(23)]. In contrast, in humans, terminally differentiated plasma cells
express the highest levels of surface CD38 (24). In this context, we
searched for CD38 homologues in rainbow trout and studied
whether they could be also used as markers to differentiate
between B cell subsets in this species.
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In mammals, two closely related ADP-ribosyl cyclase/cyclic
ADP-ribose hydrolase proteins have been described, namely
CD38 and BST1. In these genomes, the genes encoding for
these proteins are found in tandem. Although chondrichthyes
only contain BSTI-like genes, three genes encoding ADP-ribosyl
cyclase/cyclic ADP-ribose hydrolase proteins, were identified in
coelacanths, key species in fish evolution. Among these three
genes, one was grouped with BSTI-like genes whereas the other
two genes were grouped together within the CD38 group. Teleost
fish, however, do not contain BSTI-like genes, but contain one or
several copies of CD38 genes located consecutively in the same
chromosome. This tandem duplication activity was found to be
especially intense in some fish species which have acquired a
large repertoire of CD38-like genes. The fact that other genes
located in this region have also suffered several duplications
seems to reflect a high propensity of this locus to experience this
type of duplications.

In rainbow trout, two CD38-like genes were identified, which
we designated as cd38a and cd38b. Thus, we first performed a
transcriptional study to establish the pattern of expression of
these genes in homeostasis and in response to an immune
stimulus. Both genes were constitutively expressed in all tissues
analyzed and up-regulated in response to a viral infection, but

some differences were observed suggesting that the regulation
and possibly the role of these two homologues might
have diverged.

Both CD38A and CD38B were found to be constitutively
transcribed by rainbow trout spleen and HK IgM ™ B cells. In Nile
tilapia, CD38 was shown to be expressed on the cell membrane of
HK IgM" B cells through immunofluorescence by use of a
polyclonal antibody (44). However, in that study, the
percentage of IgM" B cells that expressed CD38 on the cell
membrane was not specified. In rainbow trout, we identified two
IgM" B cell populations according to whether they expressed or
not CD38A on the cell membrane, namely IgM 'CD38A" and
IgM"CD38A" B cells. Although this percentage of IgM" B cells
that expressed CD38A on the cell membrane was low in
homeostasis, we have also shown that stimulation with
A. salmonicida can significantly increase this number. Previous
studies from our group had shown that rainbow trout leukocyte
cultures significantly increased the number of ASCs when in
vitro stimulated with A. salmonicida (41), so the increase in the
number of CD38A" subpopulations in response to the bacteria
was not unexpected. Similarly, tilapia CD38 mRNA levels were
up-regulated in response to LPS in HK leukocytes stimulated in
vitro (44).
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percentages significantly higher than those observed in untreated cultures (P < 0.05 and **P < 0.01).

Although the exposure of HK leukocytes to inactivated VHSV
in vitro was not capable of significantly increasing the percentage
of [gM" B cells expressing CD38A on the cell membrane nor that
of cells expressing CD38A without IgM, a bath infection with
VHSV significantly up-regulated the levels of transcription of
both CD38 homologues in the HK. The fact that additional
signals generated by exposure to a live virus are required for
IgM" B cells to increase CD38A expression levels in response to a
virus, could explain why these up-regulations were observed
in vivo but not in vitro in response to the inactivated virus. This is
an issue that should be further explored in future experiments.
Nevertheless, our results have revealed an important role of
CD38 in the response to VHSV infection. In mammals, CD38
has also been shown to have an important role in the control of
different infectious diseases. Thus, CD38 deficiency increased the

susceptibility of mice to bacteria such as Listeria monocytogenes
(45), Mycobacterium avium (46) and Streptococcus pneumoniae
(47) or parasites like Entamoeba histolytica (48). Furthermore, a
number of studies have shown the importance of CD38 in HIV
infection (49). Hence, in HIV patients, CD38 is up-regulated in
CD4" and CD8" T cells early after HIV infection (50) and the
percentage of CD8'CD38" T cells is decreased in patients that
have been treated with antiretrovirals (51). Regarding B cells,
CD38 also has been shown to play an important role in B cell
functionality in mammals, surely conditioning the response to
pathogens. Thus, CD38 ligation by a monoclonal antibody was
shown to prevent apoptosis of GC B cells, thereby affecting the
selection of B cells with high affinity at these sites (52). Splenic B
cells from mice were also shown to differentiate to IgM secreting
cells upon stimulation with anti-CD38 and IL-5 (53).
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cell populations. Data are shown as the mean gene expression relative to the expression of endogenous control EF-1o+ SD (n=8). (C) Quantification of FSC MFI
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In the current study, we have demonstrated that IgM" B cells
expressing CD38A on the cell membrane (IgM'CD38A" B cells)
secreted significantly higher levels of IgM in culture than
IgM'CD38A" B cells. Additionally, when we evaluated the
transcription of several differentiation markers in both
populations, we found that IgM"CD38A" B cells expressed
significant higher levels of two Blimpl homologues (prdm-cI and
prdm1-c2) and irf4 compared to IgM"/CD38" B cells. These cells
were also larger, had more total IgM (both membrane and
intercellular IgM) and had a larger cytoplasm-to-nucleus ratio
than B cells with no CD38A on the membrane. These results
strongly suggest that [gM"CD38A" cells are at least partially

differentiated towards a plasmablast/PC state. Similarly, three
different B cell subsets were isolated in Nile tilapia according to
their density. Among these subsets, the one that seemed to
correspond to plasmabasts/PCs had significant higher
transcription levels of CD38 and Blimpl and lower mRNA levels
of Pax5 and membrane IgM in comparison to resting mature B cells
or partially activated B cells (44). Interestingly, IgM™ cells that
expressed CD38A on the cell membrane were also identified in
rainbow trout lymphoid tissues. However, the IgM secreting
capacity of these cells was similar to that of resting [gM" B cells.
Thus, whether these cells correspond to IgT" B cells or another
leukocyte type should be further investigated in the future.
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In conclusion, in this work, we have characterized two
rainbow trout CD38 homologues (CD38A and CD38B), and
analyzed their transcription patterns in response to a viral
infection. The increase in the transcription of both homologues
in the HK in response to VHSV seems to indicate an important
role of CD38 in the teleost antiviral response. Additionally, we
have generated a monoclonal antibody against CD38A and used
it to discern between IgM™ cells that expressed CD38A and those
that do not. As occurs in humans and Nile tilapia (44), CD38A
expression seems to identify B cells that have started a
differentiation towards plasmablasts/PCs as rainbow trout
IgM"CD38A" cells had a higher capacity to secrete IgM, were
larger and had a transcriptional profile consistent with a more
differentiated state. Furthermore, the percentage of these
differentiated CD38A"IgM" B cells significantly increased in
HK leukocyte cultures in response to A. salmonicida.
Altogether, these results point to CD38A as a relevant marker
for B cell activation in rainbow trout as in humans.
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